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Evaluation des algorithmes d'intégration disponibles
pour les &quations différentielles ordinaires a valeur ipitiale:
sélection pour la bibliothéque des sous—programmes
et les ensembles de simulation de Chalk River

par

M.B. Carver, J.L. Liu* et D.G. Stewart

Résumé

I1 existe un trés grand nombre d'algorithmes congus pour le probléme de la
valeur initiale des équations différentielles ordinaires, c'est-3-dire qu'ils
permettent d'effectuer 1l'intégration suivante:

_ it
y(t) = J,

f(y)dt + y(t)
0= =70

ot y(t) et y(t ) sont des vecteurs de colonne et f une matrice carrée. L'inté-
gration se faig normalement au moyen d'une somme finie 3 des intervalles de

temps choisis dynamiquement pour répondre d une tolérance d'erreur imposée.

Ce rapport décrit la logistique de base du processus d'intégration, il
identifie les zones communes de difficulté et il &tablit un profil d'essai
complet pour les algorithmes d'intégration. Un certain nombre d'algorithmes
sont décrits et quelques sous-programmes publiés et choisis sont &valués au
moyen du profil d'essai.

La conclusion est qu'une bonne biblioth&que destinée A un usage général
n'a besoin que de deux sous-programmes de ce genre. Les deux sous—-programmes
choisis sont des variantes des algorithmes bien connus Gear et Runge-Kutta-
Fehlberg. On trouvera dans le rapport une documentation compléte et des listes
imprimées.
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ABSTRACT

There exists an extremely large number of algorithms designed for the
ordinary differential equation initial value problem, that is to perform
the integration

t
y(t) = fto f(y)at + y(t))

where y(t) and y(t ) are column vectors, and f is a square matrix. The
integration is normally done by a finite sum at time intervals which are
chosen dynamically to satisfy an imposed error tolerance.

This report describes the basic logistics of the integration process,
identifies common areas of difficulty, and establishes a comprehensive
test profile for integration algorithms. A number of algorithms are
described, and selected published subroutines are evaluated using the

test profile.

It concludes that an effective library for general use need have only
two such routines. The two selected are versions of the well-known Gear
and Runge-Kutta-Fehlberg algorithms. Full documentation and listings

are included.
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ASSESSMENT OF AVAILABLE INTEGRATION ALGORITHMS
FOR INITIAL VALUE ORDINARY DIFFERENTIAL EQUATIONS:
SELECTION FOR THE CRNL SUBROUTINE LIBRARY
AND SIMULATION PACKAGES

by

M.B. Carver, J.L. Liu and D.G. Stewart

INTRODUCTION

An extremely large number of algorithms have been proposed for the
numerical solution of the ordinary differential equation initial value
problem. The design or selection of such algorithms for use in a

library of mathematical subroutines for general scientific and engineering
use is difficult, as it is impractical to maintain a large number of
subroutines which attempt to do the same job with varying degrees of
success.

Criteria for selection must include accuracy, efficiency and ease of
use, thus one can consider realistically only those algorithms which
have options to determine an optimal integration step size, and pos-
sibly order, by means of a built-in estimate of the associated trunca-
tion error, and are presented as quality software, complete with
detailed internal and external documentation which emphasizes the
weaknesses as well as the strengths of the method. These restrictions
considerably reduce the possibilities, but a number of candidates
remain. Typical amongst these are algorithms published by Gear[l1],
Hindmarsh[2], Byrne[3], Shampine[4] and Krogh[5], all of which satisfy
the above criteria.

Because these algorithms are reliable, quality software, numerical
analysts have incorporated them in a multitude of applications packages,
in which the user is shielded from the complexities involved in manage-
ment of the integration. This type of application has in fact been
their greatest success. To the uninitiated user of a subroutine
library, however, their correct implementation can be seen as a pro-
hibitive task.

In order to focus further on quality for general use, the criterion

of robustness must be added, a robust algorithm being defined as one
which produces the result to the desired accuracy or a clear indica-
tion of failure, requires a minimum of effort and does not demand
clairvoyance from the user. This criterion is essential because the
majority of projected users are not numerical differential equation
experts, and therefore, not qualified to make decisions on fundamental
issues such as the initial step size, error base, sparsity, and error
recovery. Unfortunately, as such decisions are frequently left to the
user's discretion in the guise of generality, the application of this
robustness criterion eliminates most of the above-mentioned candidate
algorithms.



This report attempts to show that such algorithms can be made con-
siderably more robust at the expense of a negligible loss of generality
by further automation and simplification of the decision process during
start up, integration, error processing, and discontinuity handling.
Several specific areas where traditionally required user interaction
can be either eliminated or reduced to optional status to improve
effectiveness, are identified and discussed.

A number of results of tests on both academic and applications
problems are given to illustrate that the modifications proposed
above are not only more robust, but frequently more efficient partic-
ularly in the most common accuracy range encountered in general use.

The motivation of the testing project was threefold, firstly to

reassess and fortify the integration section of the CRNL mathematical
subroutine library AELIB[7], secondly to provide a smoother

relationship between AELIB and the simulation program FORSIM[8] in which
many algorithms had already been tested and/or developed, and thirdly

to select an efficient algorithm for the MAKSIM[9] chemical kinetic
simulation package which was concurrently under development.

To get an impression of the vast profusion of algorithms available
for integration of Ordinary Differential Equations (ODE's), one need
merely question a computerized literature data base to get a couple
of thousand references. Why then yet another report? Basically be-
cause profusion begets confusion, particularly as, on the surface, no
two routines appear to have anything in common.

We start, therefore, with a very strong recommendation for uniformityv.
Without delving at all into the mechanics of integration, we state a
priori that if n routines are intended to perform the same job, then
whatever their internal differences, those n routines should require the
same input information and return output information in the same form;
quite possibly taking radically different amounts of time and storage
to compute similar results. This statement appears trite, but an
examination of any well-known library such as IMSL[10], Harwell([11]
and previous versions of AELIB shows that even the routines in one
section of one library, say the ODE section, do not have remotely
similar calling sequences, so there is certainly no chance for inter-
library conformity. It is usually, therefore, very awkward for a
user to consider building in alternative methods in any program.

