EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

October 3, 2008

Letter of Clarification for proposal CERN-INTC-2007-013 INTC-P-226 to the INTC Committee

Approaching the r-processs "waiting point" nuclei below ¹³²Sn: quadrupole collectivity in ¹²⁸Cd

Th. Kröll¹, R. Krücken¹, T. Behrens¹, V. Bildstein¹, T. Faestermann¹, R. Gernhäuser¹,

M. Mahgoub¹, P. Maierbeck¹, K. Wimmer¹, P. Thirolf², D. Habs², R. Lutter², P. Reiter³,

N. Warr³, A. Blazhev³, J. Iwanicki⁴, M. Zielinska⁴, F. Wenander⁵, J. Van de Walle⁵, D. Voulot⁵, J. Cederkäll⁵, G. Georgiev⁶, S. Franchoo⁷, U. Köster⁸, L. Fraile¹⁶,

P. Butler⁹, P. Van Duppen¹⁰, M. Huyse¹⁰, A. Ekström¹¹, T. Davinson¹², A. Jungclaus¹³, J. L. Egido¹³, V. Modamio¹³, T. Rodriguez¹³, G. Lo Bianco¹⁴, S. Nardelli¹⁴,

J. L. Egido⁻⁵, V. Modanno⁻⁵, I. Rodriguez⁻⁵, G. Lo Bianco⁻⁵, S. Nardenn⁻⁷,

A. Görgen¹⁵, W. Korten¹⁵, and the REX-ISOLDE and MINIBALL collaborations

¹Physik-Department E12, Technische Universität München, Garching, Germany ²Sektion Physik, Ludwig-Maximilians-Universität München, Garching, Germany

³Institut für Kernphysik, Universität zu Köln, Germany

⁴Środowiskowe Laboratorium Ciężkich Jonów, Uniwersytet Warszawski, Poland

⁵CERN, Genève, Switzerland

⁶CSNSM, Orsay, France

⁷Institut de Physique Nucléaire, Orsay, France

⁸Institut Laue-Langevin, Grenoble, France

⁹Oliver Lodge Laboratory, University of Liverpool, United Kingdom

¹⁰Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium

¹¹Fysiska Institutionen, Lunds Universitet, Sweden

¹²Department of Physics and Astronomy, University of Edinburgh, United Kingdom

¹³Departamento de Física Teórica C-IX, Universidad Autónoma de Madrid, Spain

¹⁴Dipartimento di Fisica, Università di Camerino, Italy

¹⁵CEA, Saclay, France

¹⁶Universidad Complutense de Madrid, Spain

Abstract: Proposal CERN-INTC-2007-013 INTC-P-226 aims at the investigation of the nucleus ¹²⁸Cd neighbouring the r-process "waiting point" ¹³⁰Cd. Recently, contradicting experimental findings for ¹³⁰Cd have been reported. These results led consequently to contradicting theoretical interpretations. In particular, a suprisingly large quadrupol deformation for neutron-rich Cd isotopes has been predicted by modern beyond-mean-field calculations. Therefore, we propose to measure the reduced transition strength B(E2) between ground state and first excited 2⁺-state in ¹²⁸Cd applying γ -spectroscopy with MINIBALL after "safe" Coulomb excitation of a post-accelerated beam obtained from REX-ISOLDE. The result from the proposed measurement will be complementary to those from other experiments at ISOLDE and will add valuable information to a consistent understanding of this region which is of particular interest for both nuclear astrophysics and nuclear structure.

Spokesperson: Th. Kröll Contact person: J. Van de Walle

¹²⁸Cd yield measurement

The physics case of the proposal presented to the INTC during the meeting on May 21, 2007 has already been endorsed. However, before being recommended to the Research Board the INTC asked for a yield mesasurement for ¹²⁸Cd to be reported in the following meeting of the INTC. Due to technical problems with the RILIS this measurement originally scheduled for autumn 2007 could be performed only in May 2008.

The yield measurement has been performed with the target UC362 equipped with an improved version of the quartz transfer line. In the run of experiment IS411 in 2006, this quartz transfer line turned out to be the essential development for the suppression of isobaric contaminants in the beams of neutron-rich Cd isotopes. The proton beam was sent onto the neutron converter. The measured yield was $1.3 \cdot 10^4 \ \mu C^{-1}$ for ¹²⁸Cd at the tape station [1]. The only isobaric contaminant in the beam was ¹²⁸In with a measured yield of $1.6 \cdot 10^2 \ \mu C^{-1}$ already comprising In produced by the decay of Cd. These values remained stable during the irradiation with ca. $8 \cdot 10^{17}$ protons. A test without the neutron converter has been regarded as useless because of the expected overwhelming amount of isobaric Cs contamination making even a descent injection into REX impossible.

Taking into account a proton beam intensity of 2 μ A, hence the production rate for ¹²⁸Cd is 2.6 · 10⁴ s⁻¹. With an efficiency of REX of 7%, this value has been achieved during the run of experiment IS411 measuring ¹²⁶Cd, the expected rate on target will be 1800 s⁻¹. It has to be mentioned that due to the shorter half life of ¹²⁸Cd ($T_{1/2} = 280$ ms) compared to ¹²⁶Cd ($T_{1/2} = 515$ ms) more beam will be lost by decay, hence for the same setting of REX the efficiency will be lower. However, the long breeding time of 284 ms used in 2006 for ¹²⁶Cd may be decreased. In 2004 the same charge state of 31⁺ has been reached with a breeding time of 148 ms, but as no quartz transfer line has been used at this time the obtained efficiencies of 2-3% are not completely comparable. Alternatively, the breeding time can also be reduced using a lower charge state of 30⁺ [2]. Conclusively, we expect that at least half of the produced ¹²⁸Cd will decay before it reaches the target.

The rate estimate and the beam time request presented in the proposal were based on a little more pessimistic estimate for the 128 Cd intensity of 500 s⁻¹ on target. Based on our experience from former experiments, always losses in beam time because of problems of the accelerators, both PS Booster and REX, have to be expected. Furthermore, fluctuations in the intensity due to the properties of the ISODLE target as well as its degradation during a one week run have to be considered too.

We conclude that our original estimate was obviously very realistic and we are confident that the aim of the experiment can be achieved within the **24** shifts of beam time we have requested.

We retain our request for in total 24 shifts (8 days).

References

- [1] T. Stora et al., private communication.
- [2] F. Wenander et al., private communication.