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INTRODUCTION

In two years of running at the CERN Intersecting Storage Rings (ISR)
two groups have collected a large amount of data on very high energy
proton-proton elastic scattering. The Aachen—-CERN-Harvard~Genova-Torino
Collaboration (ACHGT) has used magnetostrictive spark chambers to detect
the two protons elastically scattered at angles larger than -about 10 mrad,
while in our experiment (CERN-Rome Collaboration) the protons were de-
tected by hodoscopes placed very close to the stored beams (> 2 mrad).

In the early stages of both experiments the minimum angles were about

5 mrad larger than the quoted values.

With an apparatus mounted in a different intersection region, the
Pisa-Stony Brook Collaboration has collected data on the beam—beam total
interaction rate with a counter system, and has thus measured the proton-

proton cross-—section.

The purpose of the present paper is to summarize the status of our
knowledge concerning elastic scattering and total cross—-sections and to

present preliminary results of the work under way. -

FORWARD NUCLEAR ELASTIC SCATTERING (0.03 < [t] < 0.3 GeV?)

The results, published already in 1971 by the ACHGT and the CERN-
Rome Collaborationsl’z’a), refer to the logarithmic slope b of the dif-
ferential cross—section measured in different t ranges at various momenta

of the colliding beams and are summarized in Table 1.

The slope b is obtained by fitting the unnormalized differential
cross—section, measured in the t-intervals indicated in the table, with

an exponential behaviour:
— =Ae . ¢9)

The difference between the b values obtained in the two experiments
clearly showed that a single exponential cannot fit the data in the

range 0.03 < |t]| < 0.3 GevV?. Indeed a non-exponential behaviour in this
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Table 1

Slope b of the forward differential

cross—section

ISR momenta s range of It| b
. . - Ref.
(GeV/c) (GeV?) (Gev?) (Gev )
0.015 - 0.055 13.0 = 0.7 3
15.5 + 15.5 - 950
0.06 - 0.18 12.0 + 0.2 2
0.03 - 0.12 12.9 = 0.4 3
22.5 + 22.5 2000
0.11 - 0.34 11.1 * 0.15 2
0.04 - 0.16 13.0 * 0.3 3
26.5 + 26.
> 2780 0.16 =- 0.45 10.9 + 0.15 2
Table 2
Slope b of the differential cross—sec%%on
obtained by the ACHGT Collaboration
Equivalent
ISR momenta “laboratory ] range of lti b
- momentum , -
(GeV/c) (GeV/c) (GeV?) (GeV?) (GeV )
o _ _ 0.050 - 0.094 11.57 * 0.3
10.8 + 10.8 245 ,460 0.138 - 0.238 | 10.42 * 0.17
0.046 - 0.090 11.87 + 0.28
15.5 + 15.5 205 950 0.138 - 0.240 | 10.91 * 0.22
o . 0.046 - 0.089 12.87 + 0.20
22.5 + 22.5 1070 200001 5,136 - 0.239 | 10.83 + 0.20
0.060 - 0.112 | 12.40 + 0.30
26.5 + 26.5 1480 2780 0.168 - 0.308 | 10.80 + 0.20
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already been suggested by a compilation of data obtained at

A

conventional accelerators

Recently the ACHGT Collaboration has published the results of a new

5)

experiment which covers a wider t range at four different energies “.

The angular distributions (one of them appears in Fig. 1) confirm the

fact that

le] = 0.1

collected i

More

apparatus

the slope of the differential cross-section changes around

GeV . The values of the slope obtained in this experiment are

recently the CERN-Rome Collaboration has remeasured, with the

; 6
described below, the slope at even smaller momentum transfers )

The data are collected in Table 3.

Table 3
Slope b obtained by the CERN-Rome Collaboration6’37)
Equivalent
ISR momenta laboratory range of !ti b
momentum -
(GeV/c) (GeV/c) (Gev?) (GeV )
22.6 + 22.6 1070 0.01 - 0.05 12.6 * 0.4
26.6 + 26.6 1480 0.01 - 0.06 13.1 £ 0.3
31.4 + 31.4 2070 0.01 - 0.06 13.1 £ 1.0

These data, together with the results summarized in Table 1, show

that, at least at 22.5 and 26.5 GeV, the slope does not vary when the

average momentum transfer decreases from |t] = 0.08 GeV? to |t| = 0.03 GeV?2.

The average values derived from the measurements of the CERN-Rome Col-

laboration are:

n
1]

w
I

(12.8 + 0.3) GeV -
(13.1 z

2000 GevZ; 0.0l <|t]< 0.12 b
2800 GeVZ; 0.0l <|t|< 0.16 b

it

I+

0.2) GeV ° .
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The previous values at small momentum transfers, and the results
obtained at other accelerators, are plotted versus s in Fig. 2. From the
figures and the tables the following conclusions can be drawn. There
exist two t-regions where the data are reasonably well represented by
exponentials and the change of slope occurs smoothly around Itl ~ 0.1 GeVZ.
However, other parametrizations are certainly possible. All the data at

5
|t] < 0.15 GeV can be fitted )

with a simple logarithmic dependence up-
on s:

b=>b+ 22" 1In s

~
N
Nt

if the Serpukhov data7) are lowered by Ab = 0.4 GeV?, which is 1.3 times
the quoted systematic uncertainty in the b scale. The fitted parameters
are b = (7.0 £ 1.1) GeV 2 and a' = (0.37 £ 0.08) GeV ~. Let us recall

-2 7
that the Serpukhov data alone give a' = (0.47 £ 0.09) GeV z ).

A parametrization similar to Eq. (2) is also possible for the large
momentum transfer region, where the parameter o' appears to be smaller

-2
(oo = 0.1 GeV ).

If the Serpukhov data are lowered by Ab = 0.4 GeV?, one reaches the
conclusion that the logarithmic shrinkage of the very forward diffraction
peak continues up to ISR energies (i.e. up to ™ 1500 GeV/c equivalent
laboratory momentum). On the other hand if the Serpukhov data are not
lowered (as in Fig. 2), one is tempted to conclude that the shrinking of
the forward peak continues, but less rapidly than suggested by an extra-
polation of the lower energy data. 1In conclusion one cannot definitely
state that the simple parametrization of Eq. (2) represents the data at
' small momentum transfers and if one intends to obtain a definite answer
for the detailed dependence of b upon s it is necessary to reduce the
systematic errors in the measurement of the forward slope to “ 0.1 GeV-—2

at all energies.

The new ISR data have proved that the logarithmic slope of the dif-
ferential cross-section is a function of the momentum transfer and many
models have been proposed to explain this effect. To get a feeling of
the physical meaning of the change of slope with the momentum transfer,
we write down two possible rough representations of the ISR data in terms

of the sum of two exponentials:




%% = A ( ”11|t| + 0.37 e—34lt|) (incoherent sum)
(3)
%% = A, (e S‘tl + 0.27 e—18|tl)2 (coherent sum)

By recalling that in an optical model with constant opacity, the radius

R of the interaction determines the slope parameter b:

b = , . (4)

R2
i
the simple fits of Eq. (3) indicate that the interacting protons feel two
regions, whose radii are v 1.3 fm (b = 11 GeV?) and v 2.3 fm (b =

35 GeV?). Of course this is too simple an interpretation, but in various
models which have been proposed the scattering amplitude is indeed written
as the sum of at least two contributions which have different t-dependences,
i.e. which differ in their space behaviour. In other models the change of
slope is due to multiple scattering effects, as will be seen in the fol-

lowing.

The models proposed to explain the behaviour of the differential
cross—section can be subdivided into two classes according to the role
played by the real part of the nuclear amplitude. In the first class
the amplitude is either imaginary (as in Eq. (3)) or with a small real
part, whilst in the second class the real part is essential in determin-

ing the angular dépendence of the differential cross-section.