The Sandia library [12] has addressed this problem, authors of
quadrature routines [13] are also beginning to, and purveyors of
simulation packages have recognized it for some time. Packages such
as ACSL [14], DDS [15], FORSIM [16] and LEANS [17] have provided
integration algorithm selection at the flip of a data card. However,
the approach has been to provide a large number of routines per-
mitting the mechanics of making a choice to be simple, but giving




little guidance to establishing reasons behind the choice. 1In this
report, and in the new version of FORSIM [8], this choice is reduced
to two routines only, each with clearly defined options. The
chemical simulation package, MAKSIM[9], has only one of these
integrators as it deals exclusively with stiff equation systems.

THE INTEGRATION PROBLEM

A first order ODE
dy _ f(t,y) (1)

may be represented graphically as a series of slopes. The initial
value integration problem is to start at (yo,to), and use the
available information y_, t , f(t ,y ) to progress to a new point
y(t .+h_ ) ensuring that ghe grror gn he new point does not exceed a
specified tolerable maximum. Obviously for the first new point,

only a linear approximation may be used:

yl = y(t0+hl) = y(to) + f(to,yo)h (2)

For the next step we now have more information f(to,y ), £(t+h ,yl).
Although the second value is not exact, we can now useé a secon
order approximation to get to y(t +hl+h ). Obviously to keep down
the probable error in (2), h musg be small. Because our next
approximation is probably somewhat better, h_ may perhaps be a
little larger. Thus we have the structure o% a variable step size
variable order integration method, providing we can relate a real-
istic estimate of the related error to the step size h.

Because we accept a certain error level at each step, our solution
will tend to wander away from the true solution, but the deviation
will be in random fashion and hopefully, will not accumulate.
However, if we used a fixed step h regardless of the associated
error, we accept no information feedback from the equations, and
unless h is inefficiently small, can be sure that the solution will
deviate, as in curve c. -

There are many ways of performing a single step of integration from
t, to t,+hi, and each have various possibilities of subsequently
cﬁoosing hi based on an associated error estimate.

Here, we merely identify various types of algorithm but pay more
attention to implementation, as the strengths of any algorithm are
only useful when implemented in a robust code which recognizes the
practical problems of integrating ODE's.



Fundamental Methods to Integrate a Step

Taylor Series

The Taylor expansion of y is

2
y(t+h) = y(£) + h y'(£) + 2y (t) +

or using the relationship (1)

h2
y(t) + h £(g,t) + 5 £f'(y,t) +

q i .
yt) + ¢ B gG-D

i=1 *t

(y,t) (3)

Note for the order g=1 we have equation (2) the fundamental linear
or Euler method, and that the error associated with choosing a
finite order r is the sum of the remaining terms and probably
comparable in magnitude to the first omitted term.

We can, therefore, get a good approximation by differentiating (1)
successively for each term and assembling (3). As this method
often requires involved analytical operations in the function, it
is not easily automated. Successful implementations have been
reported, but are limited in application to continuously differ-
entiable functions, and are not suitable for the stiff equations
discussed below.

Runge-Kutta

The Runge-Kutta technique is to select a formula equivalent to (3)
by using additional alternate points within the interval h.

Thus we write
q
y(t+h) = y(t) + h I w.k, (4)
i=1 * 7

using successively available amounts of information to define k.

K, = £(t,)
= +

k, = £(t +a,h, v+ a, k)

ky = £t +agph, vy + a3,k +agk))

etc.




and then equate (3) and (4) to determine the w and a coefficients.
The resulting system is under specified so one is left with a
choice of parameter which defines the Runge-Kutta subset for a
given order g.

For example, for one additional internal point giving a second
order formula, we have

y(t+h) = y(t) + h(wlf(t,y) + wzf(t + ah, y + bf(t,y))) (5)
which can be expanded to first order as

y(t) + h(wlf(t,y) + w2(f(t,y) + ahft(t,y) + bf(t,y)fy(t,y)) (6)
expanding the first two terms of (3) by using

d

=

ar _ bf , 9F dy _
3t~ 9t T dy at £ fyf

we have

y(eHh) () + S(E (E,9) + £ (E,VE(E) (7)

and comparing (6) and (7) yields w +w_ = 1 and w,a = w.b =1/2,
which leave us free to choose one parameter. “

Choosing w_, = 1/2 gives

2
y(t+h) = y(t) + %(f(t,y) + £(t+h,y+hE(t,y)) (8)

which has been called the improved Euler method. One can also
choose W, =1 giving

h h
y(t+h) = y(t) + hf(t + 50 ¥ + E-f(t,y)) (9)

also known as the mid-point rule.
A pth order formula may be developed in a similar manner. P func-

tion evaluations are required if p<4, but more than p are required
for higher orders, hence the popularity of fourth order Runge-Kutta.

Implicit Formulae

A more accurate second order formulae than (8) or (9) would be

y(tth) = y(t) + D{E(t,y) + £(t+h,y(t+h))] (10)

which is called implicit, as the derivative value at the new point
is only known when the new point itself is known. To solve this
directly, it would be necessary to attempt a nonlinear equation
solution, a whole field in itself.



Predictor Correctors

One can approximate (10) by using the simple Euler formula
y(t+h) = y(t) + hf(t,y(t))

as a first step, and then using this prediction to compute
f(t+h),y(t+h)l) and obtain a corrected value

= h
y(eth) ;) = y(8) + Z[E(t,y(t)) + £(t+h,y(t+h) )] (11)

This is a simple predictor corrector method and if terminated at
i=1, is equivalent to (8). It may be continued until

ly(e+h), ., - y(t+h) |
converges to tolerance.

Multi-step Methods

The above are all single step methods as they comprise only the cur-
rent step. As mentioned previously, after the initial step, we have
the past history available for use. Thus a general formula can be
written

+1

By Finoyg (12)

+
n_+1 n2
yn+l = 0L:i.Yn+l—i + E

™=

i=1 j=0
that is, take into account the previous n points and derivatives.

If B is non zero, the formula is implicit, thus using an explicit
predictor B=0, and an implicit corrector, one can develop sets to

account for any order. Equivalences between versions of (12) and

(3) may also be established.

The most effective and hence most popular versions of (12) have been
the Adams methods, n.=1, n_=q, and the Gear backwards difference

methods for stiff equations, n2=l, nl=q.

