P.A. Soderstrom 1 , J. Nyberg¹, P. H. Regan², A. A kjora³, G. de Angelis⁴, S. F. A shley², S. A ydin⁵, D.Bazza \cos^5 ,R.J.Casperson⁶,W.N.Catford²,J.Cederkall⁷,R.Chapman⁸,L.Corradi⁴,C.Fahlander⁹, E. Fame a^5 , S.J. Freem an¹⁰, A.G adea^{3 n}, W.G elletly², E.G rodner⁴, C.Y.He⁴, G.A.Jones², K.Keyes², M. Labiche⁸, X. Liang⁸, Z. Liu², S. Lunardi⁵, N. M arginean^{4;11}, R. M enegazzo⁵, D. M engoni⁵, D. Napoli⁴, J. O llier⁸, S. Pietr², Zs. Podolyak², F. Recchia⁴, E. Sahin⁴, J. F. Sm ith⁸, K. M. Spohr⁸, S. J. Steer², A . Stefanini 4 , N .J. Thom pson 2 , G . Tveten 7,12 , C .A . U r^5 , J .J. Valiente-Dobon 4 , V . W emer 6 , S .J. W illiam s^2

1 Uppsala University, 2 University of Surrey, 3 IFIC -Valencia,

4 INFN-Legnaro, 5 INFN-Padova, 6 Yale University, 7 CERN,

8 The University of the W est of Scotland, 9 Lund University,

10 University of M anchester, 11 IF IN HH-Bucharest, 12 University of O sb

INTRODUCTION

R ecent studies of neutron-rich exotic nuclei have been focused on the shell closure aspects and the behavior of the m agic num bers on the neutron-rich side of the line of stability. Even m ore rare than the doubly m agic nuclei, are the doubly m id-shell nuclei, w ith m axim um num ber of valence protons and neutrons. The importance of the product of valence nucleons, N_pN_p , for quadrupole collectivity is well known, as both the energy of the rst 2^+ state and the energy ratio 4^+ = 2^+ have a sm ooth dependence on this quantity $[1, 2, 3, 4]$. This naively in plies that the valence m aximum, 170 Dy, would be the m ost collective of all nuclei, but it has been discussed whether this is the case or not $[3, 5]$. In fact the -ray energies of the ground state rotational bands in the neutron-rich dysprosium isotopes decrease up to 164 Dy, but increase again for 166 D y. This has been interpreted as the maxim um deform ation actually occurring at ¹⁶⁴D y. H ow ever, the only spectroscopic measurement published on 168 Dy to date, from a -decay experiment, show s a decrease in the energies of the 2^+ and 4^+ states relative to 166 D y, suggesting that the energy increase in 166 Dy is an irregular behavior [6]. O ne question is does this decrease continue to higher spin in 168 Dy and also for heavier even-even dysprosium isotopes. The neighbouring even-Z elements in this region have a m in im um of their 2^+ state energy at the m idshell N = 104, corresponding to ^{170}Dy . It would be natural to expect the same for the dysprosium isotopes.

Dysprosium is also well known for the original discovery of the backbending phenom enon [7]. TotalRouthian Surface calculations suggest a very deep, prolate, axially symmetric minimum for 170 D y [8]. Increasing the spectroscopy to higher spin, up to and beyond the backbending, will give information regarding the stiness of the quadrupole deform ation in these neutron-rich dysprosium isotopes.

EXPERIMENTAL SETUP

The experiment reported here was carried out using m ulti-nucleon transfer reactions between 82 Se and 170 Er. The beam was 82Se at an energy of 460 M eV and an intensity of 25 enA (2 pnA), delivered by the Tandem XTU-ALPIaccelerator complex at LNL. This beam was incident on a 500 g/cm^2 thick self-supporting 170 Er target. Beam-like fragments were identied using the PR ISM A m agnetic spectrom eter [9], placed at the grazing angle of 52 degrees. The -ray energies from both the beam -like and target-like fragm ents were measured using the CLARA array [10], in this experiment consisting of 23 C om pton suppressed clover detectors.

The nuclei of interest correspond to two-proton stripping (^{168}Dy) and two-proton stripping plus two-neutron pickup (^{170}Dy) . U sing the PRISM A information about the pro jectile-like fragm ents, the binary reaction partner can be uniquely identi ed. This binary reaction partner sets, due to neutron evaporation, an upper lim it on the m ass of the target-like fragm ent. The m ass spectrum of the krypton isotopes is shown in $q.1$, together with the corresponding dysprosium masses.

