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Abstract 

The Large Hadron Collider (LHC) project at CERN includes the con­
struction of four large physics experiments, which will study particle 
collisions. Each particle detector needs to be precisely aligned with re­
spect to the accelerator beam line by survey measurements. One of 
these particle detecting experiments is called ATLAS. 

Configurations of the geodetic underground cavern network are con­
strained due to access and space limitations. Sighting restrictions in­
crease as the installation of detector parts in the cavern progresses. 
Consequently, the reliability of the network reduces. Additionally, de­
formations of the cavern as well as access structures affect the geodetic 
network and need to be considered. Dedicated network measurements 
can only be carried out on an irregular and sparse basis. For processing 
the inhomogenous and hybrid measurements an adaptive Kalman Filter 
(KF) is developed interpreting the cavern network as a kinematic sys­
tem. This enables to handle changing network configurations easily, as 
well as maintaining a higher level of reliability in the network compared 
to individually adjusted network measurements. With such an algo­
rithm it is possible to evaluate survey measurements more efficiently, 
giving accurate estimations for the point positions and corresponding 
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error information at times of measurements but also to predict future 
positions and error estimates. 

The application of the developed method to the processing of simu­
lated and real survey data sets for the ATLAS cavern network demon­
strates the algorithm's superior performance and advantageous capabil­
ities compared·to conventional processing methods. 

•·· 



Zusammenfassung 

Im Rahmen des Large Hadron Collider (LHC) Projektes am CERN wer­
den vier gro:l&e Teilchendetektoren Kollisionen untersuchen. Jeder dieser 
Detektoren muss mit Hilfe von geodatischen Messungen in Bezug auf 
den Teilchenstrahl ausgerichtet werden. Eine dieser Detektoranlagen ist 
ATLAS. 

Zahlreiche Einschrankungen fur die Konfiguration von geodatischen 
Netzen ergeben sich aus dem Umfeld einer Kaverne. Behinderungen 
durch bauliche Einrichtungen und Detektorbauteile, die mit zunehmen­
dem Baufortschritt in der Kaverne Platz finden, nehmen mit der Zeit zu. 
Die Moglichkeiten fiir geodatische Messungen werden immer mehr ein­
geschriinkt und die Zuverlassigkeit im geodatischen Netz wird dadurch 
reduziert. Das geodatische Netz wird zusiitzlich von Deformationen der 
Kavernenstruktur und Plattformen beeinfiusst. Spezielle Netzwerkmes­
sungen konnen nur selten und in unregelmassigen Abstanden durchge­
fiihrt werden. 

Ein adaptiver Kalman Filter (KF) wird entwickelt, der die kinema­
tische Interpretation eines Netzwerkes erlaubt. Veranderliche Netzwerk­
konfigurationen konnen im KF Formulismus einfach behandelt werden. 
Die Zuverlassigkeit des Netzwerkes kann auf einem hohen Niveau ge-
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halten werden. Messdaten werden im KF Algorithmus effizienter analy­
siert, als im Ausgleich von einzelnen Messepochen und ergeben prazisere 
und zuverlassigere Koordinatenergebnisse und Genauigkeitsinformatio­
nen. Fiir Epochen ohne Messdaten konnen Koordinaten und entspre­
chende Genauigkeitsinformationen pradiziert werden. 

Die Anwendung der entwickelten Methode auf simulierte und rea­
le Vermessungsdaten fiir das ATLAS Kavernennetzwerk zeigt die hohe 
Leistungsfahigkeit des Algorithmus. 
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1 
Introduction 

1.1 CERN - LHC 

The European Organization for Nuclear Research (CERN - Centre Eu­
ropeen pour la Recherche Nucleaire) is currently concentrating its efforts 
on the new project LHC (Large Hadron Collider) which will be the most 
powerful particle accelerator in the world. 

Particle accelerators are used to generate high energy beams of either 
protons or electrons which are then collided at specific locations creating 
new particles which allow to study the structure of matter. Particle 
detectors are capable of measuring energy, mass and charge of these 
newly created particles. In order to create and study particles with 
higher momentum, the colliding particle beams have to be of higher 
energy which has driven accelerator technology in recent decades to 
build accelerators with ever higher energy. This development will reach 
its momentary maximum with LHC which will accelerate two counter­
rotating proton beams to 7 TeV per proton. In modern high-energy 
physics experiments, large multi-layered detectors surround the particle 
beam collision point, the so called interaction point (IP). Each layer 
of the detector (grouped into individual detector subsystems) serves a 
separate function in tracking and identifying each of the many particles 
that may be produced in a single collision. 
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2 INTRODUCTION 

i.:!m~Wff&t: Existing Structures 
- LHC Project Structures 

ATLAS 

Figure 1.1: The LHC project. Existing and newly constructed underground open­
ings including the new LHC experiments ATLAS, ALICE, CMS and 
LHCb, @CERN. 

