

ISR-OP/FL/svw

24th January, 1973

PERFORMANCE REPORT

CM-P00072712

NOVEMBER AND DECEMBER PHYSICS RUNS ANALYSIS

- Analysis no. 5 -

1. Introduction

This report reviews the physics runs 251 to 272 from 14th November to 21st December 1972. Filling conditions with performances achieved, current decay rates and backgrounds during the physics runs are summarized. We will comment on these subjects in the following chapters.

2. Filling Conditions

Table 1 summarizes the filling conditions and the performances achieved.

During this period the ISR were filled with 11.8 (2 runs), 15.4 (4 runs), 22.5 (4 runs) and 26.6 GeV/c (7 runs).

A lot of spill out appeared during filling, decreasing with the shaving amount, but limiting the stacked currents especially at 11.8 and 15.4 GeV/c.

For the two lower energies FP lines (+25, -15 mm free spaces) available were used (see H. Laeger's Performance Report, 12th January, 73 for W.L. definitions) although it was generally 2C lines (+45, -15 mm) for higher energies. R7 (R1) and FP (R2) for run 258 and twice (runs 267 and 272) 5C lines (+50, -20 mm) were used. Use of these vacuum chamber decentred stacks implied 10 mm horizontal beam displacements in I2 for R201 spectrometer.

Using Terwilliger scheme limits currents to 6 Amps but with slow speed magnet current changes, only a few ten mA is lost (except for run 268 when beam 2 was lost during TW application). In addition final vertical bumps at intersections must be applied after TW scheme ON (luminosity of run 270 dropped with 50% in I5 and I6 when this procedure was not respected).

E-6

· • •

18 kV fluctuations or trips created difficulties for obtaining stable conditions for run 270 (both beams lost) and 271 (R1 refilled twice).

Better optimization and use of PS ejection parameters improved ISR injection efficiency (90 mA injected per pulse for run 272) and in addition with 5C lines developments gave the run 272 luminosity record with $L = 4.3 \ 10^{30} \ cm^{-2} \ s^{-1}$.

ENERGY	Initial Luminos	sity $(10^{30} \text{ cm}^{-2} \text{ s}^{-1})$
(GeV/c)	Without Terw.	With Terw.
11.8	· _	0.04 and 0.09
15.4	0.5	0.3 to 0.5
22.5	2.3 to 4.3	0.6 and 0.7
26.6	1.3 to 2.4	0.9

Below are the initial luminosities :

In Figure 1 luminosities are plotted assuring a linear decrease from the beginning to the end of the run, versus the square root of the current product of each run.

3. Physics Runs Behaviour

The running times available for physics were :

15.30	h.	(all	with	TW)			at	11.8	GeV/c	during	2	runs
60	h.	(19 h	. of	which	with	TW)	at	15.4	GeV/c	during	4	runs
59	h.	(22 h	. "	11	"	")	at	22.5	11	"	4	"
128	h.	(15.3	0 h"	11		")	at	26.6	11	"	7	11

A. Beam Current Decay Rates

Table 2 gives a summary of run durations, initial and final currents and decay rates, times and reason, if known, for instability periods.

2.

35 **r** 4

11.8 GeV/c - 2 runs (with small intensities) worked well (but beam 2 was lost twice for no clear reason). Similarly 15.4 GeV/c runs were good in spite of Rl loss once for unknown reason (dump trigger fault?) and twice because 18 kV failure; the beams were refilled each time. Run 270 was stopped at 2.15 h. in the morning following loss of both beams for 18 kV failure.

During 22.5 GeV/c runs R1 behaviour was very good, just disturbed momentarily by R201 - EM1 fault, R202 - EM change and 150 mA lost during R2 scraping. R2 was good during luminosity measurements or at beginning of the runs but became very sensitive to experimental magnet changes afterwards and spikey in correlation with R2 d ϕ /dt fluctuations; decay rates increased sometimes for unknown reason - slight scrapings improved only momentarily.

At 26.6 GeV/c 4 runs were very good and only disturbed by identifiable faults: -R1 spikes induced by R201 - EM trips, by R202 - EM changes and at the same time as R1 reference magnet $d\phi/dt$ fluctuations (runs 256 and 257).

