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Abstract 
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For both longitudinal and transverse oscillations of coasting 
charged-particle beams, the interaction with the surroundings 

can be described by a coupling imped�nce which is a continuous 
function of frequency. For bunched beams, this impedance is 
sampled at an infinite number of discrete frequencies given 
by the mode spectrum� An "effective coupling impedance" can 

then be defined as the sum over the product of the coupling 
impedance and the normalized spectral density. 

For resonant impedances and sinusoidal bunch oscillation modes, 
these infinite sums can be evaluated analytically, while the 
direct numerical summation may lead to difficulties even with 
high speed computers as the imaginary part of the sum usually 
converges very poorly. This method has been incorporated 
into a computer program for bunched beam instabilities which 
is presently used for the design of LEP-70 and its injectors. 
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1. INTRODUCTION 

For the calculation of both longitudinal and transverse stability of 

bunched beams an "effective coupling impedance" is required, which can be defined 

as l) 

(;) eff 

p=-co 
00 

p=-oo 

where w0 is the (angular) revolution frequency. For the longitudinal case, the 

mode frequencies are given by 

where k 

n 

m � 1 

is the number of bunches 

is the coupled-bunch mode number (0 � n � k) which 

determines the phase-shift between bunches 

determines the type of oscillation (m = 1 dipole, 

m = 2 quadrupole, etc.) 

v5 w5/wo is the ratio of synchrotron to revolution frequency. 

For transverse oscillations, z
..L 

is prop::irtional to Z/w 
2) and we can still use 

Eq. (1) if we replace h,n(wp) by hm(Wp - w<) where 

(1) 

(2) 

(3) 

and w, is the chromatic frequency shift. We also have to include the case m = O, 

which describes the single-bunch "head-tail" instability. For the longitudinal 

case, there is no (or negligibly little) chromaticity. Single bunches can only 

become unstable if two or more modes with different m oscillate at the same 

frequency. Usually this occurs at quite high frequencies and the single-bunch 

instability is therefore often called "microwave instability". 

For sinusoidal modes with a perturbed charge density proportional to 

TI 
cos 

2 
'm(¢) 

cos 
2 

the spectral density is given by 2) 

_p_ (m + 1) 
¢0 

_p_ (m + 1) 
¢0 

m even 

m odd 

(4) 
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m 

(m + l)2 
1 + (-) COS WT 

[(WTTT t - (m + 1) 2]2 

(5) 

where 2¢o = w0T describes the bunch length, and the oscillation frequencies are 

given by Eqs. (2) or (3) for longitudinal and transverse oscillations, respectively. 

Sinusoidal modes actually describe only oscillation of bunches with a 

paraOOlic density distribution, which is a reasonable approximation for protons. 

For electrons, the distribution is usually Gaussian, and we should use oscillation 

modes described by Hermite polynomials. However, measurements on existing machines 

indicate that reality lies somewhere in-between 4), and we thus use the simpler 

sinusoidal modes for both cases. 

2. RESONANT CAVITY IMPEDANCE 

The high-frequency coupling impedance of the vacuum chamber and other 

surrounding equipment can be described by a superposition of resonant modes in 

many planned or accidental cavities. The impedance of a single resonator is de­

scribed by 

where 

z (w) 

R is the shunt impedance 

Q is the quality factor 

Wr is the resonant (angular) frequency of a particular cavity mode. 

(6) 

The total effective coupling impedance can be found by adding the 

contributions of all significant modes. In practice, it is simpler just to 

select the strongest modes of the RF cavities and to lump all accidental cavities 

into one low-Q resonator. 

Attempts to evaluate Eqs. (1) to (4) by computer have not been very 

successful. For high Q-values, the real part. of the sum over the impedances 

converges quite fast, but the imaginary part converges badly and needed over 

hundred thousand terms for reasonable accuracy in our test cases (see Figs. 1 

to 3). For low-Q resonators; the situation becomes even worse. However, the 

direct summation is not only time-consuming, but there is also no easy convergence 

test as can be best seen from Fig. 3: there the sum as function of the number of 

terms flattens off at an intermediate value before it descends to the correct result. 
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3. ANALYTIC SUMMATION 

Fortunately, it is possible to sum the series in Eq. (1) analytically 

for a resonator impedance and sinusoidal modes S). The derivation of the two sums 

is shown in the Appendices. The sum over the spectral modes becomes quite simple 

00 

(7) 

independent of mode number m which appears explicitely in hm (w). Incidently, the 

same result is obtained when the summation is replaced by an integral, although 

this is generally only an approximation. 

