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Abstract

A feedback module has been implemented in the HEADTAIL simulation code in order
to investigate the feasibility of a transverse feedback system to damp the electron cloud
instability. This instability provokes vertical oscillations within a bunch in the SPS when
operated at and above nominal LHC beam current and 25 ns bunch spacing. In the present
report the feedback module is described and applied to the case of the SPS at 55 GeV/c,
previously identified as worst case energy for the LHC type beams in the SPS in terms of
electron cloud instability. The numerical simulations show that a feedback system operating
up to 500 MHz with a normalized gain of 0.16 can damp the instability. In contrast,
a feedback system only acting on the rigid dipole bunch oscillation cannot cure the high
frequency content of the motion.
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1 Introduction

In high current proton beams, as accelerated in the SPS, an electron cloud can accumulate in the vacuum
chamber. The electron cloud is generated by proton beam induced multipacting initiated by the presence
of electrons generated by photoemission or ionization of residual gas. Sufficiently dense electron clouds
can lead to beam instabilities in both transverse planes. In dipole magnets these electrons are confined to
move in helices in the vertical plane, leading to strong instabilities in this plane. In the SPS, both single
and multi-bunch instabilities have been previously observed, particularly in dipole magnets. The results
of the simulation code HEADTAIL [1], a program created to study single bunch electron cloud effects,
suggest that single bunch electron cloud effects in the SPS are significant only in dipole magnets. This
electron cloud related instability can cause significant emittance growth and beam blowup. A summary
of observations in the CERN SPS accelerator can be found in [2].

One possible method to control both the single and multi-bunch instability is to implement a feed-
back system. While the design of a feedback system required to damp transverse multi-bunch insta-
bilities poses certain challenges, similar feedback systems already exist in the SPS and therefore it is
believed that implementation of such a system is feasible. More challenging is the implementation of a
single bunch feedback system. Such a system may require a very large bandwidth and more than one
kick per turn to sufficiently damp the instability, depending on the behavior and growth rate of the single
bunch instability. In order to determine the feasibility of such a system we must answer the following
questions: What is the worst case instability for typical parameters? Can the instability be damped by
kicking just once per turn? What is the minimum bandwidth required to damp the worst case instability?
What is the minimum gain required to damp the worst case instability?

In order to answer these questions we utilize an existing tracking code, HEADTAIL. HEADTAIL
simulates the interaction between a proton bunch and a uniform electron cloud that has built up inside
of the beam pipe [1]. By implementing a module in the existing HEADTAIL code, we were able to
simulate the effects of simple feedback on the transverse motion of a single proton bunch. Because
we expect single bunch instabilities mainly in the vertical plane, the feedback module only acts on
the vertical motion. In Section 3 we discuss the algorithmic structure and simulation results of the
implementation of the most basic feedback module: a dipole feedback module. In Section 4, 5 and 6
we discuss the implementation of a more realistic, variable bandwidth feedback module and use it to
determine the minimum necessary bandwidth and gain required to damp the instability. Overall, the
results of our simple feedback module indicate that damping of the electron cloud induced single bunch
instability is possible and realistically achievable for a bandwidth as low as 500 MHz and a normalized
gain of � 0.16.

2 HEADTAIL Simulation Results

It is important to examine a few typical HEADTAIL simulation results in order to get an idea of the
general effects of the electron cloud instability in the SPS. In all simulations we use typical SPS pa-
rameter sets for three different momenta: 26 GeV/c, 55 GeV/c and 120 GeV/c. These parameters are
summarized in Table 1. Also, we only examine the instability and feedback in the vertical plane, where
we expect large electron cloud induced instability. In all three cases the parameters and initial macro-
particle distribution were chosen so that the RF voltage is matched. The HEADTAIL algorithm tracks a
single bunch by slicing it up into a number of equally spaced slices and tracking the transverse position
of each slice at a number of interaction points. As we only expect large electron cloud effects to occur in
dipole magnets in the SPS, all ten interaction points are chosen to include only dipole fields. A measure
of the transverse oscillation of each slice is given by the “action” weighted by the number of particles
in that slice. This quantity is defined as
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Momentum Vertical Beam Size (mm) rms Bunch Length (m) Long. Momentum Spread (1σ )
26 GeV/c 2.83 0.206 0.0018
55 GeV/c 1.95 0.217 0.0008
120 GeV/c 1.32 0.184 0.0004

