Heavy Ion Physics at ATLAS and CMS

Marzia Rosati
Iowa State University
for

and

Workshop on Physics at the LHC era

Aspen Center for Physics, Colorado February 8, 2009

Outline

- Heavy Ion Physics
- From RHIC to LHC
- Performance in ATLAS and CMS
- Outlook

Why Heavy Ions at the LHC?

 QCD is the fundamental theory of strong interactions.

$$L_{QCD} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} - \sum_{n} \overline{\psi}_{n} \left(\partial -ig \gamma^{\mu} A^{\alpha}_{\mu} t_{\alpha} - m_{n} \right) \psi_{n}$$

- QCD is well studied/tested in the few particles and large Q²— i.e. in perturbative limit
- Heavy Ions provide a new opportunity to study
 QCD in small Q² and many-particle regime

QCD Coupling Constant

non perturbative at long range/low energy

asymptotic freedom at short range / high energy

Matter under Extreme conditions

- Quark-Gluon Plasma (QGP) is a state of QCD and is considered to be the primordial matter of the Universe
 - Quarks and gluons are deconfined
 - Chiral symmetry is restored (quarks are massless)
- HI collisions provide unique opportunity to study <u>matter</u> limit of QCD
 - Another calculable limit of QCD
 - Asymptotic freedom via high temperature
 - Only matter we can create in the laboratory whose properties are entirely determined by *fundamental*, *non-Abelian* interaction

Lattice QCD calculations

- The nature of this bath of quarks and gluons cannot be calculated directly with Quantum Chromodynamics.
- Teraflop-scale computers simulate equilibrium QCD (assume thermal system)

Predict phase transition:

$$T_c \sim 170 \; MeV \quad or \quad 10^{12} \, F$$

 $\varepsilon_c \sim 0.7 \; GeV \; / \; fm^3$

A fundamental "phase transition" that can be studied in the lab Direct consequence of asymptotic freedom.

LHC Heavy Ion Program

- Machine
 - **≻**Energy
 - E(beam)=7* Z/A $\rightarrow \sqrt{s}$ = 5.5.TeV/A or 1.14 PeV for Pb-Pb
 - >Heavy Ion Running
 - Typically 4 weeks/ year
 - Luminosity 10²⁷ cm⁻² s⁻¹ (Pb)

⇒ 10 kHz rates

- Experiments
 - >ALICE: experiment designed for HI
 - ATLAS and CMS: have a major and rich HI

Stages during HI Collision

Heavy Ion Physics at LHC

■ LHC: factor 30 jump in center of mass energy with respect to RHIC

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	430	700	2-8 x10 ³
ε (GeV/fm³)	2.5	3.5-10 × 4-10	<u> </u>
V _f (fm³)	10 ³	7x10 ³	2x10 ⁴
τ _{QGP} (fm/c)	< 1	1.5- 4.0 × 3	4-10

The ATLAS and CMS detectors

Different technologies but close acceptances – cross-checks possible. Unprecedented acceptance for A+A physics both in p_T and rapidity, with full azimuth

Heavy Ion Physics Program at LHC

- LHC will accelerate and collide heavy ions at energies far exceeding the range of existing accelerators:
 - > Extended kinematic reach for pp, pA, AA
 - > A hotter and longer lived partonic phase
 - > Increased cross sections of hard probes
 - ➤ New experimentally accessible hard probes
- Some examples of what we hope to do:
 - ➤ First 15 min of running at low luminosity ~ 10⁵ events:
 global event properties and hadronic observables
 - multiplicity
 - elliptic flow
 - first few days of running ~ 10⁷ events: high-pt, heavy flavor
 - jet quenching, photon, heavy-flavour energy loss
 - quarkonium production

GLOBAL EVENT PROPERTIES:

- ➤ Characterize gross properties of initial state
- > Test saturation predictions
- ➤ Probe early collective motion

Charged Particle Density vs c.m. energy

- First estimate of energy density
- Saturation, CGC ?

Multiplicity measurements

One event

Silicon Hits

hit count in pixels using dE/dx cut

Collective flow in heavy ion collisions

In non central collisions there is large initial spatial anisotropy.

