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1. Introduction 

Circular and rectangular geometries were used to evaluate the 

longitu_dinal resistive instability for an intense coasting beam in Ref. [1] . 

In the following analysis an approach similar to Ref. [1) will be 

applied to an elliptic geometry. The results for the different geometries 

will be compared. 

We assume an elliptic vacuum chamber of finite conductivity 0--- of 

the walls. 

Wo c,'.'.11 the r,,.tio of the axis &
0 

e,nd el, the former applies for the 

chamber, the latter for the beam placed in the center of the first. The 

vacuum chamber is considered as straight. 

2. Solutions of Maxwell's Equations 

We apply elliptic cylinder coordinates n, 'f, z (Ref. [2] ) . The 

cpordinate surfaces are give� in the cartesian frame by 

(elliptic cylinders, n = cons,t. }; 

( X . ) 2 _ ( y
. ) 2 = l 

, a cos 't a sen1' 

(hyperbolic cylinders,"!" = const. >,, 

(1) 

The Y) valµes co:i;-resp9nding to __ )he surface of the beam and of the 

pipe are given by 
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a = b/cosh rJ, 
0 

a is a �caling constant and b. is the major half axis of the pipe. 

It should be noted that equ. (1) represents a certain •manifold of 

ellipses which cannot in all cases represent the surface of the beam 

as --w;ell as the surface of the vacuum champer. 

The perturbed charge per unit volume in the beam may be written 

· i(kz - wt) 
P =Pi e (2) 

where k is the wave number equal to n/R. n is the harmonic number 

and 2nR is the length of the closed orbit. 

From-, (2) we get the current density 

Maxwell's equations yield 

�2... ➔ 
A -, 1 o E ( · 1 OJ)· � E - ::-,- - = 4n gradf + 0;:-2 �t e- 0t2 <;J 

of which we need only the third component. In Ref. [ 2] it is shown that 

then (4) becomes 
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w 
�w = ck ' 

J1, (n - n1
) is the Heaviside function 

1 

0 

for 

for 

We write the general solution of the homogeneous equation of (5) 

in the following way!. 

this yields 

or 

2 2 
.. 

2 a ( cosh n - cos 'f ) 

In order to separate variables we put 

. jJ ' 

and we get from (6) the following �iathieu equations 

f == 0 

(6a) 

(6b) 
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with 

c
1 is a constant, The general solutions/of (6a) and (6b) are 

H = A Ce Cn, - q) + A Fe (n, -q) 
--i m 2 m 

ce 
m 

(7) 

(Sa) 

(Sb) 

Ce and Fe are the modified Mathieu functions of the first and second m m 
kind and the order m • ' ce 

m 
and fe m 

are the ordinary Mathieu functions. 

Because f should be a periodic fur1ction of ..y with the period n 

the constant m must be an even positive integer or zero. For symmetry 
J.' 

reasons we have to put m = O. 

The· general theory of the Mathieu functions is treated in Ref [{I and 

[ �. Some properties of the m•.�•dified functions 

convenience in ap_c;endix'' A • 

and 

.As shown in Ref [3] we have 

ce 
0 

ce 
0 

( 't'' q) 

= ce 
0 

1 
= 1 - 2 q cos 2 't + 

Ce and Fe are given for 
0 0 

2 
q 

32 

but because normally q is a very small q_uanti ty and 'f is real, we can write 

with a good approximation1 

ce ( t' , - q) = 1 • 0 
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For example tne values for the elliptical sections of the pipe in 

CESAR are 

& = 0,5 
0 

= 4,7 cm 

y = 4-, 5 

R = 380 cm 

a = 4,1 cm 

and 

q 

As the second solution of the Mathieu equation (6b) we take 

fe 0 = ce 
0 

thus (Sb) can be replaced by 

but as .f_{f). should be a periodic fw7.ctio� �r_i __ f it follows necessarily 

B = O. 2 

Then for the longi tudina1 field we have finally 
. f I 

i (kz - wt) 
Ez = [ A1 Ce

0 
(r1, - q) + A

2 Fe
0 

(ri, -q)J e 
(9) 

where � and A2 will be used to satisfy the boundary conditions. 

Eq. (9) gives the fielctfor ri<ri1 • In the region ri::>ri1 we must solve 

the inhomogeneous equ�tion of (5) c,nd fin e. :1ndicular integral f of f . 
0 
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From (5) and (5a) we get 

It is easy to see that the function 

fulfils also the homogeneous equation (6). Then applying the same procedure 

for f we get 

± = C
1 

.. Ce . (n, - q_) + C Fe · ( n, - q_) - 4n;L fk
l 

o O 2 0 

where c1 and c2 Bxe to be chosen to satisfy the boundary conditions. 

