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1. Introduction

Circular and rectangular geometries were used to evaluate the

longitudinal resistive instability for an intense coasting beam in Ref, [l} .

In the following analysis an approach similar to Ref. [1] will be
applied to an elliptic geometry. The results for the different geometries

will be compared.

We assume an elliptié vacuum éhaﬁber of finite conductivity ©= of

the walls.

We e211 the ratio of the axis g, and € the former applies for the

l’
chamber, the latter for the beam placed in the center of the first. The

vacuum chamber is considered as straighte.

2. Solutions of Maxwell's Equations

We apply elliptic cylinder coordinates n, ’ﬁ z (Ref. [é] ). The

coordinate surfaces are given in the cartesian frame by

X 2 y 2
(a cosh n> o (a senh n) =1 (1)

(elliptic cylinders, © = consiy)ﬁ -

X 2 y 2
: (;-cos :;) - (’a sen 7) 1

(hyperbolic cylinders,¥ = const,}; N
zZ2 =2,

The 7 values corresponding tqﬁﬁhé surface of the beam and of the

pipe are given by -

tgh no = eo
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tgh nl = 61

a =b/cosh No?

a 1is a scaling constant and b .is the major half axis of the pipe.

It should be noted that equ. (1) represents a certain manifold of

ellipses which cannot in all cases represent the surface of the beam

. as-well as the surface of the vacuum chamber.

The perturbed charge per unit volume in the beam may be written

‘ i(kz - wt)

P:=f’1 © @)

where k is the wave number equal to n/R. n 1is the harmonic number

and 2nR is the length of the closed orbit.

From.(2) we get the current density

.. . W
JY=.Jn—0,JZ--£- (3)

Maxwell's equations yiéid

- 1% - 193,
Ab- 5 i (emap v 2 gp) (4)

of which we need only the third component. In Ref, [J] it is shown that

then (4) becomes

A 2E k .
AEZ—;}—Q- %‘%:47‘1?82%(”1‘17) | (5)




with

}ﬁ (n - nl) is the Heaviside function

]’L(nl- n) = 1 for n<n
= 0 for ~ n®n

-
< N

We write the general solution of the homogeneous eguation of (5)

in the follow1ng way

g ilkz - wt) o g
3, = 2lop) FIET
this yields
( | N
- 2
= - .+,(“~2-k2)f=o (58)

(cosh n - cos ® ) '

or
2 2 .2
- + = e e (COSh 7 < &os. ¢ ) £f=0, (6)
b«? N2 2 ¥
W

In order to separate variables we put

f=H(n) “P__ (y)

Lk

and we get from (6) the following Mathieu equations

2 S

dE_ +2q cosh 2n) H =0 =~ (62)
2 1

dn

d2*‘J+ (c + 2q cos 2\1/)\'*/ (6v)

Y
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with
a2y -
q Z—Yv;z ’
c, is a constant. The general solutionsiof (6a) and (6b) are
BH=4 C (n, -q)+4 Pe (n, -a) (8a)
\1’ =B ce_ (W, - q +B, fgm - a). (8b)

Cem and Fem are the modified Mathieu functions of the first and second

kind and the order m j ce ~and fe are ‘the ordinary Mathieu functions.

Because \l’ should be a periodic function of ¥ with the period =
the constant m mst be an even positive integer or zero. For symmetry

reasons we have to put m = O.

The general theory of the Mathieu functions is treated in Ref [3:} and
[ZB. Some properties of the modified functions Ceo and FeO are given for

convenience in appendix A.

As shown in Ref {3] we have
I = n — .
ce, (Y’ -q) = ce, (-2' ‘,’: Q)

and

2
q

1 .
ceo (\’r,q)=l--§qcos2\f+ —_— cos4;k+ O(q3>

52 !

but because normally q 1is a very small cquantity and.\‘/ is real, we can write

with a good approximation]

co, (s -a) =1,
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For example : tne values for the elliptical sections of the pipe in

CESAR are .
_ 0’5

s,
o
b = 4,Tcem
R = 380 cm
a = 4,1 cm
and
1,4 . 10—-6 n2 .