- R2 spikes induced by 18 kV fluctuations (run 263) and R2 lost once (dump self discharge?) then refilled.

Both beams of the 3 other runs were unstable (decay rates very sensitive to exp. magnet changes) the reason for which could be either too much current (R7 + FP lines - run 258) or tops of the stacks too high (2 C lines - run 261 and 262).

External influences on the beams can be summarized in the following way :

a) <u>18 kV failures</u> gave loss of both beams (run 270) and of beam 1 only (run 271) but during run 263, 18 kV fluctuations (main part of the night) gave rise to decay rate spikes in R2 only (nothing in R2 ref. magnet).

3.

b) <u>Reference magnet $d\phi/dt$ spikes</u> are sometimes correlated with decay rate spikes either in R1 (run 257) or in R2 (runs 266, 269 and 272) or in both rings (run 259 when beam 2 was lost). The reasons are not well established (see memo to next MOC from S. Myers).

c) <u>Experimental magnet</u> failure (R201 - EM1 during runs 256 and 267) or auxiliary power supplies faults (runs 258 and 267) induced beam current losses. Normal experimental magnet changes (if actual procedures are followed) gave spikes mainly when beams were unstable (limit of working lines condition) during 258, 261 and 262).

d) <u>Titanium evaporation (Ti-ball) in I8</u> induced high level decay rates (and backgrounds) in both rings but decreasing titanium evaporation rate (0.075 g/hour since run 267) improved conditions.

Hydrogen leak for I6 is less critical.

These operations should be done at the end of the run.

B. Backgrounds and beam-beam counts

Table 3 summarizes the count rates (in k counts by second) at intersections. For each run we have the rates for each intersection at the beginning and at the end and where applicable the maximum achieved during the run. For this table we have classified runs according to energy. R103 group finished taking data on 1st December and no background are available in I1 after this date.

For better evaluation and comparison between the different runs we have drawn figure 2 where background figures are plotted versus beam intensities in Ring 1, Ring 2 for I1, I2, I5, I6 and I8 intersections at different energies. Only initial backgrounds are plotted.

We can see that background behaviour is similar for R1 and R2 and rather proportional to currents beyond 4 Amps even at 11 and 12 Amps.

Several remarks can be made : due to the I2 monitor configuration R2 background rates are correspondingly 2 times higher than those in R1.

4.

Background counts contain beam-beam events (see T. Blumer's Performance Report of 5th December 1972) and so can explain the small exponential increase of the curves for high intensities (BB ~ I₁. I₂).

Points outside the main distribution come mainly from runs 258 for both rings (high intensities for R7 and FP lines) and 263 for R2 (18 kV fluctuations all the run).

Background figures in 14 are difficult to follow during these physics periods and we can remark : 404T has new big counters with large forward solid angles and are very sensitive to a rather small background increase. A new "classical" monitor will be installed in February.

Background in I4 should be studied at the beginning of the next running period by using a directional MWPC set-up that will give the place in the machine near to I4, that is the source of this problem. H. Hoffmann has recently developed the value of this technique.

4. General Conclusion for Physics in this Period

Development of working lines allowing wider stacks in addition to shaving techniques giving small h_{eff} permitted high luminosities with acceptable backgrounds. In the case of off-centred stacks imposed by working line, use of radial bumps allows R201 to work properly.

Ring 2 remains sensitive to 18 kV spikes and the reasons for current losses in both rings in correlation with reference magnet do/dt spikes are not understood at this time.

Experimental magnet current changes at slow speed or with special procedures do not destroy the beams.

During this period there has been a demand for individual luminosities (18, 16) followed by collective luminosity measurements (all intersections). This has proven to be valuable for those requiring precision lums (±2% R601) but it is operationally very time consuming. The establishment of 4 magnet

٠ς

bumps (ref. P. Bryant's Performance Report) has demonstrated in the same period that such individual luminosities are not necessary.