The LHC machine will accelerate protons along an almost circular 
trajectory of approximately 27 km. It is installed in an existing tunnel 
which accommodated the LEP (Large Electron Positron) Collider until 
its shut-down in November 2000. The existing tunnel and shafts could 
be largely adopted but some additional excavation work was necessary. 
The LHC tunnel is situated on the French - Swiss border in the Leman 
basin, 50 - 175 m underground. 

Part of the LHC project are four high energy physics experiments 
which have been constructed and installed on four beam collision points 
along the LHC particle beam line, as can be seen in Figure 1.1. 

All LHC experimental detectors consist of multiple subsystems. Each 
of these systems tests for a special set of properties of particles which 
are created in the beam collisions. The trajectories of the decay parti­
cles are traced when passing through the individual detector systems. 
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Figure 1.2: Model of the ATLAS detector: Detector systems. The size of the 
detector is compared to the size of persons in the illustration, ATLAS 
Experiment image, @CERN, [3]. 

Since the detectors are inside a powerful magnetic field, the curvature 
of the observed particle trajectories are a function of their momentum 
and charge. The momentum gives the mass of the observed particle 
and together with the energy measured by the calorimeters the parti­
cle can be identified. To get correct and precise results it is absolutely 
essential that the positions of the detectors and all individual parts are 
known with respect to the IP and accelerator beam line and also rel­
ative to each other within one experiment. Accuracy requirements in 
some systems can be as small as 30 µm. Compared to the size of the 
detectors and considering their complex structures, these requirements 
are very challenging for both manufacturing, installation, positioning, 
geometrical control and analysis. 

The two biggest LHC experiments are ATLAS (A Toroidal LHC 
ApparatuS) at Point 1 and CMS (Compact Muon Solenoid) at Point 5. 
The two corresponding underground· caverns UX15 at Point 1 and UX5 
at Point 5 had to be newly excavated whereas caverns at Point 2 and 
Point 8 could be 'recycled' from former LEP experiments. 



4 INTRODUCTION 

The ATLAS detector is about the size of a five story building and 
is placed in the UX15 cavern having a dimension of approximately 
53 x 30 x 35 m. The detector is comprised of the following major 
systems, see also Figure 1.2: Inner Tracking Detector (including Pixel 
Detector, SCT Tracker and TRT Tracker), Solenoidal Magnet, Electro­
magnetic Calorimeter (Liquid Argon Calorimeter), Hadron Calorimeter 
(Tile Calorimeter) and Muon Detectors (including Toroid Magnets). 
Each of these components are again assembled of numerous parts. Align­
ment and position of each detector part has to be established and con­
trolled during the manufacturing and installation process and also later 
under operation. Different requirements apply for different detector 
systems. 

Once accelerator and detectors will be in operation additional align­
ment systems installed inside individual detector systems will provide 
online information of the relative geometry of related detector parts. 
These systems will yield online information which will be used to cor­
rect the data gathered by the detectors at the collision events. As these 
systems are set up to provide only small relative corrections they have to 
rely on precise a priori positioning and constantly monitored alignment 
with respect to the beam line. They do not make the precise position­
ing obsolete but rather depend on it. These online relative detector 
alignment systems are not discussed in this thesis. 

Excavation work for the new LHC experiments started in 1998. First 
collisions of particles accelerated by the LHC are expected by the end 
of 2007. Approximately 3000 persons form the scientific and technical 
staff at CERN. Each year more than 5000 researchers representing col­
laborating institutes come to CERN. The ATLAS collaboration includes 
163 institutes from 34 countries. 

For more information about CERN and the LHC project visit 
http://www.cern.ch. 

1.2 Motivation-ATLAS: Problem description 

Installation of the new large physics experiments is a very critical task 
in the LHC project. The accuracy requirements in some locations are 
very demanding and often call for the application and development of 
special techniques. Also logistics behind such a project are unique and 
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Experimental Zone ATLAS 
Floor Level -92.5m 

Figure 1.3: Lowering of detector components into the cavern, [2}. 

require long planning and preparation time before carrying out the ac­
tual tasks. Whenever possible pre-assembly steps are carried out at 
other locations than the actual experimental zones which represent very 
confined environments. In case of the biggest experiment, ATLAS, pre­
assembly is only possible to a relatively small extend, simply because of 
the detector's design. ATLAS detector systems are very complex and 
their structure reminds of a 'Russian doll' where one part is encased 
in another, not accessible from the outside. Thus the major part of 
the ATLAS assembly process has to be carried out in the underground 
cavern, see Figure 1.3. Space and access possibilities are very limited 
in such a confined environment and make the surveyor's work in many 
aspects challenging. See also Figure 1.4 and Figure 1.5 which show some 
snapshots of the installation progress in the ATLAS cavern. 