NS
|

As the second solution of the Mathieuw equation (6b) we take
* -

- . ) d\y
fe (4, -q) =ce &, - q) '
° . ° /0 ceoz(i;, - q)

Il

v,

thus (8b) can be replaced by

Y = B, + Byt

but as \r {‘f') should be a periodic function inb‘f it follows necessarily

Then for the longitudinal field we have y finally/

i (ke - wt)
B = [Al ce, (ny - a) + 4 Fe_ (n, 'Q)', ¢ (9)

where Al and A2 will be used to satisfy the boundary conditions.

Eq. (9) gives the fie_ld;.’j’for n&n . In the region n>n, we mast solve

et 1
the inhomogeneous equation of (5) snd Tfins a »narticular integral fo of f .




From (5) and (5_&1) we get -

2f i
0 2 )
+——§— a (cosh n—cos\f)-——zf =

3° Ay Yo °
Kkaf) ' 2 2
.—_4niTw-2~;}L(nl—n) (cosh N - cos \r),

It is easy to see that the function

- 1
f—fo+4ﬂli{

fulfils also the homogeneous equation (6) Then applying the same prccedure

for f we get

!

t =0p.Ce, (n, =q) +C,Fe .(n, - q) - 4ni-+

where C1 and 02 are to be chosen to satisfy the boundary conditions.

Then the field for n<nl becomes

[Cl Ceo (q, —q_) + 02 Feo (r}, —q):} __ei (kz - wt)_ &%P; (10)

—

%, Boundary conditions and expressions for the longitudinal field.

From Mgxwell's equations we get

s
-€

I
-

rot
¥

rot

e =
Il

N
OIE 0IE
g

It is clear that HZ is zero everywhere. Then we find a relation between

E H :
n Ny and EZ

' -1/2 A
E‘ﬂ = -1 % (cosh2 n - COSZ\P) / B-E-E ’ (10a)

on

H =8_¢
PS/5804 Yy ¥1
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En and H$, should be zero at the point mn = 0O, */==n/2 for reasons
!/
of symmetry. This yields 02 = 0 Dbecause CeO (0, =q) =0 and
/ .
Feo (O, -q) =1, where the prime denotes derivation with respect to m.

The only constants left to define are C , A and A

The only boundary condition that must be satisfied at n =_no is

E =-(1-1i) X R ()

with

Rt

To eliminate'the dependence of H'f on 1} (Ez is independent of 1/)

we use for the quantity
2 2 \1/2
bo._ a (cosh M, = ©os */) (12)

an average value on the ellipse 7 ;'ﬁ;-

Applying (11) at n = ho and the condition of continuity for Ez
and HY at n= nl, as it is ehown in appendix B, we determine the
constants Al’ A.2 and Cl and we get for the field EZ in the median plane

of the beam; n = O,the following expression

o~ ) = as P "t _ ) o
EZ (n=0) =4ni = FeO (nl, q) -1 +

'

' Fe (n,-q)-TF (n, -q)
f,ceo (nl’ -a) — N ’.O = o : A(l3)
Ceo(no, -q) =T Ce (noy -q)

where T is the complex cuantity

2
T=01+1)R 8 - (+i) o,
[e]
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In order to simplify the expression for E (13) we introduce some
z

assumptions.

As mentioned before the coordinate system apnplied can represent

rigorously either the surface of the beam or of the vacuum chamber.
WeFWill consider two cases:

a) The parameters are chosen such that the surface of the elliptical
tank is one of the family of the coordinate ellipses and the minor axis of the

ellipse describing the beam surface is equal to the minor axis of the real beam.

b) Fitting the family of ellipses to the beam surface and preserving the
vertical dimensions of the tank yields a large value of no provided that the
ratio of beam size and height of the vacuum chamber is small. This means that
the ellipse n = no is nearly a circle and may describe in this way-the case

of an elliptic beam in a circular tank.