Table 1: Bunch parameters for each energy: For all three energies we used βy = 72 m, fractional
horizontal and vertical tunes of 0.13 and 0.185, respectively, and a synchrotron tune of 0.003. In all
cases the parameters were chosen so that the RF voltage was matched (2 MV). The vertical beam size
corresponds to the LHC beam nominal vertical normalized emittance of 3 μm. The bunch lengths and
momentum spread correspond to LHC beam longitudinal emittances of � 0.35 eVs, however the bunch
length is chosen 25% shorter than the LHC nominal bunch length at injection in order to minimize the
quadrupole oscillations and match the injected beam to the 2 MV bucket.

Yi,j ≡ Ni,j

√
y2

i,j + β2
yy

′
i,j

2 (1)

where i is the turn index, j is the slice index, y is the vertical centroid position, y ′ is the angle of the
trajectory of each slice, and α = 0 at the interaction points. Examining the growth of the maximum of
Y for a bunch over time provides a convenient way to measure the growth of the instability. Therefore,
we will typically plot the quantity

Γi ≡ max [Yi,j] (2)

In Fig. 1 we plot Γi vs. turn number for all three parameter sets. In the given assumptions (i.e.,
conservation of emittances and constant rf voltage), the growth rate of the instability is the largest for
the 55 GeV/c parameter set. This instability is certainly the most interesting to study in more detail,
because it was experimentally observed in the SPS [3]. Besides, 55 GeV/c lies in the range of the
candidate values as future injection energy into the SPS with PS2 and the electron cloud instability is
the only present SPS limitation that would not benefit from the increase of the injection energy [4]. In
this study, we will focus only on determining the minimum upper limits on the gain and bandwidth
required to damp the 55 GeV/c case.

In Fig. 2 a) we plot the quantity Yi,j for turns 50 to 150. Before turn 50 one mostly observes noise.
That is, the instability really starts to grow only after about turn 50. In this plot a negative time refers to
the head of the bunch while a positive time refers to the tail of the bunch. In Fig. 1 a) we observe a very
asymmetric behavior; the tail of the bunch has a large amplitude while the head of the bunch does not
oscillate. Fig. 1 b) shows Y of each slice over a single bunch and turn. Again we observe asymmetry
between the head and tail of the bunch. Both plots suggest that when the instability first emerges, the
electron cloud only strongly effects the tail end of the bunch.

In order to cure this instability a feedback system must have a large enough bandwidth to resolve and
damp the asymmetric oscillation. If one decomposes the difference signal into a set of sinusoidal basis
functions, the two most dominant modes would be a cosine with period equal to twice the bunch length
and a sine with period equal to the bunch length. That is, by superposing those two basis functions
one could generate a kick signal that would approximate the asymmetric difference signal. These basis
functions would have frequencies of 173 MHz and 345 MHz, respectively. Therefore, an initial hypoth-
esis is that feeding back on these first two “modes” is sufficient and therefore the bandwidth needed to
cure the instability is around 345 MHz. But since lower modes can be coupled to higher ones through
various mechanisms one may also postulate that feeding back on the average difference signal, or dipole
mode, of a bunch may be sufficient to cure the instability. In the following section we will explore this
possibility.
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Figure 1: Γ vs. turn number with no feedback for three energies. a) 26 GeV/c b) 55 GeV/c c) 120
GeV/c. We observe very little growth for 26 GeV/c and the largest growth for 55 GeV/c. Notice the
different vertical scales.
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Figure 2: a) Here Y is plotted vs. turn number (y-axis) and position within bunch (x-axis) with no
feedback. Notice the growing asymmetric oscillation within the bunch (i.e. the back of the bunch
exhibits oscillation while the front of the bunch is stationary). b) A typical difference signal vs. bunch
length plot for 55GeV/c, in this case, at turn 150. Here we take the difference signal to be proportional
to the product of the number of particles in a slice and the centroid position of that slice. Again notice
that the back of the bunch has a large transverse offset and the front of the bunch exhibits very little
offset.
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Figure 3: Flow chart for the simple dipole feedback module. This process is repeated once at each of
the ten interaction points per turn.