8)

To the first class belong the models proposed by Edelstein 7,

) 0) 11) )

. 9 . 1 . 12
Carreras and White °, White , Heckman and Henzi , Barshay , and

various types of Regge models.

. 8 . . . .

Edelstein ) considers the elastic scattering of physical protons as
a regenerative process due to the fact that the proton is a composite
system |N> of two eigenstates |a> and |b>, each of which has its own ver-

tex function exponential in t. Then one can write

N> = cos ¢ |a> + sin ¢ |b>
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and the four amplitudes of Fig. 3a contribute to the scattering of two
physical protons. The ortagonal combination of the states Ia) and lb)
has the same quantum numbers as the nucleon and is identified with the

physical N*(1400):

IN*> = - gin ¢ la> + cos ¢ lb>

The graphs of Fig. 3b contribute to the diffraction dissociation of
the nucleon in N* + N (graphs in which N and N* are exchanged in the
final state are left out for simplicity). The vertex functions (which

are supposed to follow factorization) are written in the form

B=8 e, y=vo T,
so that, together with the phase ¢, the model contains five parameters
. which can ve determired at 30 GeV/c of laboratory momentum from experi-
"~ mental data on elastic scattering and N*(1400) production. The predicted
N*,Slope is then 23 GeV_Z, in good agreement with the experiment. The
model predicts also a minimum in the N* angular distribution at 0.25 GeVZ.
An indication of a minimum around 0.3-0.4 GeV has been obtained by the
CERN-Rome Coilaboratiqn at 24 GeV/c 13?. ' This model cannot be tested at
ISR eﬁergiesubecause N* cfoss—éectioﬁs are still lacking,‘but it has the
advantage of connegting‘two different processes through a naturai genefal—
izatiqn‘of“a wellfknown mechanism: diffféction dissociation. Sinée the
same ﬁechanism is.effective in all channels, one expects a complex t.

dependence of all elastic scattering data, in agreement with recent ob-

servations.

ALCarreras and Whiteg) extend the optical model of Chdﬁ—Yaﬁglu), which
considers asymptotic diffraction scattering as due to the strong local
ébsbfpfion of the incident waves. This absorption is taken to be pro-
poftional to the overlap of the twd extended distributions of hadronic
matter P(r), which in turn are supposed to be proportional to the charge
densities of the interadting protons. With this hypothesis the Chou-

Yang phase-shift is a function of the impact parameter a:




5) = 1 [pG1pGSG - i - %) & (5)

(the bi~vector ;i is the position of a small volume of the interacting
particle i in a plane perpendicular to the velocity). Carreras and

White substitute to the contact interaction factor 6(% - gﬁ - gZ) an
extended interaction (which reduces to a S-function at infinite energy)
and assume fhe usual dipole form for the Fourier transform of the density
p(;). The model contains two parameters, one specifying the degree of
non-locality and the second the behaviour of the non-locality with energy.
The computed values of the logarithmic slope for different momentum
transfer agree reasonably well with the experimental data. An extension

of the Chou-Yang model has also been used by Lo and Thomson to compute

the forward slopels).

White!®) remarks that the original Chou and Yang model with a contact
interaction fits the measured behaviour of the differential cross—-section
if a dipole formula [1 - t/uzj-_zis assumed for the "matter form factor".
Thé best fitted p? is found to vary in the ISR energy range by about 77
around the value p? = 0.71 GeV? obtained in fitting the charge form fac-
tor measured in electron scattering. This connection is clearly very
appealing and the fits are also very good, as it appears from Fig. 4.

It must be noted that this model (as well as all others) does not re-
produce the deviations of the experimental pointé from a smooth line,
which are very apparent in the representation of Fig. 4. Since these
deviations are small, more experimental work is needed before one can be

sure of their absolute value and position.

Heckman and Henzil!) point out that the upward concavity of the
angular distribution has a simple explanation in terms of the overlap
function approach first introduced by Van Hovels), where the contribu-
tions of many-body states to the two-body unitarity relation are lumped
together and expressed as a simple exponential in t. Such an overlap
function is consistent with the exchange of a Pomeron trajectory having

a slope around t = 0 of the order of 0.2 GeV™2.

Barshaylz) connects the t-dependence of the slope to the behaviour

of the inelastic amplitudes, which produce diffraction scattering through
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their shadow. He writes the nearly energy-independent total inelastic
cross—section in the form.Znon (where Un is the n—particle production
cross-section) and introduces the hypothesis that two different mechanisms
contribute to each - The first mechanism involves no exchange of
quantum numbers and gives rise to a o, which is energy-independent, while
the other is not vacuum—exchange and produces inelastic cross—sections
which decrease with energy but sum up to a finite contribution in the
total inelastic cross—section. The t-dependencies of these two
processes are different so that their shadow has a complex t-behaviour.
The model is not quantitative and the t-dependence of the two inelastic
contributions has to be guessed, applying some Regge recipe to the two-
cluster model; but it has the interesting feature of proposing a common
mechanism for the slope variation in proton-proton scattering and for

the decrease of the very forward slope in the reaction
p+tp>X+p,

when the mass of the produced cluster X increases. This effect is ob-

served at incident laboratory momenta smaller than 30 GeV/c.

Many Regge-pole models have been proposed to fit the forward proton-
proton slope, as measured at the ISR, together with lower energy data.
Since a complete review of these models is beyond the scope of the
present contribution, we shall consider only some of the many published

papers.

Austin and Rarital?) conclude, from a four-pole fit to high-energy
pp and Ep elastic scattering, that the t—dependence of the slope para-
meter b is a reflection of the non-zero slope of the Pomeranchuk trajec-
tory. Barger, Geer and Phillipsle) discuss various possible combinations
of a flat (or a sloping) Pomeranchuk trajectory with secondary Regge
contributions and with cuts. They conclude that the data admit several
different explanations. Pomeron slopes in the range 0-0.4 GeV™2 have

been obtained in other modelslg).

Barnettzo) has used the model proposed by Arnold and Barnett which
contains a fixed Pomeron pole (i.e. a Pomeranchuk trajectory of zero
slope) plus a cut which is chosen in such a way as to avoid violations

of t-channel unitarity and gives a negative contribution to the total




....9._

cross—section. For this reason the model predicts a proton—proton cross-—

section which rises appreciably with energy.

Barger, Phillips and Geer?!) consider the contributioms to proton-
proton and antiproton-proton elastic scattering due to Pomeron—, f- and
w-exchanges, and find that good fits to the ISR data can be obtained by
writing the Pomeron-exchange amplitude as the sum of two contributioms.
The first contribution is exponential in t with a slope of about 4 GeV~2,

while the second contribution is peripheral and has the form

with a radius R ® 1 fm (the exponential factor comes from the fact that
the edge of radius R is spread). The authors -judge this hypothesis to
be physically more appealing than the exponeéntially peripheral term of
big slope appearing in Eq. (3). By fitting the data from 20 GeV to ISR
energy, they find v 0.2 GeV~? for the slope of the Pomeron trajectory.

As a conclusion of this short description of various Regge models,
one can say that in spite of the fact that Eq. (2) represents reasonably
well the energy dependence of the slope of the forward proton-proton
cross-section, no definite conclusion can be drawn regarding the nature
of the Pomeron trajectory. This fact shows that these models are too
flexible, more than indicating that extension of the data at higher

energies and measurement of the other physical quantities are needed.

Passing now to the class of models in which the real part plays an

22).

important role, we briefly consider Kane ansatz Kane writes the

proton-proton amplitude as

=Cebt+ImAe + R

A= dge e Aedge

Adisc * Aedge : )

As in Ref. 21, for Im A the form of Eq. (6) is assumed, but a real

edge
part is added, which vanishes in the forward direction but otherwise is

significantly different from zero.

