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‘e Introduction

The longitudinal resistive wall instability for azimuthally uniform
beam moving in a straight vacuum chamber has been investigated for different
arrangements of beam and pipe but the beam was always assumed to be centered

in the pipe.
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4

P

The case of a round and rectangular geometry is treated in Ref.

whereas the elliptic geometry is used in Ref. ié}.

Here we will study the case of a beam placed asymmetrically in a round

pipe.

2. Solution of Mawmrcll Equations

The approach is the same as in Ref. t?] . We assume a perturbation in

the charge distribution of the form

ei(.kz - wt)’

P -5,

k = R/n

2nR - length of the closed orbit

n - harmonic unumber.

We use the following parameters:

r - radius of the round beam

b ~ radius of the pipe

d -~ distance between the axis of the two parallel
cylinders.

Further we use Bi-cylinder coordinates n,E}, z (Ref. [33 ).

The coordinate surfaces in the cartesian frame may be written

@ n=cmmt,—m<n$+a),

C 2
X2 +y + a2 = 2ax cotgh n, (l)
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this is a cylinder with the axis at x =a cotghn, y = 0.
b) £ = const. (this is not the azimuthal variable along the closed

orbit), ~n< B g =

7 7
x + (y - a cotg®) =ﬁ§

c) Zz = const.

The pipe is represented by the cylinder n=mn > 0, the beam by n = N> 0,
N = +C0is identical with x = a which is chosen to be near the axis of

the beam x = a cotgh Ny V= 0. Using (l) we get for the radii

]
I

a/senh nl

o’
I

o}
and
cotgh no - cotgh nl‘= d/a .

As r, b and a are known-for a pérticuiar problem we figure out

ay no, nl. For CESAR with b =5 cm and r = 0,15 cm we get the following

table.
TABLE T
d a ny N a/n

1 cm 12,00 cm . 5,1 v 1,6 . 7,0 = 10—3
2 cm 5,25 cm 4,2 0,92 . 3,1

3 .em . 2,67 cm . 3,6 , 0,52 1,5

4 cm 1,12 cm 2,7 ‘ 0,22 0,7

4,8 cn 0,14 cm. 0,84 0,028 0,09

For the source of the electromagnetic field we take the following:
the charge density P N -
i(kz - wt)

}o =Fl e .for n >ng

= 0 for nénl
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and the current density : .- .

‘j =j = ’J ~(‘0P/k»

From Maxwell equations we get the Helmotz"’"equation for the longitudinal

field E . If we use the following expression for E
2z ’ Z

we can write

X Ur ¥ vl
o 0P ¥ 23l3~ \%’flﬁ 2 d11 (2)
w Yy

where 8 11 is the length element of the bi-polar coordinates

2«
a

811 (cosh T - cos 9)2

and

- l/(l-BW2) o

W=w/kc ’

In the region outside the beam, n<n, we have to solve the homo-
geneous equation of (2)
2 2

2 f o, - - (®

|
|

Q40
(X
rob
Qs
S
IW
N

7 wa (cosh 7 - cos"9')2

In order to ma&e eouatloﬂ (3) senarable we 1ntroduce an approx1mat10n.

rl‘he smallest value of cosh n occurs at the surface of the p:Lpe and is always

bigger than one. If we put in equation (3)
(cos'l:l'n - cos &) ~ cosh n (5)
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-4 =

T

which is strictly valid for all n at@; =t 3 and which is a good

approximation for 9# + g and 1n large, we obtain
2 2 2 2 '
P’ k f
0 | 9% ° g (6)

+ i + ey = 0,
f@-ﬁz 552 ;‘:2 coghe 1
Equ. (6) now separates. If we put

£ =H (n)O(®)

we get the following two equations

2. 2 2 .

dzH-(k,.? +c)HE=0 (7a)
2 1

dn Yw cosh 1

, 4 _.

L0 . g-o. ()

a6

Because EZ is a periodic function of €& ¢, cannot be negative.

1
Further as EZ cannot change its sign for symmetry reasons we get ¢, = 0

and E; is a constant. (7a) yields

2
gi-H - --q H- =0 (70)
dn cosh n .-
with
q =ka/y_, (8)
In CESAR it is “YW‘= 4.5 and R = 3803 the quantity q/n is tabulated
in table I.

Equ. (7c) can be solved by the series method as shown in Appendix A.

For large value of M a first integral is given approximatively by

2

I'I=1"'.‘---‘g - see
1 4co§ﬁzn+

(9)
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Because q is very small H. is a function always near one.

1

The second integral of (7a) HZ’ dan be found by the Euler method.

3 Bou_nda‘rz c,o,nd‘i‘t_ions _and expressions for the longitudinal field,

The :longitudinal field E_ outside the beam, n<m, i
Z i i

(0]
H
[0}
o]
H
o
0]
M
S
+
D
1

by

[ L e E (] e e e T ()

As in the beam, n7n1 , Ez mist remain finite we have todrop
H2 (n) in the homogeneous solution and we obtain the following:general so-
lutlon for ny> ﬂl '

Z - Bl I'L_L ( ) 1(kz - W >—"'4'ni 1_’: . ) (14) o

The last term in the right of the equ. {14) is the particular
int_egral of the inhomogeneopsvequation.](B),J valid for n7n,.