3 Dipole Feedback Module

In order to test the hypothesis that feeding back on the dipole motion of the bunch would be sufficient
to cure the instability we have developed a simple dipole feedback module. The HEADTAIL algorithm
tracks the transverse position of each slice at ten “interaction points” along the ring. Each of these
interaction points is assumed to have identical twiss parameters and α = 0. At each interaction point, the
dipole feedback algorithm calculates the vertical average offset of the bunch using the vertical centroid
slice positions according to

ydipole =

∑
j Njyj∑
j Nj

(3)

where yj is the position of the jth slice and Nj is the number of particles in the jth slice. The quantity
g × ydipole is then subtracted from the current vertical position of each macroparticle in every slice,
where g ≤ 1 is the normalized gain. The module’s algorithmic structure is summarized in Fig. 3. It is
important to note that the dipole feedback module gives an instantaneous position correction. That is,
a dipole correction is subtracted from the current position of each particle immediately after each inter-
action point. While such a feedback is unphysical (i.e. one cannot correct a position instantaneously) it
represents a best case scenario; if feeding back on dipole motion will not work using this type of simple
feedback, it will not work for any more complicated method.

In Fig. 4 we show the results of dipole feedback with different gains. In a), c) and e) we plot Γ vs.
turn number and in b), d) and f) we plot the Fast Fourier Transform of turn 150 (a typical case) for each
gain. Notice that plots a) and c) both show growth. While the growth rate of the instability is somewhat
smaller than the growth rate without feedback, the instability has by no means been damped. In b) and
d) we see that as the gain is increased, the zero frequency (dipole) component decreases. In d) the dipole
component is essentially zero. All of this indicates that while feeding back on the dipole removes the
dipole component of the bunch difference signal, it is not sufficient to damp higher modes and therefore
does not cure the instability. In particular, this type of feedback will not damp modes that have odd
symmetry around the bunch center because they have zero dipole component. Earlier we stated that, if
we decompose the difference signal into sinusoidal functions, we expect the two most dominant modes
to be a cosine function with a period equal to twice the bunch length and a sine function with period
equal to the bunch length. Because the cosine function is even we expect it to be damped by simple
dipole feedback. But the feedback can do nothing about the sine function. Therefore, in order to have
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Figure 4: Γ vs. turn number with simple dipole feedback and FFT of turn 150 for three different gain
factors. a,b) 1/20 c,d) 1/10 e,f) 1/5. Although the high gain dipole feedback sufficiently removes the
dipole component (center frequency of the FFT), it leaves the growth in Γ unchanged. This indicates
that curing the instability requires a higher bandwidth than that of the dipole feedback.

any chance of damping the instability we must implement feedback with a wide enough bandwidth to
damp both even and odd modes.

4 Variable Bandwidth Feedback Module

In order to have any chance of curing the instability we must implement a feedback that is capable of
damping both even and odd modes of different frequencies. Of course, if we decompose the difference
signal into sinusoidal modes we expect there to be an infinite number of modes which contribute to a
given signal. As developing a feedback system with an infinite bandwidth is impossible we would like
to determine the minimum bandwidth of the feedback required to cure the instability. One way to do
this is to create a feedback module that allows one to limit the bandwidth of the kick signal delivered to
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the bunch. Such a feedback module is presented here.
In this feedback module we not only include a method to limit the bandwidth, but we also use a

more physical method; namely we give each macro particle in the bunch a kick once per turn rather
than changing its position once per interaction point. In this module both the “pickup” and “kicker” are
located at the same point in the ring, at one of the interaction points of the simulation with α = 0. The
required kick signal can be calculated using the position of each slice at the current and previous turns
according to the following formula [5]

Δy′
i,j = g

[
yi,j

βy tan(2πqy)
− yi−1,j

βy sin(2πqy)

]
(4)

where yi,j is the position of the jth slice after the ith turn, qy is the fractional vertical machine tune,
βy is the vertical beta function at the position of the feedback system and g is a gain factor. In general
it is more realistic to feedback on the difference signal rather than the absolute position of each slice.
Therefore, we can replace y in the above equation with Ny to get