The installation of detector parts in the cavern is guided and con­
trolled by geodetic measurements to enable and ensure precise and ac-

I 
I 



6 INTRODUCTION 

curate positioning. These measurements refer to a local cavern net­
work, which is linked to the LHC machine geometry representing the 
theoretical accelerator beam line. A network had been designed, consid­
ering mechanical and geometrical constraints and limitations in order 
to obtain a sufficiently reliable network. This layout is referred in the 
following as the nominal network. It has been used as guidance for in­
stallation of network points in the real ATLAS cavern. The network is 
realized by geodetic monuments which are either attached to the cavern 
walls, mounted on metal structures, which serve as support for various 
infrastructure installations and as access for the personal or embedded 
in the cavern floor. 

As the ATLAS cavern in particular has been newly excavated in 
its major extend, it has to be expected that the cavern will both de­
form and possibly move with respect to the tunnel housing the accei­
erator. This cavern deformation directly affects network points along 
the cavern walls and those embedded in the cavern floor. Additionally 
it translates to movements and/or deformations of the metal support 
and access structures where many other network point monuments are 
mounted. These structures are also expected to deform independently 
as loads are applied intentionally or accidentally. As the network point 
monuments are located in a working environment they are protected 
from external influences as much as possible, but still might be sub­
ject to unexpected forces. Possible effects of such events have to be 
considered and controlled. This complex deformation process directly 
affects the geodetic network, its internal geometry and also reliability. 
As the cavern network is defined with respect to the nominal accelerator 
beam line, possible deformations or movements make this relationship 
very important and would ask for a very strong geometrical connection. 
This is unfortunately impossible due to vigorous limitations on the net­
work design. The network thus needs to be analyzed very carefully for 
any possible deformation in order to fulfill the demands over the whole 
installation and operational period of the experiment. 

In the early stage of the installation process the cavern is mostly 
empty, see for example Figure 1.4. As soon as the first network points 
are mounted in the cavern a first small network is measured. At that 
time it is still possible to measure this network in a very good config­
uration i.e. many measurements even across the later filled detector 
space, as the sighting limitations are not very strong. In parallel with 
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Figure 1.4: Photographs of the ATLAS cavern in August 2003 (left): beginning 
of infrastructure and access structure installation shortly after the 
delivery of the cavern to CERN, and November 2003 (right): during 
installation of ATLAS feet, @CERN. 

Figure 1.5: Photographs of the ATLAS cavern in December 2004 (left) at the be­
ginning of installation of the Barrel Toroid, 2 coils already installed. 
Tile calorimeter is assembled on cavern side C. Right: September 
2005 with all 8 Barrel Toroid coils installed and start of Muon Cham­
ber insertion into this structure, ©CERN. 
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the progressing infrastructure installation, more network points are in­
stalled until the full network is in place. But as more infrastructure and 
detector parts are installed, sightings between the network points are 
increasingly limited, see Figure 1.5. This also affects the network as it 
degrades the configuration and thus its quality in terms of control and 
reliability. Having a stable network with reliable reference information is 
essential in this situation. Careful measurement planning in the cavern 
network is important in difficult configurations and only together with 
thorough statistical analysis of the survey data a high level of reliability 
in the network can be maintained. 

Thus, for the survey work to support detector installation two major 
problems have to be faced: 

• Deformation of the cavern network directly affecting its stability 
and accuracy. 

• Degrading network configuration due to increasing geometrical 
limitations with progressing detector and infrastructure installa­
tion resulting in poorer network reliability. 

In spite of these two problems it is necessary to maintain a high level 
of reliability in the network to ensure accurate guidance of installation 
and positional control of detector parts. 

Several known techniques offer themselves for application in order 
to deal with both problems individually. Here, however, the problems 
are closely related, hence they cannot be addressed individually. An 
alternative solution has been sought to treat these two problems in 
a combined way and is described in this thesis providing a practical 
solution. 

1.3 Scope of the thesis 

A metrological network in a large physics experiment cavern like ATLAS 
represents a special situation for an engineering surveying application. 
Therefore more details are given about this special situation by means of 
problems and demands that have to be handled before a solution to cope 
with this special situation is presented. Thus this thesis is structured 
in the following way: 
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• In Chapter 2 information on the ATLAS cavern, the ATLAS de­
tector and the metrological ATLAS cavern network is presented 
and discussed. This includes information about the geological 
and geotechnical situation at LHC Point 1, some details about the 
excavation and construction works and also details about infras­
tructure and access structures in the cavern and this information's 
relevance to the study of cavern and network deformation. The 
metrological network is discussed considering the nominal network 
design. 

• In Chapter 3 a short summary of metrological measurement tech­
niques employed by CERN's survey group is given, focusing on 
techniques applied in the ATLAS cavern network and its link to 
LHC reference geometry. Special attention is paid to specialized 
survey systems. This chapter also includes a section on network 
point monumentations commonly used at CERN and particularly 
employed in the ATLAS cavern network and vicinity. 

• In Chapter 4 standard network and deformation analysis tech­
niques are shortly discussed considering their suitability and lim­
itations for the task at hand. 