The introduction of a sizeable real nuclear amplitude in this and
other models of the same class does not seem sufficiently justified at

this stage. We conclude this presentation by summarizing the two main
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points of view introduced in the models described above, which try to
justify the t-dependence of the proton—proton slope parameter. In one
approach the effect is produced 1n a very natural way by treating the
protons as absorblng disks, as suggested by Chou and Yang. In the second
approach the change of slope is the reflectlon of the presence of ampll—'
tudes,oﬁ dlfferent perrpherallty 5 along these lines one can go from
the very simple ensetz of Eq.v(3) to refined —- but‘not well- defrned -
nodels describing the nature of the singularities which dominete elastic

scattering at high energies. We believe that at present the first "optical”

approach gives a simpler and more satisfactory description of the process

under discussion.

ELASTIC SCATTERING AT LARGE MOMENTUM TRANSFERS

Results on erastlc scattering at large momentum transfers have
recently been obtalned by the ACGHT Collaborat10n23) The set—up is
sketched in Flg.'S;' To dlstlngulsh'the few elastic events at large
moméntum transfer from the inelastic background, the momenta of the out-
going particles are determined by measuring the momenta in. two magnets
placed one above and the'other below the ISR vacuum chamber. The tra—
jectory of each proton is defined by three magnetostrictive modules, .
one of which is .placed at the centre of the magnet. The angular range
covered by the apparatus is 30-100 mrad, which implies a detected maxi-
mum momentum transfer which increases with energy, going from 1.5 GeVZ.

to 7VGeV2 when the ISR momentum varies between 11.8 GeV/c and 26.5 GeV/c.

~In Fig. 6 the momentum of one of the detected particle p; is plotted
versus the momentum of the other particle p;. A clustering due to

elastic events (p; = p2) is clearly seen, together with bands due to the

-events in which one of the protons remains unchanged while the other gets

excited.

The elastic évents are defined as events in which: 1) the closest
distance of approach is < 10 mm (the r.m.s. value of this quantity is
v 1.5 mm); ii) the momenta are equal to the incoming momenta within
3 GeV/e (the momentum resolution of the magnets is 2%Z);  iii) the two
tracks are collinear within #2.5 mrad. In spite of the wide cuts used

there is no problem in identifying elastic .events.
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A preliminary differential cross—section obtained at
(26.6 + 26.6) GeV/c (i.e. at 1500 GeV/c equivalent laboratory momentum)
is shown in Fig. 7. The estimated normalization error is at present 20%.
In the figure the angular distributions measured at the CERN PS by the
CERN-Rome Collaborationla) and other low—energy results are also plotted.
The. ACGHT Collaboration has also measured elastic scattering at the three
1ow¢r ISR energies. Comﬁaring the momentum transfer dependence of the

differential cross—section at the. four typical ISR energies, the authors

little when the energy is varied in the range available to the ISR. In
particular, the position of the minimum moves, if anything, by less than
~ 0.1 GeV? going from vs = 31 to 53 GeV. Since at present the normaliza-
tion is uncertain to 20%, this is the accuracy with which one can say
that the cross—-sections at different energies not only have the same

behaviour but also the same absolute value.

Comparing the ISR results with lower energy data, it appears from’
Fig. 7 that, when the laboratory momentum increases from 30 GeV/c to
1500 GeV/c, the well-known structure present at t = 1.4 Gev? develops in

a clear minimum, a feature which is common to most diffraction phenomena.

A review of the various models proposed to explain the origin of the
structure has recently been published by the CERN-Rome Collaboration in
conhection with scattering data obtained at the CERN PSIS), so that here
the discussion will be short and limited to some Regge models and to the
optical model of Chou and Yang. In connection with the first class of
models, the ISR data disagree with the predictions of Frautschi and
Margoliszu), who made use of a multiple scattering formalism to generate
corrections to a model in which the Pomeranchuk trajectory has slope
0.8 GeV 2. The same can be said for thé model of Grecozs), in which the

Pomeron. pole and its cuts are described by means of a Veneziano formula.

26) is based on

The optical model calculation by Durand and Lipes
the idea of Chou and Yang, and is in good agreement with the ISR data,
as recent calculations performed along the same line show?7228) | The
results of one of these calculations??®) are compared in Fig. 8 with the

preliminary data of the ACGHT Collaboration.
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As is usually the case, a dipole formula with 12 = 0.71 GeV? has
been used as the form factor of hadronic matter. The model predicts a
minimum at the correct momentum transfer and the height of the secondary
maximum is not very different from the measured one. However, the model
predicts a second diffraction minimum at |t| ~ 4 Gev?, which is not seen
experimentally, and the secondary maximum is sensitive to the value of

the total cross-section (which in the figure is taken to be Ot = 40 mb).

The data shown in Fig. 7 are also in reasonably good agreement with
the "hybrid model" of Chiu and Finkelsteinzg), in which the asymptotic
distribution of Durand and Lipes is thought to be dynamically generated
by a fixed Pomeranchuk pole plus cuts. To this contribution the effect

of normal Regge singularities is added to generate the energy dependence.

Combining these observations with the conclusion reached in the
previous section, one can say that a quite simple opﬁical model 3 la
Chou and Yang semiquantitatively reproduces both the t-dependence of the
slope parameters b at small momentum transfers and the high momentum
transfer behaviour of the differential cross—sections, as measured at
centre-of-mass energies larger than Vs = 25 GeV. However it must be
stressed that the model, in its simple and appealing form, is applicable
only at infinite energy, and ad %oc hypotheses have to be introduced to
justify the way in which the limiting behaviour of the cross—section is

reached.

PROTON-PROTON SCATTERING IN THE COULOMB REGION

The CERN-Rome Collaboration has performed an experiment on proton-—
proton scattering in the Coulomb region3°) with two aims: 1) to obtain
a value for the total proton—proton cross—section Oy with errors of the
order of 2%; ii) to determine the ratio p of the real to the imaginary

part of the nuclear amplitude (error Ap = 0.05).

In this experiment an unnormalized elastic angular distribution
N(t) of the number of events versus t is measured at very small momen-—
tum transfers (0.001 < |t| £ 0.015 GeV?). In this range Coulomb scat-
tering is important and, since the Coulomb amplitude is known as a func-
tion of t, the scale of the elastic differential cross-section can be

fixed. The procedure applied in analysing the data can be logically
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subdivided in four steps: i) by using the known Coulomb cross-section,
one obtains from the unnormalized angular distribution N(t) the differen-—
tial cross—section do/dt (the accuracy of the procedure depends upon the
amount of Coulomb scattering which is present in the first measured
points, i.e. depends upon the minimum momentum transfer detected).

the

e
n

ii) By fitting the form of do/dt one obtains the value of p, which
ratio of the real to the imaginary part of the nuclear amplitude. iii) By
assuming the experimental behaviour e_bt discussed in the previous section,
the nuclear contribution to the differential cross-—section (do/dt) is extra-
polated to t = ?. iv) By applying the optical theorem, from (dd/dt)t=0 one
gets Gt(l + p?)% and, since p is known from step (ii), eventually one ob-

tains the total cross—section Gt.

In practice, as will be seen in the following, these logical steps
are performed as parts of a single fitting procedure. However, they are
useful for pointing out two important facts: 1) from a measurement in
the Coulomb region one can obtain O, without any need of a determination
of the machine luminosity; ii) the accuracy of the method improves as
the minimum momentum transfer detected by the apparatus decreases, since
the ratio of the Coulomb to the nuclear contributions increases propor-
tionally to t2.