4. Elliptic Beam in a Tank with Elliptic erss Section

For CESAR we get
N, = 0,55, cosh n_ = 1,15
QO
and

a =l4,1 cm

The vertical half size of the beam is 0,1 cm. This yields

;wn nl f 0,02?, cosh nl = } .

For n<l and for q-ﬁlO-Z, which for CESAR corresponds to n 100, we can

write in good approximation

Ce (n, - q_) = l:.

FeO (ﬂ, - Q) =N

4
Ceo (n, - q) = q senh 27

.

1 + gn senh 2n - % cosh 2n

Il

Feo' (ny = q)
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With the péfameters

' -1
wo = 2 © x revolution frequency = 7,5 < lO7 S

. -
o=12, 10 S
b =3%,5cm
o
we get
T 3__,4 . 10 .
1 \/ﬂ-
Writing for CESAR
| » 2
'I‘1 <K 1 and q K e
cosh no

and taking into account all the considerations above, we get the follow-

ing exvpression for EZ in the median plane of the beam
e (1 | o .
= = - 21 = teh 2 ., + - -1iT 1
E (n=0) 23 ? > cotsh 2 n, no ng - 1T ( 5).
with >\the perturbed charge per unit length
Py =>‘1 ol (ke - wt) .

Following Ref. [13 in the treatment of the Vlasof equation for the
distribution function \{/ (W,O,t) of the particles in phase space, we have

the dispersion rclation

N < Sty )
this can be written as

-1=@-4v) I, (17)
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<R EZ;> in (16) should be the average value over the cross
section of the beam; but we will take for it the value at m = O using (15).
Thus it follows: '

2 k
7 = —_ - I

U = Ne 5 Eﬁtgh 2n1 + 2 (no vﬂl) ) (18)

Y
and
2
= (¢ 1
v =27 Qe (19)

5. Elliptic Beam in a Tank with Round Cross Section

For a straight section in CESAR, which is a round pipe’we use the following

parameters

: b = 0.4
ny = 0,42 , cosh n = 1,1
= 0,23 cm ‘
0= 5,0 cm-(radius of the pipe)
= =2
no 3,8,cosh no 2,

As we have n. £ 1, “r]o>l, for n< 10, we see that the results of the

1
foregoing chapter are applicable.

6. Comparison of Different Geometries for CESAR

The analysis in Ref [1] yields for a round beam in a round pipe

the following values

1+ 2 1n (bo/by)

(20)

V=28 RE /b ()
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where bo and bl are the radii of the pipe and of the beam.

Comparison between (18), (19) and (20), (21) shows that V is the

same for all geometries considered.” Whereas for U we can write

U
round

For CESAR:

U L=
elliptic-

1+ 2 1n (bo /b1)
cotgh'an +2(n=-mn)*

(22)

a) Elliptical cross sections,

nl := 0,025, n, = 0,55
b = 3,5 cm

Q
bl = 0,1 cm

) B} - 0.4,
U ound / Uelliptic 0,4

The radii to evaluate TL

roumna

the major and winor half axis.

b) Ellipticel beam

. were taken ecual to the mean values between

in the round straight section,

.=, 042, =358
b = 5,0 cm
(0]
bl = O,?;Qm
Yround / Uiptic = 0,8 .

To evaluate U '
round

the elliptic beam was supposed to be round with radius b

l.

When the focal distance 2a becomes zero the term in brackets in (18)

becomes (1 + 21ln (bo/bl» .:ﬁ

Formula (18) U is then

11,
obvious that U
ro

£7U
und  elliptic

PS/5804
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The growth time in the case U3V is given by

1

T - _
[ lk,| 0] Y2

for an accelerator above transition (see Ref. [i] ).

Thus we can infer

<

>
round 7 relliptic .