Hydrogen leak in I6 and Titanium evaporation for I8 produces increasing backgrounds everywhere during operation and dropping luminosity. This should be limited and placed at the end of the run.

Optimization of Dump block position and scraper protector position during MD and P will be continued for intercepting most of lost particles and for decreasing backgrounds due to induced radioactivity at intersections.

Installation of ionisation chambers all around the machine for losses detection and possible use of proportional chambers in I2, I4, I6 and I8 for directional information on backgrounds sources will help to improve running conditions.

F. Lemeilleur

XUN. Nº	v sansisage Vare K	nunton. Gest/e.]]	Ring	Weiner, 12 1925	NCS VIII	Curana [Amps]	shaved States	SYROKS ROSTICAS DANKS	Act Line	1. 1000. 1214 9. 10 30 1. 10 - 20	jenn, - x -10 ⁻³ 2		C. C. M. M. S. M. C. S.
ut statistica i s ati	. die 184	41.3	en e	e e		2.73	93	-13/5000		0.09 . 1	1		
255		26.6		2 - 110-11-11-11-1 - 2 - C	CONTRACT.	£.1 8.1	60 60	-8/480 -8/480	3,3	8.0	E.	And the second	R. 2 perdinanted with 6. 2 anys
256	12.19-20	6. C. C	12	20		8.28 8.50	60 60	-2,f142 -10/442	3,3	E.A	1.1	55	and the construction of the second
257	30. <i>27</i> .	26.6	1 2	<i>q</i> .0		6.0 6.1	50 50	-15/118 -15/118	4.1	.9			
858	21.22	26.6	1 2	₽.¥ ¢*₽		2.5 8.5	50	-7/426 -15/425	3.0	2.4	1.35	10 22 22 20 23 20 23	and a state of the second s
259A	24-25	uconsection 11. S	1 2	FP	and a subscription of the	2.0	5	-1/425 -10/426	8.5	.04	.04	155	R.S. Neukaantiikit 5 Z-Edynes wield, - 1983 9 Define Antiaanting
261	28-29	26.6	1 2	ener al constant d'an L-C		8.29 8.59	50 50	-10/4 45 -8/4 43	Z. La	4.9	1.8	24	
2.62	29.30	26.6	1 2/	гc	- A A C LINE AND A COMPANY AND A COMPANY	8.29 8.26	55° 55	-8/144 11.5/#45	3.5	1.9	1.1	25	5
263	30.2 62	26.6	1 2	2C	Manto	6.28 7.55	55 55	-12/140 +0.5/490	3.8	1.35		5	and the second
2-65		s NRS	1 2	andra and and a	1	- 6.88 5.43	60	-15/+20 -2/+20		, 6 ⁹			2 decouled by 5 5 after 5000 so boom Contraction this of 20
266	12.13	22.5	1			5.48 5.50	50	-5/430 -5/430	4.3	.7	.4	2 x	5
267	14.15	2.2.5	- 2	5°C		8.66 8.66	60 60	-12/145 -8/449	2 3.3	2.3	.9	34 r	
268	15712	15.4	1 1 2	sejin hadin wini F ^{ar} F	2	- 4.35 T 4.36	50 30	-10/420 -15/489	100	.3	36 D0 - 124	12	Is The set of the set
	ng ang tang tang tang tang tang tang tan	45.4	- 4 2	FF	~~~~~	5.28 4.28		-11/425 -15/423	5.3	.48			os will 5. A - 3 h desta.
270	12,19		1 2	na an a	ала на 12	T 4.86 T 4.51	40 1 80	-8/+21 -14/42	7 4.4	* 50	6 Co.	3	and Control of Control
en an	19 2 8	. 12 - 4	anne (1999) 1 1		1	5.42	1 .1	-13/425 -10/425	5.2			-	25 2 Area (Alle) Company (Alle)
27.2	2.4	estrer 2000 and 2.2.2. ;	52	50	0	172.19				2000 Junio 1000			11.52 / Lacks 11 25 S bear from