From the follow1ng l‘faxwell equatlons

= w
rotg B =12 Hg
-—b
rot H=-1i 2 E
n c 9

we gt a relation tatier ) snd § %y it scconit tuat for ressos

of symmetry ‘H'Z"'is""z'e'fb‘.::

. 2 '
H, == — (cosh'nf ~ cos8) —= . (15)
b ak -' @ 1

The boundary conditions which have to'be ‘satisfied are

il

a) contimuity of E, at n=mn ,

b) continuity of H9 at--‘i"-ﬂ nl ,and

sl

c) normalization between E and H at N = Ny’ which means

o
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E =(1-1) (§{Iif} (16)

o - conductiv:.ty of the walls of vacuum chamber. Condition (16) cannot

where

be satisfied completely because there is the dependence on cosg;‘ in the
expression (15) for H@L' But in the following we shall apply the appro-
ximation (5) again. This means that the boundary condition at n = no is

satisfied only in the regions of the surface for which cos & is near zero.

In Appendix B: it is shown how the three constants Al' A2 and Bl
have been evaluated from the boundary conditions a), b) and c), The results
for the longitudinal field Ez evaluated on the polar axis n =089, which

is very near to the beam axis are
. P I
E (X)) =4ni<= |H ' (n,) -1+
. ( ) 4ui - ( 1) 1

(n)-TH"(
Hy (ng 2 n,) -] ()

-2 (n,) 4
1 ‘M )
H (no) T H (no)
with Q8. ¥ 5
P=w(l+i) =2 P cosiin == (1+i)T . (18)
ak o 1

4,v Discussion of the dispersion relation and results for CESAR°
Following Ref. [i] we write w = nw . For CESAR we have
-1
W= Ty5 e 107 cs

1,2 1016 g7t

Q
|

this results in 5
2,4 + 10
T = ——————— cotgh no .

o /o
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As one can see from table I T, <1 and n E>4 ‘-Z “'is fulfilled.

Introducing in (17) the results of Appendlx A and (18) we obtain

%) = e - ]
B, (9 =- %senh ™ [e(n )~ oy =) €1y) + 3 () ED
3 (n) is a function descrlb '1\‘A“pend1x A. A is ‘th'> charge per
unit length.
_ i(kz - wt).
| D=, o0
"In Ref. [17] “the Vlasov equation. for the distribution function. .

L{/(W,@ , t) in the beam is solved and a dispersion relation is obtained. ;-

With the same procedure as applied in Ref. [l] and Ref. E?J we get
for the complex quantity (U - iV) : '

[N B 2 [ ‘ E .
= o i -— o
U = Ne YWZ tgh” ny | B2 (nl no) tgh ”1] (20a)
V=2 Ne2 @Lﬁw -.-’_?ghB n, cotga m_/b . (20b)

The results in Ref. L-lj for a round beam placed in the centre of-‘"_‘a

round pipe are-

U= Ne? ;% El +21n (b/r):l "~ (21a)
V.C =2 Ne?@/}_; /b ' | - | .(21b)

1 To check the result (20a), {20b) we take for the excentricity

d zero. As
—; ln L f;)r " 0
T]l T]O T T]l, no —

is obvious, we find that (2la), (21b) is ‘just:a special case of (20a), (20v).
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When_the,beam,ismmoved away from the centre, the quantity U decreases

monotonically and V. iﬁcreaées as showniin”Fig. 1.

We can write also

and

U=T

2T ;}k”t -
tgh nI,[:i #2 (ng =) teh |

1+21n */2)

C

SV tend n cot
V= VC tgh 0y cotgb n .

(22a)

(22pb)

For CESAR, b =5 cm, r = 0,15 cm, (22a) and (22b) give the following

values:

cm
cm
cm
cm
cm

,8 cm

| v/v

1.0
1.1
1.4
2.1
4.5
19

IT

U/Uc

1.00

1.00.

0.95
0.90
0.75
0.19

© VU e /n e 10

3

5.6

6.2

8,3
13
34
560

For a small value of d we get V << U, Above transition growth

time and stability criterion against longitudinal instability can be written

in the form

T =£n'k0( U]'l/z'
§>D%t%ﬂ%

as shown in Ref. [i] H

k

total frequency spread in the beam,

(23a)

(23b)

constant related to the momentum compaction factor,
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For a large 4 , V Dbecomes larger.than U and (23a), (23b) are
no longer valid. For V >>U the equations for growth time and stability
become (see Ref. [4] )

O > i), (o)

De .Conclusions
Taking into account (23) and (24) we can infer from Fig. 1 or table II
that above a certain value of d the'bqam_iglless stable than for the.case.

d = 0. The growth time is plotted against 4+ in Fig. 2.

This could explain qualitatively why the beam-in CESAR is more unstable-
at injection orbit which is very near to the plate of the pulsed inflector.

than at central orbit.
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Appendix- A-

T}l .
e fungtlons Hl (), 5 _(q)

We consider the eguation

2 2
%I_qg =0, (A1)
dn cosh 1

is very small. For CESAR and for n = 10 we get a

4 for d = 3em.