If we refer to the stability criteria in Ref [I]bwe can conclude that a
round beam in & round tenk is more stable than an elliptic beam in an

elliptic vacuum chamber.

Appendix A

The Modified Mathieu functions

The modified Mathieu function Ce_ (m -q) (@m=0, 1, 2...) is

defined by the series
(m)
Ce (ny —a) = 2 & " cosh2rn, (A1)

For n=0 and ¢ small it is

2
L -l 4 -

]

Derivation wifh réspect to n of (Al) gives

(¢, o]
Cem' (ny —q) = L 2rA (n)

A2
= o senh 2rn , ( )

For n=0 and q small we get

2
Ceo(o,-q)=1+‘—21+%-§+o(q3)’i’ 1 (a3)
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ce ' (0, -a) =0, (a4)
The second modified Mathieu function is defined by the integral

(Buler method)
n

] . o an ]
Fe (n, - q) = Ce_ (m—q)j aar— A (45)
o |Ce_ (n, q]
|39
Form =0, q small and n =0 we get
Fe (0, -q) =0, (46) -

Derivation of (AB) with respect to 1 results in

-y

N R ) 1
' _ _ 1 -
Fe ' (n, -q) =Ce ! (n, q)f ————————————

-

=5 4+
-»QL Cgm_(h, -q Z} Ce {n, = q)

and

Feo! (0’ - q) =‘iﬂv; | (A%>

For m- oo the integral or the right hand of (A5) tends to be a
constent quantity agy. Thus for large value of 1, Fem (n, - q) is

equal to Cem (n, - q) multiplied by Ugg *

- The assymptotic behavior of the two godified Nathieu functions is

such that for mn-e0both diverge. The wronskian

v (n, - Q) =Ce_ (n, =q) Fe ' (n, - )~ Fe, (n, = a) Ce ' (n, - a)
turns out to be a constant and for q smell we get
W (0, -~ ¢) = 1. (48)

When the condition
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is satisfied we have with a good approximation

= a
CeO (n, q) =1+ 5 cosh 21
Fe (n, —q) =n (1 + 2 cosh 2n) - 2 senh 27
o] 2 2
Fe! (n, =q) =1+qmnsenh2n- % cosh 2n (19)
Ce; (q, - q) = q senh 27

Finally when 1 1is large we can apply the followingassymptotic expansion

for Ce  (n, -a):
ce (n, =)~ I (VT &) (410)

where'IO +is the modified Bessel function of the first kind some values of

which are tabulated in Ref. [5] .

Appendix_ B

Evalugtion of the constants ‘Al’ AZ’ Cl

T

From the contimiity of B and X, | end by (9), (10), (10a)

and (lOb) wre get the following system of linear equations

at n=n

| £, g
- - i L - - B
Cl Ceo (nl, q) - 4ni = A1 Ceo (I}l, q) + A2 Feo (Tll, q) (B1)

K ) ' )
ACeo T)l,—q +A2Feo Ny 4,

' —
¢, Ce_ (n;s q) )

Resolving (Bl) with respect to C. Dby the Kramer method, and by (A8)

1
we get
= - Lo -0 B2
A =C) -dmig Te (n,s a) (B2)
Y R B
A, = 4mi‘g Ce (n, - a), (B3)
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and applying (12) it

From the boundary condition (11) at ¢ = n,

results

A1 CeO (no;“— q5“+ A2 Féo (no, -q) = (B4)

Putting (B2) and (B3) in (B4) we obtain finally

Y - - ! -
Feo (ﬂo, q) TFeO (no, Q)j]
o]

Pr
C., = 4ni’ == [:@ "(n,, = q) - Ce ' (n., - q) e
1 k | % ‘M’ 1’ - N e 1 :
Ce (no, q) TCe, (nO, a)
Substituting (B5) in (10), taking into account c, =0 and using (A9),
we get for m = 0 the expression (13) for the longitudinal field Ez'
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