TABLE A FILME CONSTITUTES

57	Revisi R.J :	R	131	iveral finel	initial strack minim		winis,	71145	P. C. Veral	REA SONS	
251	Same Renamble Differently - S	a a a a a a a a a a a a a a a a a a a	1 2.73	\$ 2.30 \$ 2.30	ey h	\$¥	V V V		30 1200	Ti' évopuration in I-8	
552	2. 6.	\$2	2 8.11	1. 5 1. 5 1. 6 2. 9	mr.	4¢ 22	WV.	21-23 55	50/300	During refelling of R.C.	* R.2 was lost for inknoon record & fours of the beginning, and redad with 6. I anyon
256	26.6	3.5 	1 3.28 2 8.50	8 7.82 0 8.18	15	15 15	44	3 ³⁰ (24-14)	160	RZOI - E.N. Stripped.	beam I dense to ve to Exp. mag. changes.
25 X	26.6	1530	1 5.32	7 5.82	12	イン	16	2200 2220 800	195 270 30	R207-EHITENZ changes R1 Reference magnet of 12 Wirkingnor	
			2 6.10	6.02	3	54	- M)		
5 B	26.6	1200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 7.88 46 7.79	235	~ 22	12	620	1350	been very servitive to Exp. Nog. Lauga. 2H 352 the pped.	both stacks at max. of currents fur these working lins were nerg unstable.
594	11.8	0° N.	2 1.38	8 1.93 2 2.1.4	4 8	K 0	T V V V	6ی وربی		el sqikes en balk	* this raing was refilled 2 to was to 2 t. thougs
19	26.6	1530	2 8.53	3 8.13	14 0	52 69	5 2	7930	<i>2</i> 5	R 20 4 E. H cy cling Egrilies with 24 wich pegnearcy. Brow vory servitive to Exp. Kog.	Tops of the 10 tecks (+ 45 and + 43 mm) may be too high. 3 suggings R, mi proved I & ha theproximal far N.
62	26.6	163	2 8.23	2 7. 47 2 7. 47	× 8 9 7	63	20%	512	160	R201, ett EN2 banged. R2 dung lack mored to decreare high decay ret lavel (+1.6 mm)	churge speed too ligh, where he we are b. "He de Lops too high (+44 and +45 mm)
69	26.6	12:30	K OV	88 6.80 55 7.13	n f	m % 0 m	02 2	630	40	R 201, EM1 + EN2 changed/wate school) dump Als A R2 noord to + 1.5 mm to theynore high d. r. tand.	18 KV opilles seem filkered out by RI aux. por. negglies but not by R2 12.