For a total cross—section equal to 40 mb the angle at which the

Coulomb and the nuclear amplitudes are equal is

° L 42
mrad PGev

, | (8)

so thét 0° =‘3.4 and ©° = 2.8 mrad for colliding beams of 11.8 and

15.5 GeV, respectively. To reach scattering angles as small as 2 mrad,
four systems of counters are mounted in very thin movable "pots" which
are introduced into the vacuum chamber after the proton beams have been
stacked (Fig, 9). Two pairs of hodoscopes are thus placed above and
below the circulating beams at about 9 m from the point in which the two
beams cross. The typical distance in the vertical plane at which the
bottom of a pot can be placed from the axis of the machine without
disturbing the circulating beam is "V 15 mm. (Beaﬁs of 3-5 A have a typi-

cal height of 4 mm FWHM.) The edge of the first hodoscope counter is
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thus at 18-20 mm from.the axis and the minimum angle is " 2 mrad.

Given this minimum angle, a sizeable contribution due to the Coulomb
amplitude can be detected, according to Eq. (8), when the beam momenta
are not too high. Indeed data have been collected at (11.8 + 11.8) GeV/c

and at (15.5 + 15.5) GeV/c, which are the two lowest standard ISR momenta.

Eéch of the four hodbscopes‘cdnsist of 12 scintillation couﬁtets

and two tfigger couﬁtérs (Fig. 9); The coincident events between pairs
of oﬁpoéite'hodoScopes (AB‘and CD) are recorded on tape through a small’
on-line éqmputer. Elastic events are distinguished from inelastic events
through a\collineérity condition: they are recorded on homologous (or
almost hombiogous) coﬁnteré of the opposite hodoscopes. The dimensions
of the source and of the counters are such that the r.m.s. value of the
collinearity angle in the vertical plane is +0.25 mrad. Within this col-
linearity the inelastic event contribution is v 17 of the elastic rate
and can be easily subtracted. In Fig. 10 two typical angular distribu-
tions ‘obtained in runs of a few hours each are shown after .some correc-
tions (Vv 3%) have been applied to the data. The main sources of these
corrections are the finite length of the sources and the betatron angles

within the beams.

To obtain the values of the total cross—section Ot and of the ratio
o of the real to the imaginary parts of the forward nuclear amplitude

the rate of elastic events N(t) is written as:

2
N(t) = K Fﬂ wu)-m+q®%cmt[l
it (9)

(Ocot )’ 2y bt
e A

where K is an unessential proportionality constant and o =~ 1/137,

The first term is the well-known Coulomb cross—section when one
takes into account also the electromagentic form factor of the interacting
protons

. G(t) = ————=7 with p® = 0.71 GeV? .

(1 + ;%q
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The second term is the interference between the nuclear amplitude
and the Coulomb contribution, which has the phase a®. For this phase the
expression given by Locher3!) and by West and Yennie3?) is used. Note
that ad is always small (ad = 2.5 X 1072) so that its numerical value

does not affect the determination of Ot.

The third term in Eq. (9) is the nuclear contribution. In writing
it the assumption is made that p does not depend upon t and that the
t—-dependence of the imaginary part is exponential. These assumptions are
consistent with the results discussed in the previous section and with

‘data obtained at lower energies.

Another assumption is involved in the choice made for the nuclear
amplitude: spin effects are negligible. This i's justified by the fact
~ that they are already small at 1.5 GeV/c_laboratéry momentum and are not
likely to increase with energy. The validity of this assumption has also
been independently confirmed by applying Eq. (9) to scattering data col-
lected at the CERN PS and in Serpukhov, and by checking that the best
fitted value of o, agrees with the results obtained in transmission ex-

periments.

Since b is a very insensitive parameter and can be taken from the
measurements at larger momentum transfer discussed in the previous sec—
tion, Eq. (9) contains three parameters (K, Ot’ and p) which can be

determined by fitting the data.

The best fitted values of Ut and p appear in Table 4. In the last
column the elastic cross—section Ou1 is given. It is deduced from the

value of the forward elastic cross—section (do/dt) and from the shape

t=0
of the angular distribution discussed in the previous section.

Table 4

Total cross—section, real part and elastic cross—section

obtained by the CERN-Rome Collaboration®?)

ISR Equivalent labo- g | 9.1
momenta | ratory momentum t 1Y ¢
(GeV/c) (GeV/c) (mb) (mb)

11.8 290 38.9 + 0.7 | +0.02 * 0.05]| 6.7 * 0.3

15.4 500 40.2 + 0.8 |+0.03 = 0.06| 6.9 = 0.4
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The results on O, will be discussed in the next section. In Fig. 11
the values of p are plotted, together with data at lower energies33).
The continuous line represents the prediction of a dispersion relation
calculation in which 40 mb is assumed as a common value for the proton-

proton and antiproton-proton cross—sections.

Our results do not disagree with this calculation, but would prefer
a solution in which the real part crosses zero in the ISR energy range.

Taking the average of the two numbers, one indeed gets
s = 750 Gev? , p = +0.025 * 0.035 , (10)

which is about two standard deviations away from the range of values
predicted by unsubtracted dispersion relations in which the asymptotic
proton-proton and antiproton-proton cross—sections are assumed to converge
to common values not very different from 40 mb. This point will be

discussed further in Section 7.

In conclusion, this measurement shows that in the ISR energy range
the forward nuclear amplitude is essentially imaginary, as expected in

diffractive phenomena.

TOTAL CROSS—SECTIONS WITH THE VAN DER MEER METHOD*)

Two other approaches are used at the ISR to measure total cross-
sections. Both of them apply the method proposed by Van der Meersu) to
obtain the machine luminosity L, which by definition is the proportiona-
lity factor between a cross—section A0 (integrated over the solid angle

of the apparatus) and the corresponding rate R:

R=1L1L "+ Ao . (11)

The Pisa-Stony Brook Collaboration®®) with the set-up shown in
Fig. 12 counts the total number of proton-proton interactions over a
large fraction of the whole solid angle. From this measurement the rate
Rt’ extrapolated to the whole solid angle, is obtained, and the total

cross—section is deduced by applying Eq. (11):

*) The contents of this and the following section have been updated to
February 1973. ’




. (12)

The extrapolation (which is of the order of 5%) is needed to correct for
elastic and quasi-elastic events which are lost because the charged

particles do not come out of the vacuum chamber.

The second approach has been first applied by the ACGHT Collabora-
tion3%) and can be subdivided in the following four steps:
i) measurement of the elastic rate Rel(e) in the solid angle AQ at

some small scattering angle O;

ii) extrapolation of the elastic rate, with the usual exponential be-

haviour of Eq. (1), to zero angle to get Rel(O);

iii) application of Eq. (11) to deduce the elastic cross-section in the

forward direction:

) |
ao) _ Rerqo) |
(dsz)oo ST (13)

iv) use of the optical theorem to derive ¢

_ 4mh do
5% =73 V [dﬂ)oo : (14)

This approach has recently been applied by the CERN-Rome Collabora-
tion37) introducing the hodoscopes shown in Fig. 13 in the "pots" pre-
viously described in connection with the Coulomb experiment. The scat-

tering angle is © = 6 mrad.

In both approaches the main error comes from the measurement of the
machine luminosity, but the second method is less gsensitive to errors in

L since, from Egqs. (13) and (14),
o« ?szI
t VdR L’
In any experiment the time-variation of the luminosity is followed

by measuring the rate RM of a monitor system, which detects beam-beam

events without being sensitive to the position and the dimensions of the
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crossing region. If AQM is the cross-section of the events which are
within the acceptance of the monitor system, from Eq. (11) it follows

that
L=x—, | (15)

and the luminosity to be introduced in Eqs. (12) and (13) can be computed
if the "monitor constant" AGM has been measured, for instance with the

Van der Meer ‘method.