Then the field for n < n1 
becomes 

i (kz - wt;) 4nif - -r· 

3. Boundary conditions and expressions for the longitudinal field. 

From �xwell' s equations we ge.t 

➔ . w rot E = 1 -
t C 

➔ w 
rot H =-i - En 

'r) C :, 

(10) 

It is clear that H is zero everywhere. Then we find a relation between z 
E

TJ
, H

f 
and Ez 

E 
. k a  

( h2 . 2 
)

-1/2 c)Ez 
Y) = -1 

4q_ 
cos T) - cos t 

c)17 ' 
(10a) 



En and H
't' 

should be zero at the point n = 0, t = n/2 for 

of symmetry. This yields C 
2 

= 0 because Ce/ ( 0, - q) = 0 and

/ (0, -q) = 1, where the prime denotes derivation with resJ?ect Fe 0 
The only constants left to define are c

1
, A

1 
and A2• 

reasons 

to n. 

The only boundary condition that must be satisfied at n =:ri
0 

is 

with 

E = -(1 - i) H {R. 
z 

{11) 

To eliminate the dependence of H
f 

on t (Ez is independent off) 

we use for the quantity 

2 - 2 1/2 
b 

O 
= a ( cosh n

0 
- cos t ) 

an average value on the ellipse 

(12) 

Applying (11) at n = n and the condition of continuity for E o, z 
and H� at n = n1

, as it is shown in appendix B, 

constants �, A
2 

and c
1 

and we get for the field 

of the beam i n = 0
7 

the following e:l(:pression 

we determine the 

- Ce 
0 

E in the median plane z 

E hi = o) = 4ni e_ z k 
+ 

Fe ( n , - q_) - T Fe · ( n , - q) 
( ) 0 0 0 0 n

1
, - q_ , . Ce Cn, -q) .:.;·T Ce (n

0, -q) 0 0 0 

where T is the complex quaritity 

T = ( 1 + i ){R /3w rw b = ( 1 + i) T1 , 
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In order to simplify the expression for E (13) we introduce some 

assumptions. 

As mentioned before the coordinate system applied can represent 

rigorously either the surface of the bean1 or of the vacuum chamber. 

We will consider two cases: 

a) The parameters are chosen such that the surface of the elliptical 

tank is one of the family of the coordinate ellipses and the minor axis of the 

ellipse describing the beam surface is equal to the minor axis of the rea+ beam. 

b) Fitting the family of ellipses to the beam surface and preserving the 

provided that the vertical dimensions of the tank yields a large value of 
0 

ratio of beam size and height of the vacuum chamber is small. This means that 

the ellipse ri = ri is nearly a circle and may describe in this way the case 
0 

of an elliptic beam in a circular tank. 

4. Elliptic Beam in a Tank with Elliptic CroQ.s Section 

For CESA;:1 we get 

and 

ri
0 

= 0,55, cosh YJ = 1,15 
0 .  

a = 4,l cm, 

The vertical half size of the beam is 0,1 cm. This yields 

For ri �l -2 and for q,:510 , which for CESAR corresponds to 

write in good approxiw.a tion 

Ce ( YJ, - q_) = 1 
0 

Fe ( YJ, - q_) = Yj 0 • 
- q) Ce ( YJ, = q  senh 2Y} 

0 

n ;SlOO, we can 

Fe 1
(ri, - q) = 1 senh q cosh 2ri • + qY} 2ri -

..; 2 0 
PS/5804 



With th0 parameters 

we get 

Writing for CESAR 
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-. 107 s-l w = 2 n x revolution frequency = 7,5 

16 -1 
(J'= 1;2. 10 S 

b = 3, 5 cm 
0 

• 

T
1 

<< 1 and q << · �-
cosh n0 

and tak ing into account all the consirlera.tions above, we get the· follow

ing expression for E in the median plane of the beam 
z 

with /\ the perturbed charge per unit length 

PS/5804 

A = ). i 
(kz - wt) 

1 • 

Following Ref. (1] in the treatment of the Vlasof equation for the 

distribution function 'f' (w,0f t) of the :particles in phase space, we have 

the disper.sion relation 

A= -2 

this can be written as 

ni e
2 

<RE ), }do/� 
z dw 

- 1 = (U - iV) I , 

c1w 
(w-n6) 

(17) 
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<RE> in (16) should be the average value over the cross z 
section of the beam; but :-re will take  for it the value at 17 = 0 using (15). 

Thus it follows� 

and 

U = Ne
2 k 

2 
Yw 

5. Elliptic Beam in a Tank with Round Cross Section 

(18) 

(19) 

For a straight section in CESAR, which is a round pipe,we use the following 

parameters 

�l = 0,4 

111 = 0,42 ' cosh 17� = 1, 1 

a = 0, 23 cm 

b = 5, 0 cm.· (radius of tho pipe) 
0 

17 = 3, 81cosh 17 = 22, 
0 0 

As we have 11
1 

� 1, 17
0 

> 1 ,  for n< 10, we see that the results of the 

foregoing chapter are applica1)lc. 

6. Comparison of Different Geometries for CE;3),.R 

The analysis in Ref [1] yields for a round bea.� in a round pipe 

the following values 

2 V ::s 2 Ne 6l f w / b 0 
(21) 
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0 
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are the radii of the pipe and of the beam. 

Co�.parison between (18), (19) and (20), (21) shows that V is the 
,: .:., � ... 

same for all geometries considered/ ·whereas· for · U we can write 

For CESAR� 

= 1 + 2 ln (bo /b1) u / u 
round elliptic + 21 n_- 11.