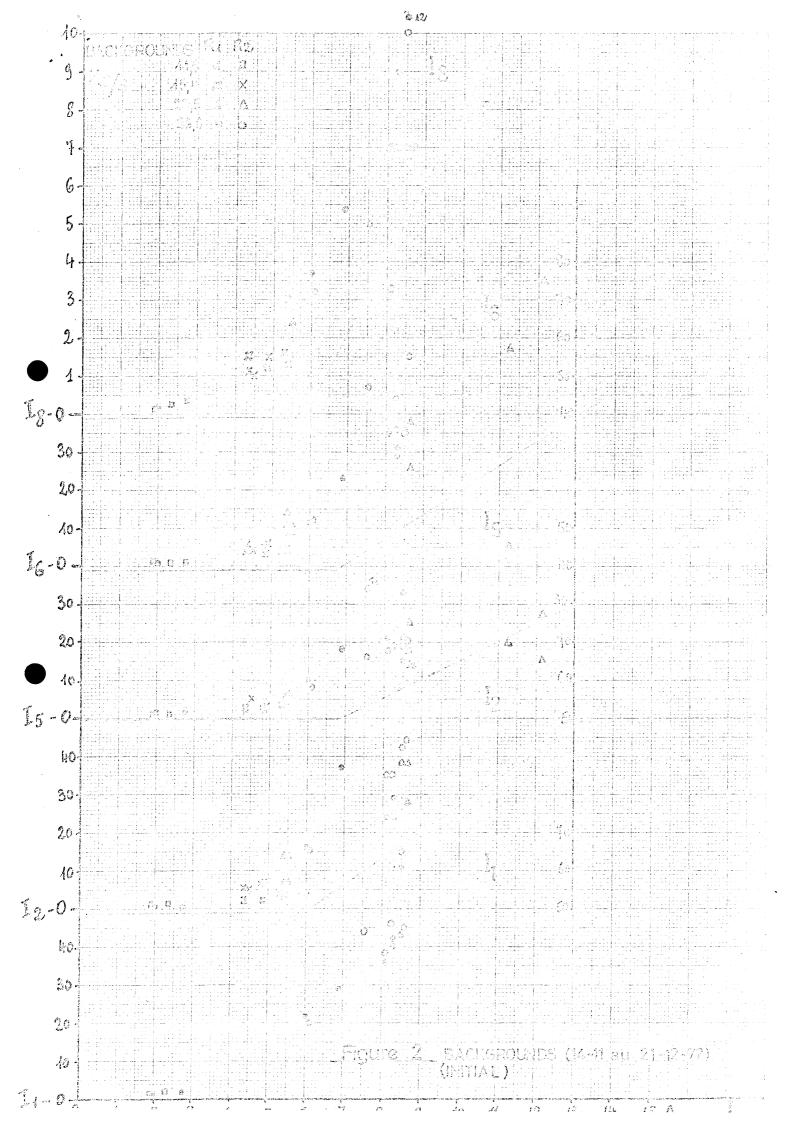

RUN N ²	Mont GeV/c	Run.Hane [h]	RING	CURR initial	ENTS final	CUR. DI EPPM initial	EAY Final	min.	HIGH TIME	LEVEL ppm/m	CAY RATE PERIODS REASONS	COMMENTS
265	27.5	9			5.25 5.28		5 5	3 1	5 ^{30/6³⁰ -11-}	230 1300)Ti evopuation in I 8	
266	22.5	13			5,38 4,98			1 1	7 ³⁰ All-run	kìgh	Ti evopuation in IS R2 ref. moguet coil fluctuations	
267	22.5	ອີວິ			8.07 7-10			14	13" 14 ³⁰ 2 ³⁰ /10 11 ¹⁵ /13 ³⁰ 20 ³¹ 1. ³³	130ml 30ml 20/70 70/120 500mA 80	during R2 Altopring. R207-EM1 Sai ling. R202-EH change Slovely in marring voithant Maton. 4 scrappings to improve below in ± 4. R201 and R202 Et change 2 H352 fault. Tè evopue kan in ± 8. R202 E. M. change.	0.075g/h Ti coop. instead of 0.15g/h before; inprovement
268	15.4	14			4.22 4.73						Ti evosporation Scropming for backy, importin ± 4. As for R1.	
269	15.4	32			¥.26 4.12				3- 4 kinon periodical	2 ~15 mg A	Lost of fear 1, tripper dump fault? Ti evaporation in IS. Cast correlated with RR ref. mag. cail. Ti evaporation in IS.	"Ring I refilled at 223° with 5 cups.
270	15.4	5	1		4.85 4.49	1	4 7	4 5	215 215		Both beauslost. AK failing.	No refilled
271	15.4	9	12	5.42 4.82	5.37 4.81	15	17-4	10 1	1250/1920	2	Beau 1 bat HBKV failing)	18KV very unhable until 2200. R.1. refilled 2 times.
272			1		125000000000000000000000000000000000000		CARGE STREET	1	(CHICAN CONTRACTOR	CASE AND A 1 100 COM 100	Reference may. coil RZ Apikes	

TABLE & Last party conter provide RATES president.