Extrapolation Methods

The number of terms used in (3), (4) or (12) determines the order of
the method which in turn reduces the associated error, which is
normally O(hq). Thus a low order method is satisfactory for very
small h but can require a large number of steps which in turn can
lead to an accumulation of round off error. It can be advantageous
to use an h sequence which permits extrapolation to h=0 without
approaching very small values of h. The Richardson method uses the
Euler formulae to do this, and the method has been considerably
further developed in the higher order rational extrapolation of
Bulirsh-Stoer[23].




Error Estimation

For a fixed order Runge-Kutta method, two types of error estimation
are possible.

The Romberg method compares results from taking one step h to two steps
h/2, the Fehlberg and Merson methods instead carry along different order
formulae in the form of mth and nth order approximations, or mth order
approximation and associated nth order error estimate. The first method
can be wasteful of function evaluations, 3qg evaluations for a 9th order
method but does look at a hard or exact error. The second method can

be made to use only g+l function evaluations but is looking at an error
estimate,which is not so precise.

For a predictor corrector a fixed order formulae normally has a built
in truncation error estimate providing the predictor corrector is
itself first iterated to convergence. If the algorithm is variable
order, one also needs to know the expected error associated with orders
neighbouring the current one.

Tolerance Specification

The error estimation itself is then used to compare to a given toler-
ance TOL. The manner in which this tolerance is specified greatly
affects the resulting behaviour, and we will discuss this in some
detail below. For now let us say a step is acceptable if the error
estimate Est associated with yj satisfies

E < TOL*YBASE. (13)
st, J

J

then the current step size is acceptable; otherwise, a new step size
or higher order must be used.

Step Size Control

Having established (12) as a criterion we must now adjust h in some
manner. Crude algorithms merely halve h if (12) is not satisfied,
and double h once in a while when it is. More realistic control

is to use (12) to establish an error ratio

TOL*YBASE
R.—_——-———-—.
EST , EST#0

and to use this to compute the next step size to be attempted
= *
h2 h1 ¢ (R) (14)

where ¢ is some function of R related to the method.
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Global Error

The error estimate associated with any of the above methods is merely
an approximation of the local error of the current step and contains no
information about possible error in the starting point due to
accumulated local errors in each step. Normally a user prefers to

know his probable accumulated error at certain points in the solution.
This is not a simple proposition. In fact it is impractical to attempt
to impose a global error criterion, one must as usual impose a local
error criterion, but attempt to integrate local errors to accumulate

a global error estimation for each equation.

In practice, however, providing the mathematical problem is not un-
stable, controlling local error does in fact approximately control
global error and local error control adjusts step size to maintain
stability. Shampine{4] discusses this in some detail, and also has
a routine which does provide a global error estimate. However, he
indicates this is subject to considerable uncertainty.

Round Off Error

One of the prime problems in attempting to estimate global error is
that round off errors become significant when small tolerances are
imposed. For a CDC 6600/17912he 60-bit word gives a last bit un-
certainty of the order of 10 on a unity base. Every calculation
performed in floating point arithmetic is subject to this uggertainty.
This means that for normal specified tolerances of about 10 ~, round
off should not accumulate serious errors, but for long running problems
or more stringent tolerances, the number of steps required may be

large enough to accumulate significant errors due to round off.

Stability, Accuracy and Stiffness

An ODE of first order possesses only one solution. In attempting to
achieve accuracy, multistep formulas represent the equation by dif-
ference equations of order k>1, which themselves have k solutions.

One of these, the principal solution, will approximate the true solu-
tion of the ODE. The remaining k-1 solutions, termed extraneous,
spurious or parasitic solutions have no relation to the original
problem, but will always appear to some degree in a computed solution.
As h>0, if an extraneous solution grows with the number of steps,

the formula or method is said to be umstable. In some sense the
requirement of accuracy, economy and stability are conflicting and

for predictor-corrector formulas of order k this is resolved in
practice by choosing a formula in which the degree of accgﬁiiy
accepted is less than the maximum available, which is O(h ). The
precise nature of the compromise depends on the type of ODE being
solved. An obvious requirement is that an ODE or system whose
solutions are decaying must be solved by a method whose spurious
solutions all decay. For systems, the significant parameters are
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. . >
etgenvalues of the Jacobian matrix, defined as J = 9F/3y where the
system of coupled first order ODE's is written in the vector form,

y'(x) = F(x,y). (15)

These eigenvalues will not be defined in the ordinary way if the
system is nonlinear, but are meaningful if the system is considered
to be linearized at any point in the y-space. Then it can be shown
that the stability and accuracy with which the system will be
solved depends on the coefficients of the integration formula and
on the (complex) quantity hA, where A is the eigenvalue of largest
modulus.

A special problem arises in the case of what is called a stiff-
system, in which the eigenvalues are negative and widely separated
in value. An example is the following:

998u + 1998v

u' (t)

v'(t) -999u - 1999v (16)

u(@) =1, v(@©) =0

whose solution is

-t -1000t
u = 2e - e

v = P e-lOOOt (17)

The difficulty is that the step size is governed by the time con-
stant, A = -1000, whereas the significant part of the solution
decays according to e . Thus a choice of hA = 1, for example,
would require 1000 time steps for one e-folding interval. Non-
linear systems may also be stiff, if eigenvalues are considered to
exist in the sense described earlier.

Another difficulty can occur when the corrector equation is to be
iterated to improve the estimate of Yot+1° The equation can be
written in the form,

= hBOF(X (18)

Yo+l n+1°Yn+1) T Bn
where g, is a known term, and y and F may be considered either as
scalars or vectors. Ordinary functional iteration of this equation

will fail to converge unless
h30|x| <1 (19)

If |AI is large, then either h must be chosen very small or a good
estimation of the Jacobian must be used in order to obtain con-
vergence of the iterations; this is the same problem encountered in
stiff equations.
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SELECTION OF SUITABLE CODES FOR LIBRARY INSTALLATION

Preliminary Assessment

During the several years of development and use of the FORSIM pack-
program which started in 1971 [16], several integration routines have
been used and subsequently replaced. These included CORK, the
original Runge-Kutta-Gill algorithm from AELIB [7], FOWL the Fowler-
Warten algorithm for stiff equations [18], and DIFSUB the original
Gear algorithm [1]. The latter was replaced in FORSIM and AELIB with
the CRNL routine GEARZ, which combines the Hindmarsh routines GEAR
and GEARB [2] with improved Jacobian generation and built-in sparse
matrix option [19]. CORK managed to survive in AELIB despite con-
siderable modification in the FORSIM version, but it was obviously

a prime candidate for replacement, and a routine RKFINT, using the
Runge-Kutta-Fehlberg technique, and written locally [7], appeared to
perform considerably better than CORK.