The sum over the product of the impedance (divided by frequency) and 

the spectral modes is much more complicated, and the effective impedance is given 

by 

where 

j b R 

[ K Q 

1 
4 

I 
1 (m + 1)2d2 - b2 

zl 2 (pl [<m + b2]2 i=3 - Pi) (pz - Pi) 
1) 2d2 -

and 
2 

I (-)
i+l 

cot TTPi [1 + m n 
� (-) cos d (Pi + c� + (-) m 

Z2 
i=l 

with 

and 

(pi - P3) 
2 

a ± U + j V 

- c ± (m + l)d 

u b<l - l/4Q2 

V b/2Q 

d 1/2 k fo T = 1/2 B 

where B is the bunching factor. 

For the longitudinal case 

a =  c = n + m Vs 

(pi - p4) 2 

(m + 

sin 

b2d2 2 
1) 

Q2 

(9) 

d (Pi + c) 
(10) 

(11) 

(12) 

(13) 

(14a) 



while for transverse oscillations 

a 
n + Q 

k 
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C = a -
k wo 

where Q is the betatron tune, and w� the chromatic frequency shift. 

(13b) 

While the expression for z1 is always real, the more complicated term 

z2 is in general complex. However, this expression can be evaluated quite easily 

on a computer, and some results for a test-case- are shown iu Figs. 4 and 5. It 

appears that the real part of the effective impedance oscillates around zero as 

a function of the resonator frequency, while the imaginary part oscillates with 

approximately the same maximwn amplitude (for different mode number n), but has 

also a large constant part (see Figs. 4 and 5) which is the average over all 

possible mode numbers O � n � k. This average is shown as function of the bunch 

length in Fig. 6. For very short bunches it is usually capacitive, while it be­

comes inductive when the bunch length is longer than the inverse resonator fre­

quency. 

4. POTENTIAL WELL BUNCH LENGTHENING 

The incoherent synchrotron frequency of particles in a bunch depends 

on the total number of charged particles and their interaction with the coupling 

impedance, described by the effective coupling impedance 6) 

where 

w 2 
s 

A 
3h 

rm(�) ] n eff 

(21r R) 3 Io 

3 k Q,O VRF cos 

is proportional to the current per bunch 10/k. Above transition energy, 

(14) 

(15) 

cos ¢s < 0 and A is negative. For the stationary distribution m 0 the impedance 

of a resonator is always inductive Im fl> 0, and we get a decrease of the synchrotron 

frequency with increasing current. Furthermore, in a potential well the bunch 

length is related to the synchrotron frequency. For protons we have constant 

phase space area or 

w 2 s 
2 

Wso 

while for electrons radiation damping leads to 

(16a) 

(16b) 
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where t0 and w50 are the bunch length and synchrotron frequency for zero current. 

Combining Eqs. (14) and (16) we obtain the equations for the bunch length 

( t
2
o) 

(to ) 

A • I (�) m n eff 

- A• Im (�) 
n eff 

(17a) 

( 17b) 

for protons and electrons, respectively. Since the coupling impedance is in 

general a direct function of the bunch length, and also of the synchrotron fre­

quency which is related to the bunch length by Eqs. (16), the Eqs. (17) are in 

general transcendental and have to be solved by approximate methods. Since 

(�) 
then has to be evaluated many times, it is important that it is given by 

n eff 

a relatively simple expression, and not by slowly converging infinite series 

which would make the solution of Eqs. (17) a major undertaking. 
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Summation of the bunch spectrum 

(1) We want to evaluate 

where 

and 

(2) 

where 

and 

We substitute Eqs. (A2) 

Hm 

(longitudinal) 

(kp + n + Q) w0 - w� (transverse) 

(m + 1)2 

and (A3) 

1 + (-)
ffi 

COS WT 

[("'
)2 ]2 

--;;--
- (m + 1) 2 

into Eq. 

1 + 

(Al) and obtain 

ffi TT 
(- l cos ct (p + c l  

Hm (m + 1) 2 d4 I 
(p - p1)2 (p - p

2) 2 

C = 

p=-00 

P1,2 - C 

n + m -v5 
k 

1 

± (m + 1) d 

(longitudinal) 

(transverse) 

d 
2k fo T 

1 
2B 

when B is the bunching factor. 