• In Chapter 5 an alternative approach to network management 
and deformation analysis is presented. The proposed method is 
the application of the Kalman Filter technique to a 3D kinematic 
network. With this approach it becomes possible to treat prob­
lems of a deforming network in degrading configuration in a very 
efficient way. 

• In Chapter 6 results of the algorithm introduced in Chapter 5 are 
presented for both simulated and real measurement data. Data 
sets are simulated for two examples: One being a very small and 
simple network which serves as an example to present the al­
gorithm's performance in a very straightforward and direct way. 
Secondly data for the theoretical ATLAS cavern network has been 
simulated considering early installation schedules and deformation 
scenarios based both on assumptions and information discussed in 
Chapter 2. With this simulation example special features of the 
ATLAS cavern network can be investigated and critical issues in 

·-
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the network or measurement configurations identified. Finally, re­
sults for real ATLAS cavern network data for a period of three 
years is analyzed and presented showing the capability of the pro­
posed algorithm to deal with less favorable data. 

• A summary in Chapter 7 concludes this thesis. 



2 
CERN ATLAS cavern 

network 

In this chapter basic engineering information about the ATLAS experi­
mental zone (i.e. cavern and surrounding underground structures), the 
ATLAS detector and the metrological cavern network are summarized. 
It is discussed whether it is possible to derive a deformation model from 
information about expected forces acting on the underground complex 
or not. Such a dynamic model could be included in the deformation 
analysis of survey data gathered in the cavern network. The ATLAS 
cavern network is discussed in its nominal design layout. First, how­
ever, a short overview of the different coordinate systems in use in the 
ATLAS cavern is given. 

11 
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12 CERN ATLAS CAVERN NETWORK 

2.1 Coordinate systems for LHC 
Point 1 - ATLAS 

CENTER OF 
THE LHC RING 

Zsurv 

x~JZ Civil engineering (horizontal) 

Xm Y mZm Mechanical engineering (following beam slope} -----------------------------------------
lO'Z Detector axis (following beam slope) 

Xsurv Y surv Zsurv Experiment survey reference (horizontal) 

Figure 2.1: Coordinate systems in the ATLAS cavern, {2] 

The origin of all coordinate systems defined for the ATLAS cavern or 
the ATLAS detector is the theoretical interaction point IP, [2]. For an 
overview see Figure 2.1, in which the four ATLAS coordinate systems 
are shown. 

Detector axis system The X-axis is horizontal, pointing towards 
the center of the LHC ring. The Y-axis is perpendicular to the X­
axis and to the beam axis, positive upwards. It is inclined by 1.2363 
(0.01236rad) or 0.7082° with respect to the local vertical. The Z-axis 
is aligned with the beam direction, to create a right-handed Cartesian 
coordinate system. 
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Mechanical engineering system In this system the X-axis is hor­
izontal and pointing towards the center of the LHC ring. The Y-axis 
follows the beam slope upwards. The Z-axis completes a left-handed 
Cartesian coordinate system. It is inclined by 0.01236 rad with respect 
to the local vertical. This system is used by mechanical engineering 
groups. 

Civil engineering system The X-axis is horizontal and pointing to­
wards the center of the LHC ring. The Z-axis is perpendicular to the 
X-axis and points upwards along the local vertical. The Y-axis com­
pletes the Cartesian coordinate system. It is horizontal and is therefore 
inclined by 0.01236 rad with respect to the beam direction. This system 
is used by the civil engineering group. 

Experiment survey reference system The ATLAS survey coor­
dinate system is a local, horizontal coordinate system. The Y-axis is 
horizontal and points towards LHC center. The X-axis is horizontal 
pointing towards Point 8. The Z-axis is following the local vertical, pos­
itive upwards and thus completes the right-handed Cartesian coordinate 
system. This system is used by the experiment survey group. 

2.2 The ATLAS cavern 

2.2.1 Underground structures 

The ATLAS cavern is situated at CERN LHC Point 1, on Swiss territory. 
The cavern floor is approximately 92 m below ground. The cavern itself 
has the internal dimensions of length= 53 m, width= 30 m and height= 
35 m. For illustration see Figure 1.1 and Figure 1.3. 

The cavern is connected to other underground openings in this area, 
thus forming a complex of underground openings (see Figure 2.2). These 
other openings include transport and security shafts, transfer tunnels, 
caverns, chambers and galleries for service and infrastructure installa­
tions. 

The main cavern is referred to (see Figure 2.2) as UX15, its axis 
is parallel to the direction of the beam line but it is horizontal. The 
large cavern USA15 is perpendicular to UX15 and holds, among others, 
cryogenic services. It has a diameter of 20 m and a length of 62 m. It 

t 
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~Points 

Figure 2.2: ATLAS: The complex of underground structures at LHC Point 1, {2}. 

is accessed by shaft PX15, which was built for the LEP installation 
and which is now the main personnel access to the new underground 
structures. 