The above decisions had been made in a pragmatic sense as a result of
experience. The discarded routines had proved either less robust,
less efficient, or both, than their successors, during a number of
applications problems, the combination of GEAR and GEARB is merely

of practical advantage, and the additional inclusion of the sparse
matrix option provided a new ability to optimize both storage and
Jacobian evaluation in a manner which turned out much more practical
than the subsequently announed GEARS [20].

Two integration routines only, RKFINT and GEARZ, remained in FORSIM
and AELIB, the first a self-contained routine, requiring a minimum of
storage is suitable for small non-stiff equations, etc. The latter
is a poly-algorithm containing stiff and non-stiff options and is
more suited to demanding integration problems.

However, to coordinate the planned revision of the library, with
the issue of FORSIM VI and MAKSIM, it was decided to assess the
performance of GEARZ and RKFINT in a more systematic manner, and if
necessary, replace or revise either.

Previous Comparative Studies

Enright, Hull et al. (1972-75) [21]

In these studies the authors compared a number of current algorithms
on small sets of stiff and non-stiff ODE's. Tested routines included
those from the 1967 IBM Scientific Subroutine Package, the 1971 IMSL
library, several Runge-Kutta methods, several variable order Adams
methods, Gear's original DIFSUB package containing both Adams and BDF
stiff formulations, several of the subsequent GEAR mutations due to
Hindmarsh [2] and EPISODE [3].
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Because of the chronological spread, the papers show a slight variance
of conclusion, but basically the gist is for non-stiff equations, where
functional evaluations are expensive, one should use variable order
Adams; otherwise, for stringent tolerances, the extrapolation methods
and most other problems, Runge-Kutta-Fehlberg. Other Runge-Kutta
methods were not competitive. For stiff equations the above were

not recommended, while the Gear BDF-based routines, the Enright second
derivative formulae and an extrapolated trapezoidal rule were satis-
factory. No clear recommendation was made concerning the choice be-
tween GEAR and EPISODE, both of which are included in the current tests.

Krogh (1974) [22]

This study assembles a comprehensive collection of test problems by
more clearly identifying particular properties of ODE sets which

could cause problems. It is not a comparative study, being primarily
concerned with verifying DVDQ, but the criteria established are useful,
and frequently referred to in later studies.

Shampine et al. (1976) [4]

The authors confine their attention to non-stiff equations, studying
the variable order Adams codes DVDQ [22], DE/STEP [4] and the DIFSUB
and GEAR Adams options, the Runge-Kutta-Fehlberg RK45 [4], and the
Bulirsch-Stoer code of Fox [23] referred to as EXTRAP. The latter
was competitive only at high imposed tolerances, DVDQ and DE/STEP
generally outperformed DIFSUB and GEAR. An interesting comparison
is given for choosing between DVDQ, DE, and RK45 on the basis of
function evaluation cost.

Thompson (1977) [24]

This extensive collection of test programs is restricted to stiff
equation sets, but tests are very well documented and discussed in
some detail.

DE/STEP, referred to in this study as DODE, is recommended among the
Adams methods, and along with RK45 is found competitive with the
GEAR and EPISODE packages for mildly stiff equations. For stiff
equations, GEAR and EPISODE are clearly superior to other routines
tested, and GEAR is found preferable to EPISODE unless the equations
are both stiff and highly nonlinear.

Hindmarsh and Byrne (1977) [25]

Discussions of the application of GEAR and EPISODE to a number of
test problems are given in this report. The behaviour peculiar to
each test is discussed in unusual detail, and such information is
undoubtedly invaluable in optimizing efficient use of these and
other codes.



- 12 -

A number of additional papers discussing testing are available, but
few comprise anthologies of test programs, and few are concerned
primarily with robustness.

REQUIREMENTS OF A ROBUST ALGORITHM

We are primarily interested in reliability, and require an algorithm

to return results having an associated confidence comparable in mag-
nitude with the imposed tolerable local error. Difficulties encountered
by the algorithm should be transcended automatically but reported in
monitorable fashion, so that the user can reassume control if he wishes;
numerical overflows or inexplicable time limits are unacceptable.

Once the reliability criteria are established, the secondary require-
ment, robustness, is also of great importance. This comprises not
only the ability of the algorithm to negotiate and recover from areas
of difficulty without the guidance of a clairvoyant user, but also
the ease of use and flexibility of the user interface.

These considerations are fundamental to the design of the integration
routines now installed in the CRNL FORTRAN library, the FORSIM partial
differential equation simulation package, and the MAKSIM mass action
chemical kinetics equation simulation package. These routines, RKFINT
and GEARZ, evolved to their present form during the testing program
described here. The test results shown justify the selection of these
routines.

The GEARZ algorithm remains substantially the same as described in
reference [19], and apart from minor housekeeping changes, only two
salient changes were made. The first was to consolidate all working
storage to follow the above expressed philosophy that routines pur-
porting to do the same job should have identical calling sequences.
GEARZ and RKFINT now adhere to this.

The parameter sequence is reduced to
(EQNF,Y,N,T,DT,TOL,H,M,IF,WS)

where the relevant parameters are respectively the derivative equa-

tion evaluation subroutine EQNF, dependent variable vector Y, with N
entries, independent variable T, increment in T over which to integrate,
error tolerance, integration step size H, option control M, failure
return flag IF, and working storage array WS. The inclusion of H is

for edification only as its behaviour is an excellent window on the
system; the remaining are the minimal number of parameters. The very
few others required in practice may be accessed by optional common
blocks. The second and more fundamental salient common feature is

the treatment of error control discussed below.
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The Need for Relative Error Control

The need for stringent relative error control becomes particularly
evident in solving highly nonlinear equations such as those arising
from mass action chemical kinetics. Here equation terms are typically
second order and frequently third order, so a slight deviation even

at small absolute values diffuses through the system and rapidly
influences all variables. This is further discussed in Section 5.

In integrating such equations, however, one frequently has further
useful information available for testing, such as the presence of

charge and stoichiometric balance requirements which can be monitored
along with the solution to give a concurrent indication of reliability.
When the equations are reduced to simple algebraic form as they normally
are in reported test results, these additional criteria are irretriev-
ably lost unless specifically noted.