					*					o security day		ana ang ang ang ang ang ang ang ang ang	en an an a tha	532.475.0	an an ann an	tethin inite Tj	a anton dad sebana data kara se
and the second second				Gurrent	- ALL THE SECOND	I.1	1	I			14		I5	;	16	2412220000	18
าะเราสมเกร้	No	GeV/c	- 32.52	' A		Ke /s	nia. Maria	init.K	2/5	ms;: Vijus	ind KC /S	2.1	init KC/S	dinay dinay	wit Kc/s	54	kc/s
A. Tallit C. Canon	ord	110	1	2.73	BI	1.8 - 1.8		0.50 - 1.6 -			4.1 - 16. 5.1 - 14.	1	1.7 - 1.7 1.1 - 1.2		11 - 1.1 1.1 - 10		0.34 - 0.31 6.26 - 0.20
ANY STREET	251	11.8	2		Bz 138	0.26 - 0.22		0.08 -	0.09		6.4 - 12.	3	0.05 - 0.04		0.3 - 0.3		0.04 - 0.04
Self the second	95GA	11.8	1		Bi Ba	1.4 - 1.4 1.6 - 1.8		0.38 · 1 -	- 0.38 0.9		0.02 - 6.0 0.05 - 6.0		1.7 - 1.7 1 - 1		0.9 - 0.7 1.4 - 1		0.2 - 0.2 0.13 - 0.12
معديد التقاليك	رد <i>ک</i>	11.0	2	1 -	BB			0.03 -	0.04		0.05 - 0.0	1	0.02 - 0.02	- Marcalica	1.4 - 2. 0.11 - 0.11		0.02 - 0.03
2.00 at	200		1	1.00	BI	(1997) A Andre vill Bendringeneris varie 	in the second	2 -		Salar.	0.3 - 0.3	8	2.6 - 2.5		3.8 - 3.1 4.7 - 3.8		1.5 - 1.6
1. Statement	268	15.4	2	4.36	B2 BB			-	- 4.7 - 0.45		1.9 - 1.8		2.2 - 2 0.18 - 0.16		4.7 - 3.8 1.4 - 1.3		1.1 - 1 6.2 - 0.18
Shaffar armen			1	5.28	B!			4	- 2		0.06 - 0.1	4	3.6 - 3		4.5 - 2.4		1.6 - 1.6 0.
and the second second	269	15.4	2	4.88	B2 B8				- 4 - 0.4		0.03 - 0.0 3 - 1		3 - 2, 0.30 - 0.14		6 - 4 2 - 1		1.5 - 1.5 5.2 0.3 - 0.14
			1	4.86	Bı			2.2			0.4 - 2		1.8 - 1.8		2.8 - 2.5		1.2 - 1.1
	270	15.4	2	4.51	B2				- 5		0.1			2.7	4 - 3.4	and second and second and	1 - 1
D,			1	5.42	BBI BI	 	1	0.5	- 0.4		2.5 - 1.2		0.15 - 0.14 4.2 - 3.9		<u> </u>	-	0.2 - 0.2
No.	271	15.4			¥. I	/		6.4 .	. 6		0.03 - 0.0	4	2.5 - 2.4		5 - 5		1.2 - 1.2
	1.000		, THE REAL OF C	*		1224 7276 726 200	NOT.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- 4.5 - 6	saretaes	4.2		5.1 - 4.4	4.655.966	4.6 - 4.3 11 - 6	nges (4.8 - 5 3 - 2
a faith and the second	265	22.5	12		BI BE				- 6 - 9		6 - t. 0.7 - 0.9	1	4.5 - 3.5		14 - 8		5 - X 3 - Z
States and		ey			BB		ļ	2 -	- 1		10 - 6		0.6 - 0.4		6 - 4		0.4 - 0.2
Allow House	966	22.5	1 9	5.48 5.50	Bı B2				-7 -10		0.5 - 1. 0.9 - 3		6 - 6 5 - 4		9-6 11 -8		2.4 - 2.1 2.4 - 2
A Children annua	~~~	dy 49	~		BB			2	- 1		9 - 5		0.5 - 0.4		6 - 4		0.28 - 0.23
Beritterature	917	095	1	0.00	EI Ba				- 21 - 25		8 - 8		18 - 16 95 91	22	26 - 13		7 - 3.5