Δy′
i,j =

g∑
j Nj

[
Njyi,j

βy tan(2πqy)
− Njyi−1,j

βy sin(2πqy)

]
(5)

In order to limit the bandwidth of the kick signal,Δy ′
i,j, we filter the signal before “kicking” the

bunch. A way of doing this is to implement a moving average filter. The effect of a moving average
filter can be described by

yj =

i=j+(M−1)/2∑
i=j−(M−1)/2

w(i)xi (6)

where y is the filtered data set, x is the unfiltered data set, M is assumed to be an odd integer and
known as the window size of the filter and w is the weighting function. There are two important things
to notice about this algorithm. First, in order to deal with the “ends” of the data set one must pad the
original data with zeros before applying the algorithm. This leads to a filtered data set which is M-1
points longer than the original data set. Second, this process is identical to a discrete convolution; the
frequency domain function of our filtered data is simply the product of the frequency domain function
of the unfiltered data with the Fourier transform of the weighting function. Therefore, we can think of
the weighting function as a filtering function and its Fourier transform as the frequency response of the
filter. Also, in order to assign a meaningful bandwidth to a given filtering function we must make the
assumption that the sampling rate is constant. This translates to having constant slice length over the
entire simulation. In general, this is not true in HEADTAIL. HEADTAIL divides the bunch up into a
specified number of equal length slices at each interaction point. Therefore, if the bunch length changes
during the simulation, the size of each slice will be different at different interaction points. Typically,
the bunch length does oscillate due to quadrapole oscillations. To minimize this oscillation we matched
the voltage for each parameter set. So, in all cases we examine, the bunch length and slice size are
approximately constant. The feedback module has been coded so that it is relatively easy to modify the
weighting function and therefore easy to vary the bandwidth of the feedback system. A flow chart of
the algorithmic structure of the current feedback system is shown in Fig. 5.

5 Results of Limiting the Feedback Bandwidth

Before limiting the bandwidth of the feedback module, we first must demonstrate that it is possible to
cure the instability using a wide bandwidth feedback system. In Fig. 6 we plot Γ vs. turn number for a
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Figure 5: Flow chart for the variable bandwidth feedback module. This process is repeated once per
turn.
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Figure 6: Γ vs. turn number for feedback with the bandwidth filtering turned off. Therefore, the band-
width of the filtering system is determined by the time per slice. In our case this translates to a bandwidth
of 12.6 GHz. Notice that there is no growth, indicating that the instability has been completely cured.
The gain factor used is g=6.

simulation run with the filtering mechanism turned off. The bandwidth of this feedback system is given
by

fBW =
1

2

N

Δt
(7)

where N is the number of slices in the bunch and Δt is the extension of the bunch in time. In this
case the bandwidth is 12.6 GHz. Fig. 6 shows Γ vs. turn number for such a high bandwidth feedback
system. Notice that we only observe a small noise (no growth). Consequently, we can conclude that the
instability can be damped by such a high bandwidth feedback system.

From the discussion in section 3, we expect the minimum bandwidth required to cure the instability
to be around 350 MHz. Therefore, we present the results of a bandwidth limited feedback limited to
400 MHz, 300 MHz, and 200 MHz. In all of these simulations, the kick signal was filtered using a
windowed sinc filtering function. This filtering function is given by
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w(i) = K
sin(2πfc(i − M/2))

i − M/2
{0.42 − 0.5 cos(

2πi

M
) + 0.08 cos(

4πi

M
)} (8)

where fc is the cutoff frequency, M is the window size, and K is a constant chosen such that
∑

i w(i) =
1. Fig. 7 shows Γ vs. turn number plots and the frequency response of the weighting function for
each bandwidth as well as the gain factor used. Each simulation was performed multiple times with
different gain factors in order to determine the minimum gain factor required to cure the instability for
each bandwidth. The plots shown in Fig. 7 are for simulation runs with gain factors near this minimum
gain factor. The results show that the minimum bandwidth needed to damp the instability is around
300 MHz.