Tolerable Error Imposition

An algorithm will deem acceptable the values Y. computed by inte-
gration over the current step, if the computed”estimate Est. of the
local truncation error in Yj satisfies J

Estj < TOL*YBASEj

where TOL is the tolerable relative error. YBASE. is relative to

Y., but obviously to avoid problems with variabled which transcend
zeéro, YBASE, cannot always be equal to Y,. Both Gear and Hindmarsh
recommend the use of YBASE. = YMAX., where YMAX. is the largest value
attained by Y. during the galculat}on, reasonin& that if absolute
errors of the’order of TOL*YMAX have been accepted at some point of
the calculation, it is unreasonable to impose the smaller absolute
errors necessary to maintain true relative error when Y subsequently
decreases. Initially, YMAX is set to Y.(0) or if this is zero, to
unity. This gives semi-relative error control in initially non-zero
variables and absolute error control to those initially zero. The
latter course can give gross relative errors when variables never
attain magnitudes approaching unity, and the YMAX approach loses
accuracy in oscillating systems. This type of problem is countered
by allowing the user to access the YMAX. in an array, insert starting
values, and reduce YMAX when necessary when strict relative error is
required. This requires a certain amount of clairvoyance by the user,
and the user of a general library or a method of lines package, is
not necessarily fully conversant with the intricacies of error control.

A far simpler, and certainly clearer method of error control is to
establish the significance levels of variables, that is the level

at which a variable may be deemed effectively zero. As it is unlikely
that we will numerically integrate to precisely zero, any variable
which decays below the significance level may be regarded as zero

and relieved of relative error control.
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Thus we could establish the relative error control base as
YBASE, = MAx(IYjI,YSIGj). (20)

This again requires a certain amount of response from the user,

as default values established for YSIG,, for example, near round

off level with respect to unity, will Rot be acceptable for all
applications, and the user must then assign appropriate values.
However, the user can rarely justify any rationale for assigning
individual values, and in fact this practice is potentially dangerous.
The ability to assign individual YSIG, can, therefore, be dropped as
a luxury of dubious value. J

The Sandia library integration codes recognize this and use a
criterion

Est, < TOL*]YjI + Eabs (21)

where Eabs is the tolerable absolute error [4]. The two formula-
tions (20) and (21) are almost equivalent; (21) can also be used to
impose strict absolute error control if necessary, but introduces a
slight anomaly if both TOL and Eabs are used in the region

TOL*IYjI > Esty > Eabs, le|> Eabs.

Initial Step Size Selection

The selection of initial step size is again a chore often left to

the user, although the reason for this is obscure. In any good
integration algorithm, the step size adjustment should be capable

of large changes, so a poor guess is quickly corrected. 1In general,
the appropriate step size will be a function of the error tolerance
and the Jacobian eigenvalues, but as this information is immediately
applied to assess an initial step, a preliminary computation requires
unjustifiable overhead and a simple built-in estimate related to the
tolerance and the largest initial derivative is almost invariably
adequate.

Jacobian Evaluation and Handling

Stiff integrators require Jacobian evaluations at initial conditions
and at intervals during the integration. Experience shows that a
large fraction of the computation time can be spent evaluating
Jacobian elements. Standard procedure is to compute these numerically
by in turn perturbing individual Y, and assessing 9F,/dY. for each

Fi' This requires n function evaldation calls per Jacobian.

It is computationally more efficient to provide a routine which
evaluates analytical expressions for Jacobian elements, and for
small equation systems it is quite feasible for the user to code
the required expressions. For most applications, however, the
function evaluation routine arrives at the differential equation
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definition by means of a number of subsidiary subroutine calls, and
the associated Jacobian element definitions are either not trans-
parent to the user or are equally complicated to extract. 1In a
specialized application, however, when the form of the equations is
fixed, such as in chemical kinetic systems, an analytical Jacobian
routine can be used to advantage, and may even be implemented in
sparse form [9].

However, for library use or use in a general simulation package
where the form of the equations is arbitrary, numerical means of
evaluating the Jacobian are necessary, and the straight perturba-
tion method can usually be improved on. If the Jacobian of an
order n is a tridiagonal matrix resulting from a simple PDE solu-
tion, for example, it can obviously be evaluated using only three
function evaluation calls instead of n, and similar savings are
available for any banded system, but are not taken advantage of,
for example, in the release versions of EPISODEB or GEARB.

Sparse Matrix Approach

In particular when the Jacobian is handled as a sparse matrix, the
resulting increase in efficiency is not primarily due to reduction

in storage and linear equation solution time; the largest economiza-
tion is in Jacobian evaluation optimization. As an illustration, the
Curtis and Reid sparse matrix Jacobian routine [6] used in GEARZ
requires only seven function calls to pick up the Jacobian for a 242
equation set in test example 41 quoted below.

In large systems of equations, even in a subroutine in which Jacobian
elements are coded analytically, it is difficult to approach this

kind of efficiency unless the routine is coded extremely carefully.
However, there is something to be gained by coding the analytic Jacobian
as a sparse matrix. This is an exercise which certainly will not appeal
to a casual user, but is useful in cases for which the equation structure
is known, for example, the solution of chemical kinetics equations in the
MAKSIM program uses this technique and the gains are clearly illustrated
in test case 42 discussed below.

Although the introduction of sparse matrix Jacobian handling consider-
ably reduces overhead, it also introduces another degree of freedom

into the integration logic, that is the structure of the sparse matrix.
Again in specialized codes such as chemical kinetics, the structure is
known in advance and may be established as the equations are assembled.
However, the Jacobian structure of an arbitrary equation set must be
established numerically, and it is probable that this structure changes
and sparsity decreases if certain terms depart from zero as the solution
evolves. Thus, storage must be arranged to permit density increase, and
a switch must be provided to guard against excessive loss of sparsity.
At this point either the structure must be frozen and future departures
from zero ignored, or the routine must change to a full matrix method.
The former is considerably easier to implement in dynamic storage and
merely proceeds slightly less efficiently, requiring a lower step size
to converge.
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Finally, the problem of when to reassess structure must be ad-

dressed. Obviously this is not necessary when integration is

progressing well, but must be considered along with reducing order

and step size when the routine encounters difficulties, and must be

done as the last resort in the hierarchy of corrective measures. 1In
addition to this, if user is aware that the equation system loses sparsity
during solution, he may direct that structure be reassessed at regular
intervals.