FIG .1: M ass spectrum from PRISM A of target-like fragm ents gated on krypton. The m asses (A) of the corresponding dysprosium isotopes are also shown.

P R E LIM IN A R Y R E SU LT S

T he velocity vector obtained event-by-event for the beam -like fragm ents by PR ISM A was used to D oppler correct the beam -like fragm ents and the target-like fragm ents, assum ing two-body reaction kinem atics. Due to the neutron evaporation, the $-\pi$ ay spectra contain lines not only from the binary dysprosium isotope, but also from lighter isotopes. See g. [2](#page-1-8) for an exam ple of a target-like spectrum gated on 84 K r, the binary partner of 168 D v.

FIG . 2: Target-like -ray spectrum gated on 84 K r in the energy region around the 4^+ ! 2^+ transitions of the neutron rich dysprosium isotopes.

To distinguish the binary channels from the neutron evaporation channels, two dierent m ethods were used. The rstm ethod was to compare the singles spectra from dierent gates on binary partners. For example, the $$ ray lines from $168Dy$ should not be visible in the spectra gated on A $>$ 84 K r, but only in spectra gated on A $=$ 84 K r. T he second m ethod wasto use -coincidencesw ith previously reported lines in the target-like fragm ents. Fig. 3 show s a -coincidence spectrum of 1^{68} D y gated on the

-ray line at 173 keV , and two previously unreported transitions at268 keV and 357 keV .

FIG . 3: Coincidence -ray spectrum gated on the beam-like fragm ents $82;84$ K r and on the -ray energies 173 keV, 268 keV and 357 keV .

In the current work we have required the mutual conditions that a -ray line appears both in the singles spectra with the correct beam -like partners and in the coincidence spectrum. The tentative 10^+ ! 8^+ transition does not ful II these requirem ents as it has low

statistics and only appears in the -coincidence spec-trum. See g. [4](#page-1-10) for a proposed partial level schem e of $168D$ y. The level ordering, spins and parities have been assigned through system atics.

FIG. 4: Proposed ground state rotational band of 168 D y.

So far, three -ray lines have been identi ed unam biguously in 168 Dy. The 4⁺ ! 2^+ transition at 173 keV was previously known [\[6\]](#page-1-5), while the 6^+ ! 4⁺ transition at 268 keV and the 8^+ ! 6^+ transition at 357 keV are new in this work. A tentative identi cation of a 10^+ ! 8^+ transition at 451 keV has also been m ade. A ll the identi ed $-$ ray lines, except the tentative 10^+ ! 8^+ transition, have a low er energy than the corresponding transitions in $166Dy$, in plying that the increasing collectivity also occurs at higher spins. T he next step in the analysis is to try to identify the corresponding lines in 170 D y, to see if this trend continues along the isotopic chain. Since no known $-\text{ray lines exist}$ in 170 D y w hich can be used for -coincidences, attem pts are being m ade to use know n $-$ ray lines in the binary partner, 82 K r, as a starting point. This analysis is still ongoing.

A C K N O W LE D G M E N T S

T his work was partially supported by the European C om m ission w ithin the Sixth Fram ework Program m e through I3-EURONS contractRII3-CT-2004-506065, the Swedish Research Council, EPSRC/STFC (UK) and U.S. DOE grant No. DE-FG02-91ER40609.

- [1] R.F.C asten et al., Phys. R ev. Lett. 47 (1981) 1433.
- [2] R.F.C asten, Phys.Lett. B 152 (1985) 145.
- [3] H .M ach,Phys.Lett.B 185 (1987) 20.
- [4] Y .M .Zhao et al.,Phys.R ev.C 63 (2000) 067302.
- [5] S.A .K err et al.,A IP C onf.Proc.125 (1985) 416.
- [6] M .A saiet al.,Phys.R ev.C 59 (1999) 3060.
- [7] A. Johnson et al., Phys. Lett. B 34 (1971) 605.
- [8] P.H .R egan et al.,Phys.R ev.C 65 (2002) 037302.

[9] A .Stefaniniet al.,N ucl.Phys.A 701 (2002) 217c. [10] A .G adea et al.,Eur.Phys.J.A 55 (2004) 193.