The principe of the method3*) consists in displacing the two beams
vertically in small and known steps, and in measuring the monitor rate
RM(G) as a function.of the displacement §. Given the vertical density
distributions il(z‘— z1) and 1,(z - z,) of the stored beam currents, one

can write:

Ao, s
M . .
(§) = ———— i1(2)iz(z + §) dz , (16)
RM e’c tg,[%J :L :

where v = 14,8° is the crossing angle of the beams in the horizontal .
plane and 8§ = z; - z, is the vertical displacement between the centres

z1 and z; of the two beams. From Eq. (16) it is immediately seen that
AGM is proportional to the integral of'RM(G), which can be experimentally
determined,_and inversely proportional to the product I; °* I, of the two

currents:

2

e v |
hoy = S5 te (ZJ !/; NORLE | (17)

The aégurac& in the'determination of AOM depends upon the accuracy in
the knowledge and in the reproducibility of the scale of the displace-
ments. Typically the steps are AS = 0.50 mm, and the ISR machine group
has measured them at various energies by means of pick-up electrodes,
coming to the conclusion that this value has an error £ 27, which cor-

responds to < 0.0l mm.

Checks of this calibration have been performed to an accuracy of
" 1% by the Pisa-Stony Brook Collaboration by measuring the vertical dis-

placements of the source with a system of wire chambers.
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In the early stages of running of the ISR, the ACGHT Collaboration
has published the result of a measurement based on the second of the two

approaches discussed above36):

Ot = (40.2 = 2.0) mb at (15.5 + 15.5) GeV/c .

Data presented at the Batavia Conference by the same groupgs) indicated

a flat cross-section of (39.3 + 1) mb up to (26.6 + 26.6) GeV/c.

The recent data of the Pisa-Stony Brook Collaboration35) (based on
the first épproach) and of the CERN-Rome Collaboration37) (who make use
of the second approach) are given in Table 5 and are plotted together,

with previous data’?®)

, in Fig. 14. As already mentioned, in both experi-
ments the main contribution to the errors comes from an estimated 2%
standard deviation on the luminosity, and from an *27 possible scale

error (equal at all energies) on the knowledge of the displacement.

Table 5

Total proton—-proton cross—sections

ISR Pisa-Stony Brook®®) | CERN-Rome37)
momentum S g, . (0]

t t

GeV? (mb) (mb)
(11.8 + 11.8)| 550 39.3 + 0.8 39,1 + 0.4
(15.4 + 15.4) | 935 40.85 * 0.8 40.5 *+ 0.5
(22.6 + 22.6) | 2000 42.6 * 0.85 42.5 + 0.5
(26.6 + 26.6) | 2780 43.0 * 0.85 43.2 £ 0.6

Scale error +0.8 mb : +0.6 mb

The agreement between the two sets of results can be considered an
indirect check of the validity of the Van der Meer method, since the
luminosity enters in different ways in the expressions of the total
cross—sections used in the two approaches (in one case O, is proportional

1
- R _x
L™! and in another case to L™%).
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RISING TOTAL CROSS-SECTIONS

AMany different formulas can be fitted to the increasing behaviour
of the total proton-proton cross-section. A particularly simple expres-
sion, which represents quite well the data in a large energy interval

(30 £ s < 3000 Gev?) and is mnemonically easy, is

o, = {38.4 + 0.5 |:1n [ESO—]] } mb , (18)

where s is a well-known number: sg.% 137 GeV2 - For those who like pure
numbers, one can also write Vsg = 4ﬂ m_. An expre351on very 81m11ar to

Eq. (18) had previously been obtalneduo) from. an analys1s of hlgh—energy
cosmic-ray data (pL S 3 x 10l+ GeV) concerning the total inelastic cross-—

section of protons in air.

The rate of increase of -Eq. (18) with s is the maximum compatible

with the Froissart 1imit”1), which for s = « has the form:

where §, the scale of the energles, is unknown The coefficient of the
square of the logarithm in Eq. (19) is " 60 mb, i.e. is about 100 times
bigger than the fitted value appearing in Eq. (18) This fact poses a
problem: In the hypothes1s that future data w111 support representation
(18) also at much higher energies, what is the meaning of such a small
coefficient? To illustrate this and other connected problems, we present
a very simple discussion of the origin and the meaning of the Froissart

bound, without any respect for mathematical rigour.

A useful starting .point is the usual impact parameter description
for the small-angle and high-energy elastic amplitude in the case of

scalar particles (h = 1):
1 >
F(s,t) = E'j.dza e'd éf(saa)va_ (20)

where q. = /_t is real in the phy51ca1 region and a is the bivector
"impact parameter" in a plane perpendlcular to the momenta of the colll-

ding hadrons,.
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The normalization of the amplitude is such that

do _ 2
T T|F(s,t)|* , (21)
and
Ot = 47 Im F(s,0) . (22)

To obtain an upper bound for 0_ it is necessary to limit from above the
imaginary part of F(s,t), which has a representation similar to that of
Eq. (20):

> >

Im F(s,t) = %-j‘dza ' 1 f(s,a) . (23)

This bound has to be compatible with the unitarity condition, which

states that
05 |£¢s,a)l? € Im £(s,a) £ 1 (24)

and with the analyticity properties of F(s,t). These properties follow
from microcausality applied to field theory. For our purpose it is only
necessary to state the following result®2): the amplitude sF(s,t) satis-
fies a dispefsion relation also for positive (unmphysical) values of t, if
t is smaller than a value to which is independent of s. For most

scattering processes, tg has been demonstrated”®) to be at least

ty = b 2
o L (25)

For 0 < t < t, one needs no more than two subtractions in this dispersion

2

relation““), i.e. sF(s,t) is bounded by s so that

e

for s > F(s,t) = Cs withf <1, (26)

where B is in general a function of t.

When t = tg the two-momentum transfer is imaginary, q = +ivty, and

combining Eqs. (23) and (26) one has to satisfy for s > « the condition
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. ‘
= j‘da dy a ea‘/EOCOS Y In f(s,a) = CsB R (27)
- + _). 3 . . . .
where Yy 1s the angle between g and a. Since the integrand is positive,
condition (27) implies, integrating only on a small interval Ay around
Y = 0:

%} f da a ea‘/Eo Im f(s,a) < CsB .

This condition, which contains the power B computed for t = to, implies

e 5
for a > and s +~ Im f(s,a) =< L — [i} . (28)
| (Ve,2)% s

Thus, fofvsimplicity forgetting power factors of a, analyticity imposes
at the same time an exponential decrease with the impact parameter and a

relatively slow rate of increase with the energy (B S 1).

" For small values of a and s sufficiently large, the imaginary part
of -the partial amplitude of Eq. (28) violates the unitarity condition
Im £(s,a) £ 1. To obtain a majorant of Eq. (23) which does not violate

Eqs. (24) and (28), one can then choose (forgetting power factors)

for a < a

]
—t

Im £(s,a)
- (29)
Im £(s,a) = e—VEB(a—a) for a > a .
where
- _B81ln (s/3) | (30)

Vg

Introducing this choice into Eqs. (22) and (23) one finally obtains the

upper bound:
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e

IA

—/Ez(a—g)a da

f J
Gt 8w J a da + 8w e
0

a
(31)

- -2
_8m _ 81 1ln (s/3) _ 4mB” " i_l
to * tyo + to In (g) *

By using the value (25) of to and taking for B its maximum value 8 = 1,

this result coincides for s - ® with the Froissart bound of Eq. (19).