(3) Partial fraction decomposition yields 

1 2 

[
p 

ai b 
] 

1 
I - �il 2 

--= 
(p - p1)2 - P2 l 2 P (p) (p i=l 

- Pi (p 

APPENDIX A 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(AB) 
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where 

1 

(4) Summation formulae 

00 2 
_1_= - TT I ai cot rrpi + 1[2 

p=-oo P (p} 
i=l i=l 

00 

From the general summation formula for I 
cos 8 (J2 + c) 

-00 
P (p} 

which can be found 

from Ref. 5), we get for 0 = - 8 (pi + c) = ± (m + l)rr, and hence 

cos e (pi + c) {-)
m+l

, and sin 8 (pi + c) = 0. Then 

(A9) 

(AlO} 

00 

I 
p=-oo 

cos � (p + c) 
d 
P (p) 

2 
- (-)

m+l 
I ai cot TIPi + (-)m+l TI2 
i=l 

2 

I 
i=l 

b 1.-�l __ - !_
d

] 
1. Lsin2 rrpi 

(All} 

(5) Adding Eq. (AlO) and (-)
m 

other terms cancel. From Eqs. 

thus Eq. (A4) yields 

1[2 
times Eq. (All) yields d (bl + b2}, since all 

(AS) and (A9} we get b1 = b2 = 1/ (m + 1)2 d2, and 

(Al2} 

in exact agr eement with the result of the (approximate) integral 

2 
k wo J 

0 

00 

� (w}dw 
(m + 1) 2 

k fo T 
J 
0 

00 

l + 
[x2 

(-)
m 

cos rrx dx 
- (m + 1) 2] 

2 (Al3) 

This integral can be found in tables, and equals rr2/ 4 (m + 1)2 • With Eq. (A7) 

we thus obtain again Eq. (A12). 
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Effective impedance of a resonator 

(1) Effective impedance 

p=-oo 

where 

Z (w) 
R 

1 + j Q 

and Wp and hm (w) have been defined in Appendix A. 

(2) We can combine these expressions to get 

(m + 1) 2 R I 

ffi TI 
1 + (-) cos - (p + c) 

d 

where 

with 

(hence u2 + v2 

b 

Q p=-

P1,2 - a ± U + j V 

P3, 4 - c ± (m + 1) d 

n + m v5 

k 

b 
2Q 

(or a � 
k 

C = a - k fo 

d 
2k fo , 

transverse) 

APPENDIX B 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(86) 
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(3) Partial fraction decomposition 

4 ai 
4 bi _l_= 1 

I I + 2 P (p) (p - pj) (p - P2) (p -P3J
2 (p - p4) i=l p -Pi i=3 (p -P1)2 

where 

+ 1 

(a3, 4 are more complicated, but not required. ) 

(4) With the summation formulae used in Appendix A we get for 8 

"- cos [1rpi 
TI 

+ c)] 00 cos (p + c) 2 (Pi 
I 

d 
I 

d 
- TI ai + 

p=-oo P (p) i=l sin TrPi 

TI 

d 

( 
m+l 

-) X 

X f TI 

4 

I ai cot lTPi + 1T2 

i=3 

4 

I 
i=3 

b, - -( 1 1 )] 
1 sin2 'ITPi d 

while 

00 

p=-c:o 

---
P (p) 

- TI I ai cot TrPi + TT2 

i=l 

hence several terms cancel when we calculate 

I 
p=-oo 

1 + (-)
m 

cos "- (p + c) 
Q 

P (p) 

which does not contain the coefficients a3 and a4. 

TI 

I 
i=3 sin2 1TPi 

(5) With 
cos [rrp1 - ¾ (pi + c� 

(pi + c) cot TTPi x cos + sin sin 1TPi d 

get finally 

(�tff 
+ j 

b R 

[ 
(m + 1)2d3 

Zz � Z1] = 
k Q TI U 

"- (pi + c) 
d 

(B7) 

(B8) 

(B9) 

(B10) 

(B11) 

we 

(B12) 



where 

and 

2 

I (-)
i+l 

Zz 
i=l 

4 l 
I 2 

i=3 
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1 

cot lT Pi [1 + (-)m cos 
TT 

ct (pi 

(pi - P3 l 2 

+ c)] (-)m � + sin ( Pi + c) 
a 

(pi - p4) 2 

(6) Although p1 and P2 are complex, it turns out that z1 is purely real and 

can be written 

where 

(B13) 

(B14) 

(B15) 

t = (m + l)d (B16) 

However, z2 is complex in general, and no simple general expression has been 

found. 
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