2

The quantity gq

2 .
g quantity of the order of 10 If n increases, the

second term goes to zero. Thus we can omit the second term for n — @O

and wrlﬁe | | d2H
—=0. (42)
dn
Two particular solutions are
H =lsand B, =n, - (43)

1

We are interested in the particular integrals of (Al) of which

(A3) are the assymptotic expressions.

The differential equation (Al) can be integrated by the method of

series. We look for an integral of the type
s, &
H (n) = Zi e (&4)
o) i
cosh n

that, if we take =1, for n —® tends to unit.

Io'd
(o}

Substitution of (M) in (A1) yields A, =0 and the following

A,
i

correlation between and X,
i+l

i(i+l)O(i+q20(i —(i+2)20(i+2=0 , (a5)

If g1 and i>0 is fulfilled we obtain from (AS) with good
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approximation
q =l(l+1)0( (1\*6)
i+2 (l + 2)
. s s ' q2 '
For odd i it is O{i‘= 0. a2 = - Z results from (AS) ,__.:fo.r i=0,

It is easily verified that (A6) and even i give

@ -1 " (&7)
[ (-2 (-4) (- 6).g]® 2

then if we put

g (o . (AB)
[ (l -2) (i- 4)...4]

we get for Hl (n)

5 [on]
B (n).=1 +% > ........%.—- (19)
1 cosh =™ n
with
S, -1
The serie ‘ LV
S= 21 & .

1.
is convergent which was checked numerically and: S. is.equal t0:2;84.~This
implies that the series (49) or (aa) are always convergent. Further the

convergence becomes very fast for| n->@;

For all values of m, the second term on the right-hand side in (A9)

is always small in comparison to one. Therefore we can write
H (n) =1+ S‘Z e (n)» (410)

‘The maximum value of € (h)' is 2,8 and the function decreases rapidly

to zero by increasing mn.
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Derivation of H (n) with respect to ’Y} is

) ool ) e G t d . A11
()= et {n) (a11)
2 For 1= O0:/ Ejii:”'?‘”i(n)ftends {70 -0. Note again that ~e'(n) “is-a”
negative quantity,‘.The.secopd_intégral H2 (ﬂ)._of.(A;): can beAderived
by the Buler method.

e s e _.._.,,ndn I )
Ay () =E () | s (a12
2
2 : o H" (n)
From (410) and with g <<1 it results in

[ T R N = TV PSS
<3
v

2

b, 2 ! . _;: N q
- Hl (n) =1+ <5 € (n)

and .
1. 2
e ot e 1 _' _.2. . & (n)

H12 (n)

then we get

a 2 o
[ - e (213)

2
o :

wherein 1
&) = [7e () an.

" Inserting (A13):in.(A12) we get .
" _ R R S L e o
B, () =[1+% e (n)J [n - % g(n)] et
Omlttlng termln .q4' we get-i |
, .
B, () =n-% [em-Fne ], (a14)

. If. n goes. to infinity the function E, (n), tends .to ©0 linearly,

whereas for n =0 the same function is zero. Thus we can write
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in' H_H ' =
.11m > By 0

L4 .

I 70

Finally we get from (4l4)

2
By ) =1 - 4 [?s (n) -m e (ni] (m15)

this quantity is always near to unity and the quantity in brackets is,

always positive.

From the relation above we can infer that the Wronskian W is a
constant and can be evaluated for n = €. It turns out that W is

equal to- one.

- Appendix B

Eyaluatlon of the constant . A B

From the ‘contimity’ of “the longitudinal fleld E (13) (14) at
n= nl, the beam boundary, we get

‘HH (n)+A 5, ( )~B H (ﬁll) - 41_:1 -]-15 t,"'v:.,;(B.lu)

1
The continuity of HE? (15) at n= nl demands

1 ! = 1 B
A B (nl) + 4, H (nl) B, B (nl) (B2)

where the prime denotes derivation with respect to na

From (Bl) and B2) we obtain the constants A and A, as functions

of the Bl' Now we bear in mind that the wronskian of the two functions

Hl and H2 is one as shown in App. A. This yields
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— - . fl t B
A =B -4 =2 (nl) (B3)

P | ' : B
A =dni -2 H (nl) (B4)

(%

Bl can now be determined applying the bouhdary conditicn (16) at n = no.

From (13) and (15) it results

, Aj_ H1 (no) + A2 H2 (T]O) =

S 2 coshn : — , RV .
=-(1+1)R- Yy To L A H'(n) +a, H2'<n°i]‘ e:)

ak

Deriving (B5) we applied the. approximation (5) for the reasons

mentioned above. Putting (B3) and (B4) in (BS) we get finally

o [jﬂl (n) - (noi] -fm-%2~[jg2 (n ) - T, (n0§]= 0

B o=dni B (n) - H ' (n) ] (56)
B]_ 4 k ) (nl B nl Hl(ﬂo) _ THl'(ﬂo): |

As Hl (n) at- n = 00 is one, using (B6) we get the expression (17)

for the longitudinal field E_rnear the beam centre. . !
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