Discontinuity Detection

A more general definition of an ordinary differential equation set
is

Y' = El(x'—Y_)’ i= d)(X,Y)

where ¢ is an integer switching function which changes values at
certain critical ¢ (X,Y) combinations. Such switches dictate that
the integration préblem i terminates at some critical point, and a
new integration i+l starts from initial conditions at that point,
with at least one element of F, differing from F,. Most error
controlled algorithms experienég considerable diff%culty in precisely
locating ¢ and restarting, as they attempt to transcend the switch,
not being §ble to do so within imposed error tolerance.

Frequently, particularly when large Jacobians are repeatedly evaluated,
routines will run to time limit at a discontinuity or simply fail with
a message that the posed problem is insoluble.

A robust integration algorithm has two alternative means of handling
discontinuities. The first is to permit an integration step to exceed
error bounds at the point at which the step reduction pattern suggests
the presence of a discontinuity. The point will then be flagged as
suspect. This wastes some computing time but negotiates the discon-
tinuity without requiring user action. The second returns control to
the user at the end of each successful step so that possibility of an
imminent discontinuity occurring within the next predicted step can be
assessed, and the user can then assume step size control if necessary.
This procedure is effective, providing the user correctly follows
appropriate procedures, such as those discussed in reference [26].

Stiffness Detection

It is not advisable to attempt to use a non-stiff algorithm for stiff
equation sets. Most such algorithms detect stiffness merely by running
to time limit because their step size is severely limited. It is more
satisfactory to test for suspected stiffness and either abandon the
integration, or, if possible, switch to a stiff integration option.

The Sandia routine DE assesses stiffness in this manner.
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4.8 Accuracy Level

As we are concerned with general use, the accuracy level suitable

for most scientific engineering calculations is of primary interest.
For this type of calculation 3-6 reliable digits usually suffice. It
is unrealistic to carry less than three digits and expect meaningful
results and tolerances demanding more than ten digits are liable to
suffer erB accumulated round-off effects. The CRNL routines thus _
limit 10 < TOL < 10~ , and the current tests were run at TOL = 10 .

Equation Set Size

Again in general use there are no foreseeable limits on size of the
equation set, moderately 1grge sets of equations are common, and vari-
ables may range within 10~ where n can also be large. Single equa-
tions are also encountered and it is not unknown for a user to request
sparse Jacobian analysis of a single equation. Protocol for handling
such eventualities must be automatic.

TEST RESULTS

Initial Tests

With the exception of CORK, the algorithms selected for testing are
all reported in the literature, and are listed in Table 1 along with
the appropriate references.

The algorithms were implemented as received or reported, and as we

are concerned chiefly with robustness, no attempt to promote uniformity
was made. Furthermore, it must be pointed out that the WES routines
obtained from W.E. Schiesser have been published as algorithms[27] and
are used and controlled in the Lehigh packages[8] but not generally
released as separate documented code. Also the SODE package obtained
from F.T. Krogh is still under development; we tested a preliminary
release and did not take full advantage of the numerous options for
intricate user interaction which are a unique feature of SODE [28].

The initial test profile consisted of the eight equation sets in

Table 2. These tests have a known analytical solution, and should

not be particularly demanding. All algorithms were called with the
same control parameter values and each called the same function to
evaluate derivatives. The following evaluation criteria were_gxtracted
from each algorithm using a standard relative tolerance of 10 , and

an initial step of 10 ~ where needed.

(a) ER - Actual global error returned (average relative error at
the end point).

(b) NF - The number of function evaluations required.

(c) NS - The number of time steps completed.

(d) CP - Execution CPU time required.



- 18 -

Obviously CP should be minimum, but as the equation sets are all quite
small, the number of function evaluations and number of time steps are
more important. As we have pointed out, the algorithms do not monitor
global error, but the proximity of ER to the imposed local tolerable
error gives a good indication of the stability of the algorithm[4].

The initial test profile showed that CORK, and the Bulirsch-Stoer
routine DESUB[23], lacked robustness. DESUB in particular required
about ten times as many function evaluations as any of the others,

and returned a larger error. CORK returned inaccurate values for

the simple discontinuity of problem 5, and was also inaccurate for

the simple equations 1 and 2. The Runge-Kutta-Merson routines WES-1,
WES-3 and WES-12[27] were generally more satisfactory, but 1 and 12
became numerically unstable in Test Case 4, and this group consistently
returned error an order of magnitude larger than most routines, but
required a comparable number of function evaluations [29].

A further test profile of 32 problems was then assembled from cases
quoted in the literature and current applications at CRNL. These

are summarized in Table 3. Chemical problems feature quite prominently
in the set as, firstly the MAKSIM package was concurrently under
development, and secondly chemical problems are normally stiff, highly
nonlinear and magnitudes of the dependent variables frequently range
through several orders of magnitude.

First cases 1 to 40 were run with all the integration algorithms. Cases
41 and 42 are specialized applications and were run only on GEARZ to
illustrate the potential of the sparse matrix option.

While establishing the final test profile, exploratory runs confirmed
that the above routines were again less reliable. In fact for test
cases 1 to 20, CORK satisfactorily completed only 9, WES-1, -3 and -12
completed 11, 15 and 14, respectively, and DESUB completed 16, but
took an inordinate amount of time.

A short list of robust routines was then completed, these are des-
ignated by an asterisk in Table 1.

Further Tests

In the GEAR, GEARZ and EPISODE packages, a number of options are
available for handling the Jacobian for the predictor-corrector
iteration. As we are promoting GEARZ, all the GEARZ options are
reported for the tests. They are:
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Adams BDF
Non-stiff Stiff
11 21 Functional iteration, Jacobian not analyzed.
12 22 Newton iteration, Jacobian analyzed as full

matrix.

13 23 Diagonal Newton, Jacobian analyzed as diagonal.
14 24 Newton iteration, Jacobian analyzed as banded.
15 25 Newton iteration, Jacobian analyzed as sparse.

All the above assess the Jacobian numerically, 15 and 25 optimize this.
The two additional options available in the MAKSIM package, which
assemble the Jacobian as a full analytically defined matrix or a sparse
analytic matrix,are not included except for problem 42, as their assembly,
particularly in the sparse case,is considered beyond the desires and
capabilities of a library user.