The degree to which this translates into momentum space is a measure of the pressure gradient

$$dN/d\phi \sim 1 + 2 v_2(p_T) \cos(2\phi) + \dots$$
"elliptic flow"

Flow at RHIC

Hydrodynamics with small viscosity describes heavy ion reactions

Hydro Limit

Asymptotic freedom

Elliptic Flow in ATLAS and CMS

- ATLAS
 Flow included in HIJING using parametrization
- 3 separate methods are shown

from RHIC

CMS
 HYDJET
 Flow measured using reaction plane and tracker

Hard Probes

- Hard probe rates can be calculated with pQCD
- Results with no medium (pp) define the benchmark for the probe;
- Results in hot medium and their difference with defined expectation provides a characterization of the medium.

Jet Tomography

 Partons are expected to lose energy via induced gluon radiation in traversing a dense colored medium.

Discovery of Jet Quenching at RHIC

Measure using (Leading) high-p_T hadrons and photons

Jet Rates at LHC

- High p_T, large rates
- b jets, di-jet, γ-jet
- Also full jet measurement not leading hadrons

21

"Full" Jet Measurements at LHC

After subtraction of the "underlying event" background

Fragmentation Functions

- Well measured fragmentation function both in j_T and z
- Will provide direct access to radiative energy loss

Photon measurement at LHC

Excellent photon reconstruction will allow direct photon and γ-jet measurements:

► ATLAS uses direct identification in first EM samplings yer through shower

on reco m and l nalysis

Deconfinement

 Lattice QCD makes a clear prediction for the onset of deconfinement.

 Different Quarkonia states test the degree of color screening and measure the temperature.

J/ψ suppression at RHIC

Ratio Blue / Red Nuclear Suppression Factor

- Smooth suppression with increasing collision centrality
- Forward rapidity more suppressed than mid-rapidity
- very similar suppression at RHIC and SPS...

J/ψ Measurement at the LHC

ATLAS

~100k J/ ψ per month, tagging method

Expected rate $_{6}$ -1 (per month,10 s, 0.5 nb): $J/\psi \sim 180$ kevents

Upsilon Measurement at LHC

Upsilon rates in 1 month of running: (at nominal luminosity)

Y ~ 25 kevents, Y' ~ 7 kevents, Y" ~ 4 kevents

Conclusions

- The LHC with Heavy Ions is a fantastic discovery machine with a very rich Physics program:
 - The first 15 minutes; $L_{int} = 1 \mu b^{-1}$
 - Event multiplicity, elliptic flow
 - \triangleright The first month; $L_{int}=0.1-1$ nb⁻¹
 - Rare high p_t processes: jets, quarkonia
- ATLAS and CMS have unprecendented capabilities to make measurements over a large kinematic range for important signatures of the Quark Gluon Plasma
- The experiments will be commissioned and ready (thanks to the proton run)
- Important results already from the very start of running with nuclear beams

LHC: Cross-sections and Rates

Cross-sections of interesting probes expected to increase by factors

- $\sim 10 \ (c\bar{c}) \ to$
- $\sim 10^2$ (bb) to
- \sim > 10⁵ (very high p_T jets)

Hard probes of the medium accessible at LHC

31

LHC: extending the low-x Reach

RHIC as opened the low-x frontier finding indications for new physics (Colour Glass Condensate CGC)

 $x = 2 p (parton) / \sqrt{s}$

LHC will lower the x- frontier by another factor 30 due to energy and by 3 due to larger rapidity

Can reach $x = 3 * 10^{-6}$ in pp, 10^{-5} in PbPb

QGP

Energy Density

$$\varepsilon_0 = \frac{dE_T}{dy} \frac{1}{\pi R^2 \tau_{thermalization}}$$

Summary of Ions

The desired species for a systematic HI study are as follow

Collision	R (fm)	Luminosity (cm ⁻² s ⁻¹)	dN _{ch} /dy (maximum)	Interaction rate
p+p	~1	1x10 ³⁴	<250	1 GHz
²⁰⁸ Pb+ ²⁰⁸ Pb	7.1	1x10 ²⁷	<8000	8 kHz
⁴⁰ Ar+ ⁴⁰ Ar	4.1	6x10 ²⁸	<800	200 kHz
p+ ²⁰⁸ Pb		1x10 ³⁰	<150	2 MHz
p+ ⁴⁰ Ar		1x10 ³¹	<120	6 MHz