The new circulat shafts PX14 and PX16, with internal diameters 
of 18 m and 12.6 m respectively, provide material access to the main 
cavern UX15. Other existing structures include the service shaft PM15 
which is used to access the LHC tunnel and the service cavern US15. 
The new underground structures were built around and into existing 
structures. The galleries UPS14 and UPS16 serve as service galleries for 
metrological measurements (survey galleries) and special measurements 
systems, which are described in Chapter 3. 

The LHC beam is inclined down from Point 2 to Point 8. This incli­
nation has to be taken into account in the detector installation process 
as the cavern floor is horizontal. The right slope angle of the beam line 
is 0.01236rad or 0.7082°. The IP of ATLAS is 11.37m from the cav­
ern floor, which also defines the origin of the local ATLAS coordinate 
system(s), see Section 2.1. The lateral cavern side towards the adjacent 
cavern USA15 is referred to as USA, the opposite lateral side US. The 
end side towards Point 8 is called side A, and the opposite side towards 
Point 2 side C. 
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2.2.2 Geological and geotechnical aspects 

A short overview of the geological situation at Point 1 as well as some 
geotechnical aspects of the cavern construction shall be given here, based 
on reports by Rammer [50, 51, 52], and Guitton [17]. Although the 
study of these extensive reports in search for information about the 
expected cavern deformation behavior after construction has not turned 
out satisfactory, this section is still included to give a broader view of 
the situation. A short conclusion at the end of this section summarizes 
the findings for geological and geotechnical information. 

The CERN site is situated in the Leman Basin, enclosed by the Alps 
in the south-east and the Jura mountains to the north west. The basin 
is filled by sedimentary deposits, collectively called molasse. These de­
posits comprise a complex, alternating sequence of almost horizontally 
bedded sandstones and marls, with a range of composite marly sand­
stones and sandy marls. The molasse is overlain by moraines from the 
glacial periods of Riss and Wurm, consisting of gravel and sands with 
many cobbles and boulders and varying in depth with less than 10 m at 
Point 1, [50]. 

Data on the geological 
and geotechnical situation 
stem from studies carried 
out before the construc­
tion of the LEP tunnel, in 
1981 and 1982 and before 
the LHC project between 
1995 and 1997. In both 
cases this included bore­
holes drilled and tested 
along the tunnel trajec­
tory, including the site 
at Point 1. Rock sam­
ples were collected and an­
alyzed in the laboratory 
and in-situ testing was 
carried out. 

For the derivation of 
the geotechnical model at 
Point 1, it was necessary 

Figure 2.3: Simplified rheological model for 
UX15 implemented in 30 FEM software FLAC3D 
version 2.00. ('Niveau marneux' stands for 'layer 
of marl'), {12]. 
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to make some simplifications to cope with the problem considering soft­
ware and computer resources available at that time. The sequence of 
various rock types was analyzed in detail for a selected group of represen­
tative boreholes and a simplified series of bands with similar properties 
derived. 

As basis for subsequent modelling these bands have been simplified 
even more into three basic rock mass units, see Figure 2.3. The upper 
unit consists predominantly of sandstones with some intermediate layers 
of marls. It extends from the base of the moraine, at depths between 4 
and 10 m, down to 50 m. The middle unit extends to depths more than 
80 m and is the most diverse being composed by sandstones and marls 
but also transitional rock types. The lower unit consists predominantly 
of marls with sandstones and a minor proportion of transitional rock 
types. 

The analysis of various laboratory tests allowed to derive strength 
and deformation parameters for each type of rock. Special attention 
was paid to the weaker marls especially in critical zones (e.g. just above 
the cavern vault) by implementing separate bands into the geotechnical 
model. This model was used in the design and implementation of the 
civil engineering works discussed in the following. 

Civil Engineering Works 

The civil engineering project had to consider additional constraints to 
the geological situation: 

• Size of the detector to be installed in the experimental cavern. 
• Large diameter access shafts are required to lower pieces of equip­

ment into the cavern. 
• Integration of new works into existing structures. 
• Construction to be completed in 2002, LEP shutdown end of 2000. 

Especially the last constraint on the time schedule made it necessary to 
start excavation 2.5 years prior to LEP shutdown. It was required to 
have as little effect as possible on the continuing accelerator operation. 