The relative performance of the various options will be similar for
GEARZ and EPISODE so we chose to test only options equivalent to 22
and 23 in GEAR and to 22 in EPISODE, and stress that only equivalent
options should be compared.

General Assessment of Performance

As we are primarily interested in accuracy and robustness, we first
assess the total number of successes and failures across_ghe entire
test profile using the standard relative tolerance of 10 7, and alil
options set to default. Immediately apparent is the fact that the
non-stiff algorithms fail on most stiff equation problems, although
the Sandia routines and SODE, instead of merely running to time limit,
detect integration problems and rightly refuse to waste further
computer time.

In spite of the fact that the stiff algorithms do not in turn fail

on non-stiff equations, it is illuminating to look at overall results
for separate groups of stiff and non-stiff or mildly stiff equation
sets. Equations 20 through 25 and 32 through 40 are significantly
stiff.

Table 4 shows that most of the algorithms negotiate the non-stiff
problems fairly acceptably, and that the routines EPISODE and GEAR,
which do not use strict relative error control, fare significantly
worse than the routines which do. This could be corrected, however,
by informed user interaction. The singularity in problem 9 and the
discontinuous behaviour of problem 12 are the only ones which cause
any of the routines to fail completely.
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The stiff equation test set shows a different picture. 1In Table 5
the GEARZ stiff, full Jacobian option is the only one with a clean
sheet (the water radiolysis equations are too populated for the
sparse option which switches to the diagonal option. EPISODE, GEAR
option 22, and GEARZ options 14, 15, 24, 25 all perform adequately,
and it is interesting to note that the functional iteration and
diagonal approximation methods perform no better with the BDF
option than with the Adams. The diagonal options in GEARZ and in
GEAR occasionally return deviant errors in comparison with the
other options. This observation agrees with Thompson[24].

Tabular results are given in Appendix 2. Here comments are re-
stricted to cases which best illustrate features of particular
interest, as in many of the test cases the algorithms all behave
acceptably. We first illustrate typical behaviour by examining
results listed in Appendix 2 from the two methods of lines examples
tests 13 and 16. The first, the diffusion equation, is moderately
stiff and has a decaying solution, so one would expect EPISODE and
GEAR to show poor accuracy unless Y was adjusted. The GEARZ
diagonal options also show poor accgracy in this problem, and
although the GEARZ sparse matrix options require fewer function
evaluations, the associated additional overhead makes computing
time slightly more than the full option. The non-stiff Adams
routines which do use Jacobian analysis perform better than the
other non-stiff options in this moderately stiff case.

In contrast is the results summary for the wave equation, case 1l6.
Naturally, this oscillates, so the non-stiff algorithms perform
well. SODE in particular requires few steps, but has a large
overhead, and GEAR, GEARZ options without Jacobian evaluation are
more efficient than those which evaluate Jacobians. RK45 takes the
least amount of time. RKFINT somewhat typically uses a comparably
lower step size, returning a more precise result than required.
EPISODE is less precise than GEAR in this case.

These two test cases have also been repeated with finer division,
and are discussed further below.

Large Equation Sets

In large stiff equation sets, a large portion of the computation
time is absorbed in Jacobian evaluation and manipulation. The
algorithms, as received, required modification to accommodate large
equation sets, so tests 1-40 contain only sets of up to moderate
size. Some idea of the effect of size in Jacobian handling ef-
ficiency can be gleaned from test cases 13-15, the diffusion
equations solved by the method of lines using 15, 25 and 35 points,
as this set is moderately stiff.

Results are summarized in Table 6 in the form of the number of
function evaluations, and the relative error averaged over the
points at problem completion. Computation time is closely propor-
tional to the number of function evaluations for all the GEAR and
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GEARZ options, EPISODE takes a little longer. Note that even at

the 35-equation size, the sparse matrix routines already save over
50% of the computing time. As mentioned above, the errors returned
by EPISODE and GEAR are excessively large mainly because the results
decay with time and no compensating measures were taken in the user
routine.

A more demanding problem is the solution of the ANS neutron kinetics
benchmark problem ID6-A2 for which a full description and independent
solution are given in reference [30]. This generates 968 ordinary
differential equations which were solved by partitioning, the 242
equations for fast neutrons being integrated by the GEARZ algorithm
and the 726 equations describing slower delayed neutron groups by
Euler integration. This problem was not run on other integrators

as only the GEARZ sparse matrix option would complete the calcula-
tion, as shown in Table 7. 1In this case, the structure of the
Jacobian shown in Figure 1, is such that GEARZ requires only seven
functional calls to complete all 58544 Jacobian elements [19].

Test case 42 is included to illustrate the possibilities offered by
coding Jacobian elements analytically in sparse matrix form, and
again results are shown only for GEARZ. This problem concerns
simulation of photochemical action in smog. The chemical model
contains 81 reactions involving 50 species. The 50 resulting
ordinary differential equations contain second and third order
nonlinear terms and the resulting Jacobian is approximately 15%
populated when assembled. A full description and independent
solution is given in [31]. Results in Table 8 are included as
computation times rather than function evaluations, as the overhead
for the sparse matrix options is higher per function evaluation,
and unlike problem 41, it is possible to complete this calculation
using the full matrix methods.

The Robertson Kinetics Problem

The chemical kinetics problem of Robertson is one of the most
commonly used examples and appears twice in this test profile,
problem 25 is the usual call, and problem 34 is scaled to diminish
the spread of coefficient magnitudes. Hindmarsh and Byrne discuss
in detail the application of EPISODE to this problem [25] and state
that scaling should not be necessary. It is interesting to note
from Table 5, that EPISODE option 22 (numeric Jacobian) completes
the scaled problem without difficulty, but becomes unstable in the
unscaled problem. This instability is discussed in [25], and
attributed to the fact that the eigenvalues of the Jacobian are 0,
0 and V10 , thus small errors can generate a spurious positive
eigenvalue; stable results were obtained using an analytic Jacobian.
It is anomalous that GEAR and GEARZ options 22 are not subject to
this instability. This is the only case in the test problem in
which unstable performance by EPISODE is not merely due to our
refusal to adjust the Ymax error base array.
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The Belousov Reaction Limit Cycle -
A Case for Relative Error Control