1
1• cotgh 2n , .. 1 l V .J.. 

a) Elliptical cross sections, 
; 

' 

nl 
b'· 

b
l 

= 

-

= 

0,025, 170 
3,5 cm 

0,1 cm 

u /u 
round elliptic 

= 0,55 

= 0,4. 

(22) 

The radii to evaluate TJ _ , were taken ec;ual to the mea.+1 .values .between 
roLmo. 

the major and minor half axis. 

b) Elliptical beam in the round straight section, 

b 
0 

= 5,0 cm 

b
1 

= 0,2 cm 

u: ; / u round elliptic = 0,8 . 

To evaluate Uround the el:ti1Jtic beam was supposed to be round with radius ?
i
• 

When the focal distance 2a becomes zero the term in brackets in (18) 

becomes (1 + 2111 (b /b )) • 
o · 1 

"{ .E \ 
'· ' 

Formula ( 18) U ell. 
is then identical with ( 20) 

obvious that U '= U 
l
" .  �· is ah1ays valid. round e �ip·uic 
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The growth time in the case U >;> V is given by 

for an accelerator above trMsition (see Ref. [1} ). 

Thus we can inf er 

'"C round � L elliptic • 

If we refer to the sta.bility criteria in Ref: [1] we can conclude that a 

round beam in a ro11nd ta.nk is more stable than ari elliptic beam in an 

elliptic vacuwn chamber. 

Appendix A 

The rfodified Nathieu functions 

The modified Mathieu function Ce (�, - q) (m = O, 1, 2 • • • ) is 
m 

defined by the series 

ro 

Ce
m 

( ri, - q) = 
r � 0 A

2�
m) cosh 2rri • 

For D = 0 and q small it is 

(o) 2 (q)2 
A

2r 
= G=D°2 4 ' 

A (O) = 1 

Derivation with respect to ri of (Al) gives 

Ce 
1 

m 

00 

= L 2r A (m) senh 2rri ., 
r=O 2r 

For ri = 0 and q small we get 

PS/5804 

2 
Ce ( O, - q) = 1 + 9, + 5L + 0 (q3) 'Y 1 

0 2 32 

(Al) 

(A2) 
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Ce 1 (o, - q) = 0 • 
0 

The second modified Mathieu function is defined by the integral 

(Euler method) 

Fe (TJ, - q) = Ce 
m m 

For m = O, q small and '() = 0 we get 

Fe (0, - q) = 0 
0 # 

Derivation of (1-.5) with respect to Tl rDsults in 

Fe 1 (TJ, - q) = Ce 1 

(A5) 

(A6) · 

+ ------rn m 
Ce ( 11, - q) 

m 
and 

Fe 1 (o, - q) = 1 
0 

For T]➔ co the integral or• the right hand of (A5) tends to ·be a 

constant quantity aco . 'l'hus for large value of fl, Fe
m 

( n, - q_) is 

equal to Ce
m 

( YJ, - q) multiplied by a
Q:) 

• . 

. . . . . 

(A7) 

The assymptotic behavior of the two modified Mathieu functions is 

such that fo i TJ➔o:> both di verge� The wronskian 

W (TJ, - q) = Ce (TJ, - q) Fe 1 (TJ, - q) - Fe (n, - q) Ce 1 (TJ, - q) 
0 0 ) 0 0 

turns out to be a constan.t and. for q sma,11 ,-e get 

w ( o, - q) = 1. (A8) 

When the condition 

• 
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is satisfied we have with a good approximation 

Ce 
0 

= 1 + � cosh 2TJ 

Fe 
0 

= TJ (1 + � cosh 2TJ) - :! senh 2TJ 
2 

Fe' (n, - q) = 1 + q TJ senh 2 
0 

• 

q TJ - - cosh 2TJ 2 (A9) 

Finally when rJ is large we can apply the following: as.symptotic expansion 

for Ce (n, -q); 
0 

(AlO) 

where I is the modified Bessei function of tho first kind some values of 
0 

which are tabulated in Ref. [5]. 

Appendix B 

Evaluation of the constants A1, A
2
, c1 

From the continuity of Ez and H
'I' 

at TJ = n1 
and by (9), (10), (10a) 

and (10b) vre get the following system of linear equ£�tions 

we get 
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Resolving (Bl) with respect to c
1 

by the Kramer method, and by (AS) 

f1 
A = C - 4ni -

1 1 k 

A = 4ni f\ 
2 k Ce 1 

0 

Fe 1 (nl, 
- q_) (B2) 

0 

(nl, - q) • (B3) 
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From the boundary condition (11) at r1 == 112 
and applying (12) it 

results 

A.. Ce (11, - q) + A Fe (11
0, - q) == (B4) 

··-i O o 2 0 

== (1 + i)(R.�
w 

:; [1½_ Ce0
1 (110, � �) + A

2 Fe0' (110, - q)]. 
0 

Putting (B2) and (B3) in (J14) we obtain final1y 

Substituting (B5) in (10), taking into account c
2 

== 0 and using (A9), 

we get for 11 = 0 the expression (13) for the longitudinal field E. z 
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