0f course the rough arguments presented above do not prove the
Froissart bound, but they show enough resemblance to the steps of the

rigorous proof to allow a few relevant comments.

i) The proof relies on the fact that to does not depend upon the energy.
This has been shown by Martin to be a consequence of analyticity and
unitafity”z){ The value tg = 4m% is derived from field theory, and of
course is a minimum value. (It should be said that for proton-proton
scattering a full proof does not yet exist.) Injecting now some pheno-
menology, if it is known from other sources that the partial amplitude
behaves (apart from power factors) as e—ua, then one can obtain a smaller
vdpper bound for O, For instance, in the Chou and Yang model u? = 0.71 Gev?

and, if one believes in this model, one has the upper limit

-2

2 _
- 2 < 4mR2 s - . a2 s
to = 071 GeV? , o S5 [ln (-g—” =7 B Lln [gn mb . (32)

ii) In majorating the cross-section the hypothesis has been made that

the partial amplitudes which contribute at infinite energy are purely
imaginary. The meaning of this hypothesis can be understood by writing
for f(s,a) the usual expression, which automatically satisfies the uni-

tarity condition:
£(s,a) = % [1 - e216(s’a)} . _ (33)
The phase is in general a complex quantity

§(s,a) = éR(s,a) + 1 6I(s,a) . (34)
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and one has

1 - cos (26R)e“261

Im £(s,a) = . (35)

2

The choice of Fq. (29) introduced in the maximization procedure means
6R = 7/2 and GI = 0, which implies that the Froissart bound is obtained
in the hypothesis that absorption goes to zero at very high energy. In
other words the limit corresponds to a situation in which the inelastic
cross—section Gin is zero and the elastic cross—section is equal to the

total:
with Im f(s,a) =1 for a < a o =0 . (36)

This seems a quite unphysical situation, since we believe that at very
high energy the scattering is essentially diffractive, being due to the
absorption of the incoming waves at small impact parameters. Injecting

this reasonable diffractive conjecture

6R -0, & ->o forac<a, (37)

then the unitarity condition gives
Im f(s,a) < 1/2 (38)

and the Froissart bound is reduced by a factor of 2 *5) | This "reduced"

bound will be used in the considerations which follow.

iii) If the total cross-section shows a 1n?s behaviour up to very high
(infinite) energies, the coefficient in front of the 1n%s determines the

value of the ratio B?/ty. For instance, if the parametrization (18) is

applicable as s > «, one obtains from the "reduced" bound

B? -
e Ty 0.016 . (39)

Thus we have




_25_

1

tg = 4m; B = 0.13 ; (40)

R

to = u? = 0.71 GeV? B =~ 0.38 . (41)
Since Eq. (40) is a lower limit for B and Egq. (41) is probably an upper
one, we conclude that the behaviour of O, tells us that the amplitude
sF(s,t) (for which dispersion relations are normally written) has a be-

1,1 1.4

haviour (for t = tp) which is somewhat between s and s *'. The maxi-

mum rate of increase (s2) would be obtained for Vto = 1.4 GeV.

iv) The first two terms in Eq. (31) give an upper limit for the contri-
bution of the 'grey fringe" to the total cross—section, so that for s = ®

one can write a '"reduced" limit

< 4TTB s
Gfringe Tt In [EJ ’ (42)
which is of the order 1ln (s/8), as expected for a "fringe'" of constant

width.

v) As remarked under point (ii), in majorating® the total cross—section
one is lead to choose Oel =0, Very probably this is not the way nature
works, and by introducing the diffractive conjecture of Eq. (37) one

imposes for s =+ @

(o]} =

%e
el 2

. (43)

In the ISR energy ranges experimental]y37) we have Gel/ct = 0.17,
very far from the limit (43). This fact, together with estimates of the
cross-section in the fringe based on Eq. (42), show that in the ISR
energy range the impact parameter distribution of the amplitude is far
from the Froissart bound represented by Egs. (29) and (30), and also from
its "reduced" version, independently of the value chosen for to. Thus
the mechanism which guarantees a growth of the cross-section not faster
than 1n?s is not yet effective in this energy range, and we could very
well be in a transient situation in which O, increases faster than 1n®s.
This implies that the 0.5 mb of Eq. (18) obtained by fitting data in this

energy range may not have any deep meaning.
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After this detailed discussion of the Froissart bound we briefly
review some of the papers in which rising cross-—sections have been
discussed. As is well known, they constitute a very small sample if
éompared with the papers in which either constant or decreasing cross-

sections have been used or predicted.

Twenty years ago Heisenberg“s) put forward the hypothesis of a
proton—proton total cross-section increasing about as. 1ln? (s/mz). This

was obtained by assuming that the energy den51ty in the interaction

—_—1n

decreases as a function of the impact parameter a as e % and that only

impact parameters smaller than a o« contribute Ot. In the model, & v
corresponds to a level of the energy density which is approximately
constant with s and is fixed by the energy needed to produce two pions.
This way of obtaining an increasing cross-section is different from the
mechanism discussed in commection with the Froissart bound, and is very
similar to what happens in the relativistic rise of the energy losses of
charged particles in collisions. In the atomic case & ax is determined
by the condition that the pulse of electric field applied to the atom by
the charged particle must be shorter than the inverse of the characteris-

tic frequencies of the virtual oscillators; a o varies with the energy

because of the Lorentz contraction of the electric field.

Regge models in which elastic scattering is dominated by the
exchange of a trajectory aP(t) which has the quantum numbers of the
vacuum (Pomeron) give decreasing .or constant cross-section according to

the choice a (0) <1 or qa (0)

In the 51mp1est single Pomeron exchange model the amplitude is
written in the form:

- il s -mP(t)_1
F(s,t) = y(t) exp [— i E-u(t)} [g;} (44)
where the exponential comes from the signature of the Pomeron trajectory
and guarantees that F(s,t) is imaginary when uP(O) = 1, Equation (44)
implies that the'total cross-section is proportional to SOLP(O)_1 [see

Eq. (22)] and the Froissart bound imposes Op 0) £ 1.

In general one expects more compllcated forms than Eq. (44) to apply.

In particular, there is no reason to neglect cut contributions.
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Zachariasen has published an excellent review of the subject“7), while
Oehmé“e) has discussed the implications of rising total cross-sectioms
for the Regge picture of strong interactions. Here we shall present only

some of the Regge models which have considered rising cross—sections.

In general one can say that the presence of Regge cuts may produce
total cross-sections which increase with energy. The s-dependence is of

the form

r 1
g, =0, -lf - “—L—TJ . (45)
1n (s/sg)

The cut contribution decreases with energy, so that eventually the flat
cross—sectiondoo due to Pomeron exchange dominates, and the usual picture
of less and less opaque particles of increasing radius applies.

In the model already discussed, Frautschi and Margoliszu)

generated
Regge cuts at the form (45) by iterating Pomeron exchange with a Glauber

formalism obtaining o = 50 mb.

Multiple scattering effects have also been considered by Dean*?) in
the framework of a quark model for meson-nuclear scattering. As in all
other models, multiple scattering introduces cuts in the angular momentum
plane, which disappear with energy and leads to an increase of the total

cross—section of several millibarms.

Lendyel and Ter—Martirosyanso) have applied the Reggeon diagram
technique of Gpibovso) to the analysis of the Serpukhov results, predict-
ing a proton-proton cross-section which increases to 68 mb at infinite
energy and is slightly larger than the measured values in the ISR energy

range.

In their paperSI) on "Rival models for total cross-sections', Barger
and Phillips have considered a number of models which can fit the "ano-
maly" represented at that time by the increasing K+p cross—section
measured at Serpukhov. They consider cut contributions, which give rise
to total cross—-section of the form (45), and also the effect of adding
a dipole to the Pomeron pole. As a third possible model, they add, to
the contribution of the Pomeron, a Cheng and Wu term of the type we dis-
cuss at the end of this section. In the three models proposed, the
predicted increase of O, is definitely smaller than the ISR proton-proton

results.
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Using the Regge model with a fixed Pomeron pole and a "shielding"
cut mentioned in Section 2, Barnett2®) has predicted a rising proton-—
proton cross-section which agrees with the ISR results. The form of the
cut is, of course, quite arbitrary, but it has to be mentioned that the
model gives also a reasonably good description of the behaviour of the

slope of the differential cross-section as a function both of t and s.