The numerical analyses based on time schedules, geotechnical and 
geometrical models carried out by the contractor consortium EDF­
Knight Piesold involved a multitude of 2D and 3D numerical calcu­
lations, [12]. The 3D analyses had the main objective to investigate the 
interaction of different underground openings. More detailed studies of 
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some critical sections in the model were carried out with a 2D approach. 
It enabled to address some more precise details of the geological model. 
Considering the tight 
LHC project time 
schedule the max­
imum possible amount 
of construction work 
had to be carried 
out before final LEP 
shutdown. All works 
were to cause mini­
mum effects on the 
existing structures and 
no disruption to the 
operation of the LEP 
machine. This im­
plied that explosives 
for excavation were 
forbidden thus me- Figure 2.4: General layout of the Point 1 underground 
chanical excavators works prior to bench excavation, {46}. 
were chosen. The 
cavern vault had to 
be excavated and concrete lining applied before LEP was shutdown. 
Only then all the equipment in the tunnel could be dismantled and re­
moved and the excavation of the cavern benches could proceed. This 
required for a special solution of a temporary support of the dead weight 
of the concrete cavern roof by suspension of 38 pre-stressed ground an­
chors of 225 tons capacity each. This support system had to work until 
the construction of the cavern base slab and walls when they took the 
weight of the concrete roof and the anchor cables became redundant, 
[51, 46]. See Figure 2.4 for illustration. 

The permanent concrete lining of the cavern consists of a 5 m thick 
base slab, 2 m thick straight vertical side walls, lm thick curved vertical 
end walls and 1.3 m thick roof arch. The primary rock support consists 
of fibre-reinforced shotcrete and rock bolts. To ensure watertightness 
an impermeable membrane is included between the shotcrete and the 
final concrete lining. 

l 
I 
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The zones causing most 
problems were shear zones 
at the level of the cavern 
vault, at the level of the 
LEP tunnel and also be­
low that level, caused by 
layers of marly sandstone 
and sandy marls. This 
behavior was anticipated 
by earlier calculations (see 
an illustrated example in 
Figure 2.5) and could be 
observed with inclinomet­
ric measurements. The 
excavation procedure was 
adapted for these zones 
and thus instabilities could 
be sufficiently stabilized. 

Horizontal displacement 
isovalues 

Velocity vectors 

~ 

Figure 2.5: 20 calculation UX15: lsovalues hor­
izontal displacements and velocity vectors, {12}. 

Monitoring and control of the excavation work were carried out by 
survey and geotechnical measurements conducted by external compa­
nies. The data was used to constantly refine the numerical models. 
Thus also the actual load which would stress the cavern walls was de­
termined and the final lining of the cavern was accordingly chosen. Con­
vergence measurements which were made to optical targets on the inside 
of the excavated cavern were compared to predicted values of d'i.splace­
ments. Results of such comparisons showed that the predicted values 
were much larger than the observed values. 3D computations based on 
largely simplified rheological models but including surrounding struc­
tures had predicted values 3.5 times larger than observed and had indi­
cated an asymmetric deformation, smaller on the USA side of the cavern 
because of the close vicinity of the USA15 cavern which could not be 
observed. 2D models based on the refined rheological model but not 
considering any interactivity with other structures (thus symmetric de­
formation expected) had predicted values 5 times larger than observed. 
Results of these comparisons could be introduced as additional informa­
tion to the deformation model. These refined models helped to finish 
excavation work without major problems and were used to determine 
the dimension of the final inner lining of the cavern. 
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The tolerances for the final internal dimensions of the cavern were 
rather tight (-0 and + 7 cm), being softer on the positive side (thus 
bigger cavern). Eventually the cavern was found (by final measurements 
by both the contractor and CERN (laser scanner)) to be bigger by 
approximately 5 - 10 cm. 

Conclusion for cavern deformation model Geotechnical and ge­
ological information and some interesting details about the cavern con­
struction have been summarized in this section. For the problem at 
hand, no quantification or model for future deformation behavior of the 
underground structures after completed construction could be derived. 
In the understanding of civil engineering, the cavern is not deforming, 
once the inner lining is applied, [53]. Having said that, experience from 
former LEP experiment underground openings had shown that remain­
ing forces on the lateral cavern walls cause them to be pushed slightly 
towards the center of the cavern (approximately 1 mm per year, [29]). 
Additionally it is expected that the cavern floor will subside by 2 mm 
directly after completion of the cavern before the detector parts are in­
stalled, and extra 5.5 mm over the whole installation period caused by 
the load of about 7000 t of the ATLAS detector plus 1000 t. of access 
structures and infrastructure installations. Counteracting this vertical 
sag, a heave of cavern floors has been observed in former LEP caverns 
caused by hydrostatic pressure (estimated for UX15 l.2mm per year). 
Stability (defined as movements lower than 1 mm per year) is not ex­
pected to be achieved even after 15 years, [53, 7]. 

These values and assumptions cannot be quantified precisely and 
no combined deformation model is available. Considering deformation 
analysis in combination with survey data gathered in the cavern net­
work, it is unfortunately not possible to include an analytical model 
of the cavern dynamics. However, the empirical information discussed 
above is used in a simulation of possible deformation scenarios of the 
ATLAS cavern, see Chapter 6.3. Analysis of real ATLAS cavern net­
work data shows if the anticipated displacements and deformations takes 
place or not, see results in Chapter 6.4. 
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2.2.3 Access structures 

Figure 2.6: Infrastructure and access structures HS 
and HO in the ATLAS cavern, {2]. 