aligner av e	10 T	22.5	2	0.01	B2 RB	/			- 25 - 2		20 - 18 20 - 13		25 - 27 2 - 0.75	33	38 - 20 14 - 7		7 - 3.5 0.8 - 0.4
Carl Statement			1	11.25	8/			70 -	35				45 - 30		57-50	\square	
	272	22.5	2	12.14		_ ·		65 -			_		27 - 55 34 - 28		75 - 60 228 - 21		
			1	8.1	100 B1	36 - 21		9.3- 24	7:3 - 20	NRC I	0.15 - 6.2	3	2.4 - 15		35 - 15	CTR:	7 - 3
	255	26.6	2	8.1	BZ	38 - 22		35 .	- 16		*		18 - 11		73 - 18		7 - 3
Life man-			1		BB BI	10 - 4.4			2.2 55		0.2 - 0.3	0.6	2, - 0.9 22 - 18		<u>10 - 6</u> 31 - 18		<u>0.8 - 0.4:</u> 7 - 4.5 4
Sec.	256	26.6	2	8.50	B2	43 - 36			-	30	0.3 - 1		12 - 18 19 - 15		36 - 20		7 - 4.5
-					88 	10 - 6		5.4 -	3		16 - 10		2 - 1		14 - 8		0.7 . 0.9
100016	257	26.6	12	0.0	F	22 - 18 20 - 20		16 - 15 -	15.5 15		0.5 - 0.4 0.7 - 1.3		10 - 11 8.3 - 9		11.5 - 13.5 12 - 14		3.7 - 3.4 3.2 - 3
		** V. C	~	V. a		4.2 - 4		2 -	1.8		8 - 6.5	-	0.6 - 0.7		5 - 5		0.4 - 0.3
Sulficina			1	8.5	Bi	61 - 38		65 -			30 - 0.		33 - 15 21 - 14	30	36 - 19 35 - 20	40	12 - 6
- distance -	258	26.6	2,	8.5	B2 BB	65 - 43 14 - 7		42 - 6.5 -			8.5 - 0.1 26 - 14		3 - 1	50	35 - 20 13 - 9		10 - 5 1 - 0.6
State			1	8.29	BI	42 - 33		29 -	24	83	0.6 - 0.6	5 3.5	23 - 19	L	36 - 20		9 - 7
1910	261	26.6	2	10.00	B2 BB	45 - 35 11 - 7		44 - 5 -	29 3	84	4.6 - 1.9 20 - 12	4+ ,	20 - 15 2 - 1.4		55 - 22 10 - 10		7 -6 0.8 - 0.7
1944 A			1	lammer -	BI	40 - 31		24 -	20	<i>99</i>	0.5 - 1.8	5.6	22 - 18		29 - 18		7 - 5 11
1944 in	262	26.6		8.26	B2	46 - 38	96		25 3	56			19 - 17 2.1 - 1.3		44 - 21 11 - 8	50	7 - 5
and for the second			1	Same	BB	<u>10 - 7</u> 29 - 24				16					23 - 16		5.4 - 4.5
100 AND	263	26.6		10.00	BZ	44 - 36	67	84 -	- 50		7.2 4.	2. 11	16 - 12	ĺ	47 -20		5 - 4
Man True	S. N. S. A. (5 200)	NOT STREET	ners march		RB	8-6		3.6 	. 2.6	2742 83	15 - 10	221-74-742-122	1.5 - 1.2 81.1-ck	esecció A p	- E - E	2000-100 17	0.6 - 0.4
	engina ja s		्या क्रिस्टान् . का र	·	. e	ಾರ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ಯಾಗಿ ಎಂದು ಸಂಗ್ರಾಮಗಳ ಸಿ			க்க கண்		81 C A 4	ాంజ రో	- B2:	7	oming from 1	ما يعنوا. 	- 2

5 LUMINOSITY x 10 9 cm² sec u F Ŷ 21 5 6 5 10 25,4 CoV/04 X 就自己的反素品 26,6 63/2 0 1 4. und teral 111 112 HHH Π₽ 3 1111 田田 - P 2 1 ų tini - c -120 4. 豪 . The 14 <u>; 1 : :</u> 11..... 13 -0 139911491145491144 77 197 3 3 5 \mathbb{C} 10 6 0 C ŧ. 1---

Figure 1 LUMINOSITIES INITIAL and FINAL (641 au 21-12-12)