This example, test problem 33, is also frequently cited. The solu-
tion is difficult, not because it is a limit cycle, but because it
exhibits extremely sharp, short liveg peaks. These are most severe
in Y_, which varies between 1 and 10  in the initial few seconds of
each cycle, and clearly requires relative error control. It is quite
difficult to provide comparisons of accuracy for this problem unless
the test time span terminates before the second spike as in the tests
of Enright and Hull [21c]. Even then, all routines discussed in [21lc]
failed to complete this problem under the imposition of very small
absolute error tolerances. The semi-relative error (Y ) approach
produces instability in Y. and Y_ after the first peak, and Byrne

and Hindmarsh [25] adjust™Y dynamically to simulate relative error
control. Curtis [32] showsmg so that the computation fails to3adhere
to the limit cycle if the tolerated relative error exceeds 10 . In
the current tests, the computation adheres well to the_cycle even
past the fourth peak when a true relative error of 10 - is used.

Another Case for Relative Error Control

The chemical pyrolysis example, test problem 21, was fougg to géve a
similar response in the range of absolute tolerances (10 =, 10 ) [2lc]l. 1In
fact, all these tolerances exceed the maximum values of Y_, Y, and Y4,
so even the 10 absolute tolerance is lax. Semi-relative error control
is suitable for this problem providing starting Y values for Y_ to Y

C s . max 2 4
are set to a more realistic value than unity.

CONCLUSION

It is apparent that all the routines selected for the short list of
Table 1 behave in a reasonably robust manner throughout the test pro-
file, and are quite suitable for installation in a general library

or simulation package. There is considerable evidence, however, that
the recommendations of Section 2 improve robustness by automating
decisions usually required from the user, and frequently also increase
efficiency. 1In particular, the complete automation of the sparse
matrix option greatly increases the potential of the GEAR-based
routines.

Storage requirements of the various routines are given in Tables

9 and 10. Because the Adams options in the stiff routines behave
quite acceptably, for the general use context, on non-stiff equations,
the only motivation for providing a non-stiff solver would appear to
be storage economy. For this reason the single subroutine RKFINT
remains in use at CRNL. Although the tests show that RK45 is more
efficient in many cases, this has been found attributable to a more
stringent error criterion in RKFINT, which will be suitably relieved.
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A further area of necessary investigation is the occasional erratic
behaviour of the diagonal Jacobian option in GEAR and GEARZ also
corroborated by Thompson. It is important that this be remedied as
the algorithms in FORSIM and MAKSIM normally switch to this option
from the sparse or full options if sufficient storage is not avail-
able. While this is being resolved, it is probably safer to use
the banded option instead for this purpose. The banded option
should also be modified to optimize Jacobian evaluation, and then
in fact, should resolve to the diagonal case in the absence of
bands.
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TABLE 6
Performance on Stiff Problem of Increasing Size
Tests 13-15 Diffusion by Method of Lines

Number of Function Evaluations, Average Error

Number of Equations 15 25 35
. -4 -5 -5
GEARZ Functional (21) 3021,10_4 8848,10__4 13040,10_4
Diagonal (23) 1904,10_5 5385,10_ 10761,10_5
Banded (24) 446,10_5 679,10_5 718,10_5
Full (22) 446,10_5 679,10_5 718,10_5
Sparse (25) 320,10 398,10 340,10
-2 -2 -1
EPISODE Full (22) 537,10 796,10 1094,10
. -2 -1 -1
GEAR Diagonal (23) 1416,10_3 3765,10__4 6868,10_4
Full (22) 375,10 572,10 705,10
TABLE 7

Performance of GEARZ Algorithm with Neutron Kinetics Equations
Number of Function Calls NF, and Number of Time Steps NS
Required to Complete the Given Problem Times to .0l1% Accuracy

Method Functional Diagonal Banded Full Sparse
Time Iteration Matrix Matrix Matrix Matrix
107° NF 3064 749 3453 2491 131
-3 NS 863 143 38 55 55
10 NF 30000 12884 8916 4731 247
NS 3000 1725 112 106 106

107! wr - - 57434 5737 309
NS - - 406 142 142

1. NF - - - 16129 1034
NS - - - 209 209
4. NF - - - - 1947*
NS - - - - 263

*Computing time 49.5 seconds on CDC CYBER 175 Computer.
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TABLE 8
Performance of Sparse Matrix Integrator
on Photochemical Smog Model

Computing Times to 200 s Problem Time

Jacobian Option (seconds CDC CYBER 175)
Matrix Type Numeric Analytic Numeric Analytic
Evaluation Full Full Sparse Sparse
Relative Error
Requested
-4
10__5 45 42 33 19
lO_6 55 50 41 23
10 67 54 51 30
TABLE 9
Integration Package Storage
Approximately
Number of Total Woxrds Working
Package Subroutines Program Storage Storage
RKFINT 1 650 8N
RK45 4 1150 6N
ODE 5 1700 21N
GEAR 5 2650 18N+N_max
EPISODE 8 2700 18N+N_max
GEARZ 11 5300 11N+N max
SODE 19 5500 14N
TABLE 10

Working Storage Requirements for GEARZ

Option Storage
Functional Iteration 10N

Diagonal Jacobian 11N

Banded Jacobian (12+2gU+ML)N
Full Jacobian 11IN+N

Sparse Jacobian (27N+4NZ) N

MU width of upper band
ML width of lower band
NZ maximum non-zero entries per row.




- 41 -

APPENDIX 1
RESULT SUMMARY FOR ALL TESTS

The following tables summarize results for each test problem of tables
2 and 3 under the following headings:

ROUTINE

OPTION

NFE

STEPS

TIME

H

ERROR

FLAG

Routine referred to in Table 1.

Jacobian option as in Section 5.2.

Number of function evaluations required to complete problem.
Number of time steps required to complete problem.

Execution time required to complete problem on CYBER 175.
Integration time step at end of problem.

Relative error between computed and desired values at
end of problem.

0 denotes no error reported.

+1 denotes error reported (routine detects inability to
complete problem) .

-1 numeric overflow usually due to instability.

-2 routine fails to complete within reasonable time.



ROUTINE OPTION

RKFINT
GEARZ
GEARZ

EPISODE

RKFSAN
ODESAN
GEAR
GEAR
DIFSUB
SODE

ODE INT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>