CERN LIBRARIES, GENEVA

PH III-68/15 2 February 1968

PHYSICS III COMMITTEE

PROPOSAL FOR A BEAM OF STOPPED K MESONS

bу

G. Petrucci, B. Povh and V. Soergel

* *

Several experiments proposed to the Physics III Committee last year need stopped K^- mesons. At the moment, there exists no beam at CERN suitable for these experiments.

We propose here a compact and simple lay-out for such a beam, which allows a good separation between π 's and K's and is at the same time very short (total beam length 9 m), a fact which yields a minimum loss by decay in flight.

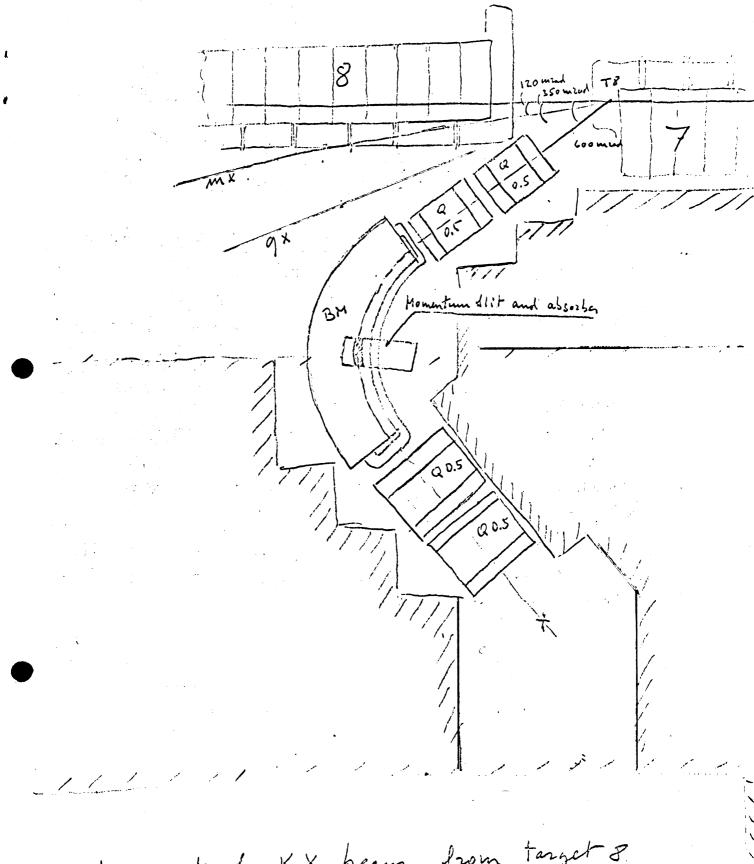
The lay-out of the beam and its characteristics are shown in the attached drawing. The beam will operate as follows: Particles of 700 MeV/c are selected by the first half of the bending magnet and focussed by the quadrupole lenses q_1 and q_2 into the momentum slit in the middle of the magnet. The particles are slowed down in 50 g/cm² of carbon, placed in the momentum slit. The π 's leave the carbon with 600 MeV/c, the K's with 540 MeV/c momentum. Due to the 10% difference in their momenta, π 's and K's will then be separated by the bending in the second half of the magnet. The quadrupoles q_3 and q_4 focus the K⁻'s at 4.5 m from the momentum slit. At this distance, the π focus will be displaced by \sim 15 cm from the K focus.

The rms multiple scattering angle of the K's in the carbon moderator, $\mathcal{V}_{\rm rms} \simeq 35$ mrad, is of the same order as the acceptance of the first part of the beam. Multiple scattering will therefore not cause a sizeable loss.

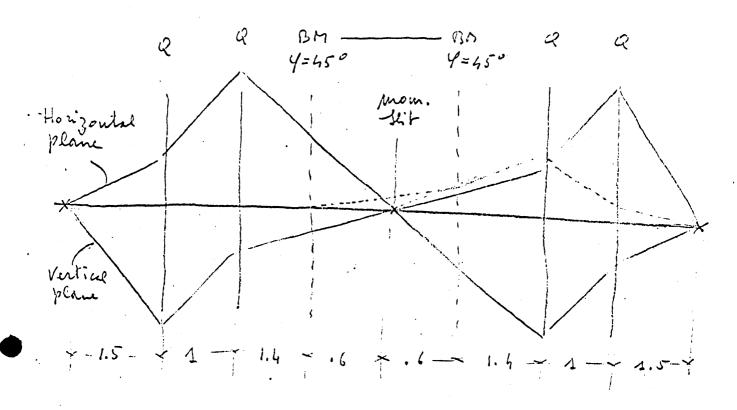
The interaction loss in the moderator is not a disadvantage compared to a conventional beam with a separator, as the kaons will be stopped in any case.

In order to test the separation power of such a system, we measured the momentum distribution of 700-MeV/c π^- , passing through 50 g/cm 2 of carbon. At

540 MeV/c, the number of π 's observed in a momentum band of $\frac{\Delta p}{p} = \pm 3\%$ was 3% of the π 's contained in the peak at 600 MeV/c.


From K $^-$ at 700 MeV/c, 10% can be brought to rest, the others being lost through interactions in the moderator (experimental, private communication by A. Minten).

In the beam lay-out proposed here, 85% of the K¯ would decay in flight between the production target in the PS and the experimental target. Therefore, 1.5% of the K¯ falling into the solid angle and the momentum bite accepted by the beam can be stopped in the experimental target.


The possibility of installing the proposed beam at target 8 in addition to the planned m and q beams is under study. For a production angle of 600 mrad, which could be achieved without interfering with the other beams, and at 19 GeV PS energy, about $3000~\text{K}^-/10^{11}$ protons fall into the solid angle and the momentum bite accepted by the beam (Hagedorn, private communication), giving rise to 45 K $^-$ stopped in the experimental target per 10^{11} protons on the production target.

This beam is intended to be used for work on hypernuclei and on K-mesic X rays. The Heidelberg-Karlsruhe Group (Backenstoss et al.) has expressed strong interest in this beam.

We are grateful to Professor B. Gregory who suggested a study of this kind of beam lay-out for the production of stopping K mesons.

Layout of KX beam from target 8.

Optical diagram of Kx beam.

angular acceptance: du = ± 17 mzn1

dv = ± 62 mand

total length

maximum momentum

momentum dispersion at ship

9 in

800 Muy

4.8 mm /0/0 Ap

all quadrupoles with zo con apertone; max. gradentes
BM (Ctype) (92) = 6 con 800 g/m

fild = 15 Kynns