A widely used approach to high-energy hadron dynamics is based on
the study of the asymptotic behaviour of field theories which can be
treated by perturbation methods. (As is well known, analyses of this
kind have supported the idea that Regge exchanges dominate hadromic
amplitudes.) Local field theories satisfy the main properties which we
expect to be valid for the true amplitude: unitarity, analyticity, and
crossing symmetry. They can be treated only by partially summing a
subset of the whole series of Feyman diagrams, but bne can hope that with
a careful choice of the summed diagrams the leading contributions are
retained and that the high-energy behaviour obtained coincides with the
behaviour of the full amplitude. To present in a concise way the main
results of these approaches, let us introduce the form (33) of the
partial amplitude into Eq. (20). By integrating on the angle y formed

by the bi-vectors Z and Z, one obtains the well-known expression
F(s,t) = 1 f da a Jg(qa) [1 - e216(s,a)] . (46)

For a >~ ® and s - © the imaginary part of f(s,a) has to satisfy the limi-
tation (28) imposed by the analyticity properties of the full amplitude,

so that combining Eqs. (28) and (35) one obtains

1 - cos (26R) e—ZGI

< toa [%JB . (47)

2 s

In the diffractive limit GR <+ 0; this implies for a > © and s > «:

(48)

~

S

GI(s,a) < e_‘/—E—Oa [EJB s

a part power factors in a and logarithmic factors in s.
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In conclusion, any theory which satisfies analyticity and unitarity
must lead to a phase which satisfies Eq. (47). The most-difficult task
in the approaches based on the study of the high-energy behaviour of the
sum of leading diagrams consists in obtaining the "exponentiated" or
"eikonalized" form of Eq. (46) and in deriving the form of the power R
appearing in Eq. (48). (Note that the value of tp is connected with the
mass of the exchanged particle and in general can be considered as a free

parameter.)

These difficult problems have been tackled by many authors in various
field models. It has been found®2?) that in the summation of diagrams
where any number of quanta are exchanged between the two external particles
one can indeed write the amplitude in the "eikonalized" form of Eq. (46) .
It turns out that B is equal to the spin of the exchanged quanta minus 1,
but that Eq. (48) applies to the real part of the phase SR(s,a) and not
to the imaginary part. In other words, these models are completely un-
realistic since for s + » they give an elastic amplitude which is non-
diffractive, implying Ogp = O This can be understood by noting that,
when the coupling constant of the field model goes to zero and the Born
term with only one exchange dominates, the eikonal 8(s,a) is small and
the amplitude F(s,t) is proportional to the Fourrier transform of §(s,a).
Thus the phase 6(s,a) is essentially the lower order (Born) term of the
series., 1If the model is such that this term is real, then the i in
the exponent of Eq. (46) tells us that at very high energy, potential

scattering, instead of diffraction scattering, dominates.

Cheng and wus?®) have considered quantum electrodynamics with massive
photons and have summed sets of diagrams which produce a complex phase as
§ - ®», In their "impact picture” this is obtained by using as Born term
the sum of the "one~tower'" diagrams appearing in Fig. 15. These diagrams
dominate and are complex, because a ladder is exchanged instead of a
single particle, as was done in the field models discussed above. By
summing the set of "one-tower' diagrams, Cheng and Wu deduce that the
complex phase behaves as sd/ln2 s, where d 1is essentially a2, the square
of the coupling constant appearing in the theory. 1In electrodynamics, of
course, & = 1/137, while in any model of strong interactions omne expects
d to be of the order of 1. Thus in this field model the one-tower dia-

grams give an absorption which increases as a power of the energy, and
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then the arguments discussed above in connection with the Froissart
bound apply: the total cross-section increases as 1n®? s and the elastic
cross—section tends to Gt/2, as in Eq. (43). It has to be noted that,
in order to obtain these results, a very difficult mathematical problem
has been solved; it is in fact necessary to prove that the summation of
the multitower diagrams (exchange of many towers) does indeed "eikonalize'.
Conclusions similar to these are obtained by summing similar sets of
diagrams in other field theories, as the ®> model, when the coupling
constant is large enoughS“). It has been shown by Finkelstein and
Zachariaseﬁss) that also the multiperipheral model, corrected for ab-
sorption effects; 1eads‘tovan amplitude which saturates the Froissart

bound at infinite energy.

‘The -previous discussion of the origin of the Froissart bound explains
why the same conclusions are common to many different models: ‘the dif-
fractive "reduced' Froissart bound is saturated in any model in which the
amplitude is written in the eikonal form of Eq. (46), the phase 8(s,a). -
is essentially imaginary when s > « and it is proportional to sB, with
B > 0., - Regge models do not saturate the Froissart bound because, by
definition, one requires that at t = 0 as s > ® the Pomeron exchange
_amplitude of Eq. (44) dominates. Then aP(O) <1 and also if the Pomeron
amplitude is interpreted as a Born term and its Fourrier transform is
introduced as eikonal in the representation of Eq. (46) - to produce
multiple scattering corrections [Frautschi and Margoliszu)], the value
of the power R =naP(O) - 1 is not larger than zero and one obtains at
maximum a constant cross-section reached from below according to

Eq. (45).

A parton model which saturates the Froissart bound and conmnects the
increasing cross—section with other phenomena observed in the ISR energy
range has been proposed by Kogut, Frye and Susskind®®). The two colliding
hadrons are represented as a uniform population of partons on the rapidity
axis covering the region from - 1/2 1n s to 1/2 1n s. The number of
partons N and their density D (which is assumed to be D = 2, as suggested

from deep. inelastic electron scattering) are simply related: .

N=D1lns=21lns . _ (49)
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In the usual descriptions of hadronic processes, the partons interact

only within a finite rapidity interval, and this produces a constant

total cross-section Oy and a multiplicity of the secondaries which in-
creaseé as ln s. Kogut et al. assume the existence of an additional hard
interaction between partons, which has long rapidity range and corresponds
to an energy-independent parton-parton cross—section 0_. Since the

number of interacting pairs of partons is 1/2 N?, the contribution of this
interaction to the total cross-section is OPN2/2, and using Eq. (49) the

i
be written in the form

~ 2
ct = g + 20p 1n® s . (50)

If the representation (18) of the proton-proton data is valid up to very

‘large s, one obtains Op = 0.25 mb, which would naively correspond to a

parton radius of v 5 x 107!5 em 57). The merit of this simple model
is in that it relates the increase of the total cross-section with the
abundant production of particles of large transverse momenta observed at

the ISR, easily understood in terms of a hard interaction.

CONCLUSIONS

The main results on elastic scattering and total cross—sections

obtained up to February 1973 at the ISR can be summarized as follows.

i) The "local" slope of the elastic differential cross—section changes

by Ab = 2 GeV™? around [t| = 0.15 GeV®.

ii) The forward slope b (!t] < 0.15 GeV?) increases with energy. A
1n s behaviour is not excluded by the existing data, but there are indi-
cations that the energy dependence is slower than this. If a In s be-

haviour is assumed, b increases by about 10% in the ISR energy range.

iii) The differential cross—section shows a clear minimum at

|t| = 1.4 Gev®?. Within the present systematic uncertainties on the ab-
solute value of the cross-section (20%), its behaviour does not vary
passing from vs = 31 to 53 GeV. In the same energy interval, recent data??)

show that the position of the minimum displaces inward by (0.03 + 0.1) GeVZ.

iv) The real part of the nuclear amplitude in the forward direction is

very small (p = 0,025 % 0.035 for 23 < Vs < 31 GeV).
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v) The total proton-proton cross-section increases by (10 % 2)7 in the

ISR energy range.

vi) The elastic cross-section, which can be computed from the informa-
tion summarized in the previous points, increases by (12 * 4)7% in the ISR
energy range, if a 107 increase of b is assumed®’), TIndeed one has
(apart from corrections of the order of few per cent due to the change of

slope around 0.15 GeV?)