A large number of 
network points are 
mounted on access 
structures also serving 
for infrastructure in­
stallations, surround­
ing the detector in the 
cavern, see Figure 2.6. 

Deformation mod­
els of these struc­
tures (especially any 
interconnections with 
a cavern deformation 
model and the evolve­
ment over time) would 
be of interest as they 
could be included in a 

dynamic deformation analysis of survey data in the ATLAS cavern net­
work. Models for both HS and HO structures are discussed in this 
section. HS structures are located along the lateral cavern walls on 
both US and USA side of the cavern. HO structures are erected close 
to both curved end walls of the cavern, on side A and side C. They are 
produced of structural steel and are attached to both the cavern floor 
and walls. There is no direct connection between HS and HO struc­
tures. For both types of structures Finite Element Models (FEM) are 
available, but these models have been calculated independently of each 
other, in different software formats and following different standards. 
At the end of this section conclusions are drawn for both HS and HO, 
structure information together. 

HS structure 

HS structures along the lateral sides of the cavern differ in their dimen­
sion, resulting from the detector interaction point (IP) not coinciding 
with the center of the cavern. As there is more free space on the USA 
side, various infrastructure facilities have been installed on this side and 
thus the access structure expands further from the cavern wall. 



The HS FEM model is 
implemented in the Robot 
Finite element package, 
[54]. The aim of the 
FEM calculations carried 
out at CERN were to 
verify the structure ac­
cording to the regula­
tions in force, French 
Standard EUROCODE3 
and PS92 (norme para­
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sismique franc;aise), [11]. Figure 2.7: Visualization of the finite element 
The HS structure consists model of the HS structure, {11]. 
of twelve posts of profiled 
steel Fe360, joined in pairs by an arch section on the top plus hori­
zontal elements of different profile types. The FEM representing the 
structure is made up of 3660 elements and 2370 nodes. Load cases 
to be considered include several groups, classified in their nature: Self 
weight (permanent), detector and infrastructure parts weights (perma­
nent/variable), cryogenic equipment (permanent), thermal load (vari­
able), magnetic load (variable), seismic load (accidental), shock on 
structure (accidental) and personnel mass (variable). The calculations 
according to EUROCODE3 define certain load combinations according 
to the limit states, i.e. Ultimate Limit States (ULS) and Serviceability 
Limit States (SLS) defined by different factors on each permanent and 
variable states, considering accidental loads or not. According to PS92 
the loads are translated into effects on individual coordinate directions. 
Certain combinations of this directional effects are then evaluated. 

Boundary conditions used in the calculations include connections of 
individual structure parts to the feet bases on the cavern floor and in 
cavern walls, which were assumed infinitely rigid. 

Results of the FEM calculations showed that the structure fulfilled 
all regulations. For SLS a displacement maximum was found in vertical 
direction of 25 mm (downwards) on top arch beams connecting vertical 
posts. On average displacements were in the range of 2 - 3 mm, domi­
nantly in vertical direction. It is noted in the analysis report [11] that 
no lateral displacements of the cavern walls were taken into account in 
the final calculation as this posed a high level of stress on the struc-
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ture. It is recommended to use connections decoupling any transversal 
movement of the walls. Whether such measures become apparent in the 
results is presented in Section 6.4. 

HO structure 

HO structures along the curved end walls of the ATLAS cavern differ 
only slightly for both facing sides, they are otherwise symmetric. The 
HO FEM is implemented in ANSYS software, Version 5.6. 

The main objective 
of the calculation at 
hand [20], is the vali­
dation of the structure 
to carry the weight 
of the ATLAS end­
cap muon chambers 
(MEO and MEM) of 
56 t being assembled 
in the cavern. Loads 
to be considered in­
clude the muon cham­
bers, self weight of 
the structure and per­
sonnel mass. Differ­
ent load combinations 
are calculated, not fol­
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lowing specific regula- Figure 2.8: FEM results for HO structure: Vertical 
tions, neither acciden- displacements, {20}. 

tal loading incidents. Boundary conditions include connections to cav­
ern walls and floor and to the concrete shielding around the LHC beam 
exits into the cavern. Connections to the floor are always assumed fixed 
(all degrees of freedom blocked). In the other cases variations were cal­
culated to include knee-joints instead of clamping, freeing the rotations. 

The results of the calculations show maximum displacements of 
6 - 7 mm in vertical direction for long horizontal beams. Differences 
between load situations considering the weight of the muon chambers 
or not have been found with a maximum of 2 - 3 mm (not adding up to 
the maximum of before), thus the validation to carry the muon chambers 
was successful. For an example of the visualized results see Figure 2.8. 

t 
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Conclusion for access structure deformation models The me­
chanical studies of the individual HS and HO structures did not con­
sider any cavern deformation. The individual calculations consider cer­
tain load combinations which verify the structure considering maximum 
loads acting on it. The results show the maximum effect on the struc­
tures caused by these loads without including time as a factor in the 
model. For the application of these results to the expected deforma­
tions of the metrological cavern network points, it has to be considered 
that these points are all mounted on the vertical posts of the struc­
tures. For these posts only very small displacements ( < 1 mm) were 
found in the calculations. The results of calculations (although not be­
ing implemented in a dynamic model for deformation analysis) are used 
in a simulation of possible deformation scenarios of the ATLAS cavern 
network, see Chapter 6.3. 