6 Normalized Gain

All of the gain factors quoted so far have been un-normalized. Typically a normalized gain is defined
such that a single kick with a gain of one will fully correct the current y ′ assuming linear betatron
motion. Hence,

Δy′
i,j = gnormy′

i,j (9)

In our case the kick can be written as

Δy′
i,j =

gNi,j∑
j Ni,j

[
yi,j

βy tan(2πqy)
− yi−1,j

βy sin(2πqy)

]
(10)

Assuming α = 0 at the pickup and purely linear betatron motion one can show that

y′
i,j =

yi,j

βy tan(2πqy)
− yi−1,j

βy sin(2πqy)
(11)

Therefore, we find

gnorm ≡ gNi,j∑
j Ni,j

(12)

Hence, the normalized gain effectively changes over the bunch length in proportion to the number of
particles in a particular slice. A plot of the quantity Ni,j/

∑
j Ni,j over the bunch length in shown in

Fig. 8.
In a real feedback system it is possible to vary the gain over the bunch length. Therefore, a useful

quantity to quote is the maximum normalized gain for each turn. But in doing this we do not take into
account the asymmetric shape of the difference signal that we are trying to damp. A more appropriate
quantity to quote is the normalized gain for the slice that has the maximum difference signal. This
represents the actual minimum gain required to damp the instability. Looking at Fig. 2 we see that
the maximum difference signal typically occurs for a time of 0.6 ns, which corresponds to a typical
multiplicative factor of ≈ 0.016. In Table 2 we show the normalized gain for the different bandwidth
limiting cases that we have looked at in this paper.
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Figure 7: Here we show the results of limiting the bandwidth of the feedback system. All filtering func-
tions are windowed sinc functions in the time domain: a) Γ vs. turn number with 500 MHz bandwidth
limit, g = 10 b)frequency response of 500 MHz bandwidth filter c) Γ vs. turn number with 400 MHz
bandwidth limit, g = 20 d)frequency response of 400 MHz bandwidth filter e) Γ vs. turn number with
300 MHz bandwidth limit, g = 40 f)frequency response of 300 MHz bandwidth filter g) Γ vs. turn
number with 200 MHz bandwidth limit, g = 40 h)frequency response of 200 MHz bandwidth filter
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Figure 8: Plot of Ni,j/
∑

j Ni,j vs. slice position within the bunch. This is the multiplicative factor
required to normalize the gain. As a typical asymmetric bunch oscillation has a maximum “difference
signal” at 0.6 ns, we conclude that the minimum gain required to damp oscillations is given by 0.016×g.

Minimum Gains for Various Bandwidths
Bandwidth Gain Factor Normalized Gain
12.6 GHz 6 0.096
500 MHz 10 0.16
400 MHz 20 0.32
300 MHz 40 0.64

Table 2: List of the minimum gain factor and normalized gain required to cure the instability using
feedback with different bandwidths.
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7 Conclusion

Our studies with the HEADTAIL feedback module have focused on examining the behavior of the
worst case instability (the 55 GeV/c case) in the SPS. We found that in order to cure this instability one
must have a large enough bandwidth feedback system to handle the asymmetric oscillation in the bunch
difference signal. From a simple analysis we expected that the minimum bandwidth required to damp
this oscillation is around 350 MHz. By implementing a bandwidth limiting feedback module we were
able to determine that the minimum bandwidth required to cure the instability is actually around 300
MHz. But the normalized gain of such a relatively low bandwidth feedback system is relatively high.
We also established a lower limit on the normalized gain required by determining the minimum gain
required to cure the instability for a large bandwidth feedback system. This was ≈ 1/10. A feasible
gain is typically less than about 1/5. According to our studies, the lowest bandwidth for which this
gain limit can be achieved is about 500 MHz. Therefore, we expect that a feedback system with 500
MHz bandwidth and gain of about 0.16 would be the most realistically realizable system. The feedback
module can now be used to study a range of feedback and beam parameters for the SPS as well as
other accelerators as the PS2 with injection at 50 GeV/c. It is also planned to extend the feedback
module to cover an accelerating bucket and optimize the signal processing (delay errors and adaptation)
to realistically cover the accelerating ramp.
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[3] G. Rumolo, G. Arduini, E. Métral, E. Shaposhnikova, E. Benedetto, R. Calaga, G. Papotti, B.
Salvant, “Dependence of the Electron-Cloud Instability on the Beam Energy”, Phys. Rev. Lett.
100, 144801 (2008)
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