(51)

so that a slower increase of b with energy implies a faster increase of

the computed value of 01
vii) The inelastic cross-section 0, =0J_ -0

in t el
by v 10% 37), passing from (32.3 * 0.4) mb to (35.6 £ 0.5) mb.,

increases in the ISR range

By stretching some of these data to the limit of their errors
[especially point (iii)] one can very naively say that the approximately
e Og1s and o, are compatible with an optical
model descriptuon in which the proton-proton interaction radius increases

equal increases of b, ©

in the ISR energy range by (4 * 1)7, while the opacity remains constant.
However, if the indication of a saturating b and an almost fixed dif-
fraction minimum will be confirmed, then this too simple statement has to

be revised.

Looking for a unified picture of the results listed above, the
variation of slope of point (i) does not seem to be a very sensitive
test. Many different models give it more or less automatically, as dis-

cussed in Section 2.

Much more interesting is the energy behaviour of the forward slope,
especially in comnection with the increasing cross-section. If the total
cross-section increases as (ln s)?, it has been shown®®) that also b
must increase at sufficiently high energies at (ln s)2. As discussed
under point (ii), in the ISR energy range this certainly is not the
case, but, models which saturate the Froissart bound®?) require this
change of behaviour of the slope to happen at energies which at present

cannot be reached.
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The diffraction minimum observed at It] = 1.4 GeV? is very natural
in an optical picture of the interactions and is also described by various
Regge models., The main point of interest is the variation of the posi-
tion of the minimum with energy, and its relation to the forward slope.
Work on large momentum transfers is in progress, and better data should

be available in the near future.

1f the total cross-section goes to a constant value of the order of
40 mb, the ratio p between the real and the imaginary parts of the nuclear
amplitude should always remain negative going to zero from below. However,
it is knownsg) that, if the cross-section increases as (In )2, p
must become positive and go to zero from above. Using dispersion rela-
tions and making reasonable hypothesis for the high-energy behaviour of
the antiproton-proton cross-section, it has been shownso) that at the
maximum ISR momentum (¥ = 63 GeV corresponding to 2000 GeV/c) p varies
between +6% and +10% depending on the choice of g, ™ ln s and o, ™ (in s)?.
Since accurate measurements of the real part are sensitive to the value
of o, at higher energies, this is the kind of experiment that has to be

pursued.

These experiments could give, together with new cosmic-ray data, some
hint to answer the fundamental question, Will the proton-proton total
cross-section continue to increase, or will it eventually saturate at a

large but finite value?

In the first case, a solution in which the Froissart bound is satu-
rated would be very artractive, but very difficult to prove, because also
the highest ISR energies have to be considered "intermediate'", since the
protons are essentially all "fringe". In the hypothesis that nature
has chosen this possibility, it will not be easy to discover the mechanism
which triggers this behaviour, since many consequences are independent
of the mecanism itself but follow from very general principles, as dis-
cussed in Section 6. One can also argue that in this case the situation
would be simpler, because optics would turn out to be more important than
dynamics at very high energies. In the further, not very justified, hypo-
thesis that the representation of Eq. (18) will be valid at much higher
energies, the small coefficient that is in front of (1n s)? indicates

that the range of the absorptive "potential' which produces the saturation
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of the Froissart bound is small with respect to the Compton wavelength
of a pion. By requiring that the partial amplitudes increase with s
at the maximum rate allowed by analyticity and unitarity (B = 1), one
obtains that this range corresponds to exchanges of masses of the order
of 1.5 GeV, If all the above hypotheses are satisfied, it is tempting

to speculate that this is the mass of the gluons.

If the cross—-section saturates at a constant value, a reasonable
simplicity will still remain in the Regge description of strong inter-
actions. However, already the observed increase of O, poses serious
limitations to the properties of the trajectories exchanged in proton-
proton and antiproton-proton scattering, and in particular questions the
hypothesis of exchange degeneracysl)n Also in this case the ISR energies

e

are to be considered "intermediate', because cut contributions, which will
9 H

eventually die, are still important.

In concluding, we remark that it is conceivable that in studying
these problems the K p system (whose cross—section 1s already increasing
at 20 GeV/ec) will turn out to be more useful than the pfoton4proton

system, given the relatively high energy beams available at NAL.

Fruitful discussions with Drs. D. Amati, L. Caneséhi, A. Martin,

C. Itzykson, M. Jacob, F. Parisi and M. Testa are gratefully acknowledged.
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Figure captions

Fig., 1 Angular distribution of proton-proton elastic scattering

at a centre-of-mass energy squared s = 2800 GeV? [Aachen—

CERN-Harvard-Genova-Torino Collaborations)].

Fig, 2 : Compilation of results on the slope parameter b measured

at small momentum transfers3’5’7).

rrj.
w

a) Contributions to elastic scattering in Edelstein model.

*
b) Contributions to N production.

Fig. 4 : Plots of the ratio (ISR data/best fit) using the Chou-Yang
model according to White!®), The parameters of the dipole
form factor are uz = 0.70 GeV? and uz = 0.685 GeV? at the

two energies. The data are taken from Ref. 5.

Fig. 5 : = Apparatus used by the Aachen-CERN-Genova-Harvard-Torino
Collaboration to detect proton-proton elastic scattering

at large momentum transfers.

Fig. 6 : Scattered plot of the momenta of the two charged particles
detected in the apparatus of Fig. 5. The clustering due

to elastic events is clearly seen.

Fig. 7 : The differential cross-section measured at (26.5 + 26.5) GeV/c
by the ACGHT Collaboration is plotted, together with lower
momentum data. The numbers accompanying the curves are the
laboratory momenta of the incident proton and the dashed
curve represents the fourth power of the electromagnetic

form factor G(t) = 1/(1 - t/p®)?, with u® = 0.71 GeV?,

Fig. 8 : The ACGHT data are compared with a calculation due to
Moreno and Suayaza), based on the optical model of Chou

and Yang and Durand and Lipes.

Fig. 9 : Sketch of the "roman pots'" and of the counter hodoscopes
used by the CERN-Rome Collaboration to detect elastic
scattering in the Coulomb region. The pots have stainless

steel walls 0.2 mm thick.
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Angular distributions obtained in two typical runs of a

few hours at (11.8 + 11.8) GeV/c and (15.4 + 15.4) GeV/c.
The continuous line is the fitted cross-section. The
separate contributions of Coulomb and of nuclear scattering

are also indicated.

Collection of results on the ratio p of the real to the
imaginary parts of the proton-proton forward scattering
amplitude. The two high-energy points are due to the CERN-
Rome Collaboration. TFor the sources of the other data see

Ref. 33.

Sketch of the apparatus used by the Pisa-Stony Brook
Collaboration to measure the total interaction rate due to

beam-beam events.

The apparatus used by the CERN-Rome Collaboration to
measure elastic events around 6 mrad and to obtain the
total cross-section using the Van der Meer normalization

and the optical theorem.

The black points represent recent ISR fesults on total
proton-proton cross-sections obtained by the Pisa-Stony
Brook Collaboration (triangles, Ref. 35) and by the CERN-
Rome Collaboration (circles, Coulomb normalization,

Ref. 30; square, Van der Meer normalization, Ref. 37).
The white triangle at 500 GeV/c is the published result
of the ACGHT Collaboration®®). The sources of the other

data are collected in Ref. 39.

One-tower diagram summed by Cheng and Wwu®?) in quantum

electrodynamics with massive photons.
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