2.3 The ATLAS detector 

2.3.1 Detector systems 

The ATLAS detector is the largest experimental facility in the LHC 
project. The detector has a diameter of approximately 25 m and in 
closed configuration is approximately 40 m long. Its weight is about 
7000 t. The main systems of the detector are Inner Tracking Detec­
tor (Pixel detector, SCT and TRT), Calorimeter (Electromagnetic and 
Hadron Calorimeter), Muon Spectrometer and the Magnet System (Cen­
tral Solenoid and Toroid Magnet System), see Figure 1.2. 

The main support systems are the feet based on the bedplates em­
bedded in the cavern slab holding the Barrel toroid, and the main rails 
for the Barrel calorimeters housing the Solenoid and Inner detector sys­
tems. In the following some details about the detector subsystems are 
given. Details on the ATLAS detector summarized in this section and 
more can be found on the ATLAS project's webpage [3]. 
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The Inner Detector measures the momentum of each charged parti­
cle. It combines high-resolution detectors at the inner radii with contin­
uous tracking elements at the outer radii (see Figure 2.9), all contained 
in the Central Solenoid magnet, which provides a nominal field of 
2 T. The highest resolution is achieved around the vertex region using 
semiconductor Pixel detectors followed by a silicon microstrip detec­
tor (SCT - Semiconductor Tracker). At larger radii tracking points 
are provided by the straw tube tracker (TRT - Transition Radiation 
Tracker). The outer radius of the Inner Detector is 1.12 m and the total 
length 7m. 

Figure 2.9: The Inner Detector: Pixel Detector, SCT and TRT, ATLAS Experi­
ment image, @CERN, [3]. 

The Calorimeter measures energies of charged and neutral particles. 
It consists of metal plates (absorbers) and sensing elements. Interactions 
in the absorbers transform the incident energy into a 'shower' of particles 
that are detected by the sensing elements. In the inner sections of 
the calorimeter, the sensing element is liquid argon (Liquid Argon 
Calorimeter). The showers in the argon liberate electrons that are 
collected and recorded. To obtain argon in liquid state, the gas has to 
be cooled to 88 K in a cryostat. In the outer sections, the sensors are 
tiles of scintillating plastic (Tile Calorimeter), see Figure 2.10. 

The Muon Spectrometer identifies and measures muons. Muons 
are particles just like electrons, but 200 times heavier. They are the only 
detectable particles that can traverse all calorimeter absorbers without 
being stopped. The muon spectrometer surrounds the calorimeter and 

I· 
I 
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Inner Detector 

Figure 2.10: The Calorimeter: Liquid Argon and Tile Calorimeters, Barrel and 
EndCap, ATLAS Experiment image, @CERN, [3]. 

measures muon trajectories to determine their momenta with high pre­
cision. It consists of thousands of charged particle sensors in individual 
Muon Chambers placed in the magnetic field produced by large su­
perconducting toroidal coils (Barrel Toroid and End-Cap Toroids). 
The sensors are similar to the straws of the Inner Detector, but with 
larger tube diameters. There are more than 1000 muon chambers assem­
bled inside the Barrel Toroid and around 1500 in the End-cap Toroids, 
see Figure 2 .11. 

The Magnet System bends charged particle trajectories to measure 
momentum. The Central Solenoid magnet has a length of 5.3 m with 
a diameter of 2.4 m. It is designed to provide a field of 2 T with a peak 
magnetic field of 2.6 T. The total weight is 5. 7 t. The Toroid Magnet 
system consists of eight barrel coils housed in separate cryostats and two 
End-Cap cryostats housing eight coils each. The End-cap coil systems 
are rotated by 22.5° with respect to the Barrel Toroids in order to pro­
vide radial overlap and to optimise the bending power of the interface 
regions of both coil systems. The Barrel Toroid coils are assembled ra­
dially and symmetrically around the beam axis, see Figure 2.11. Each 
coil has an axial length of 25.3 m and extends radially from 9.4 m to 

I 
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End-Cap Toroid 

Big Wheel 

Figure 2.11: Muon Spectrometer and Toroid Magnet System: Barrel Toroid and 
End-Cap Toroids, ATLAS Experiment image, @CERN, [3]. 

20 .1 m. The total weight of all eight coils together is 830 t. The peak 
field provided by the Barrel Toroid coils is 3.9T. The End-cap Toroid 
coils are also assembled radially and symmetrically around the beam 
axis. They are cold-linked and assembled as a single cold mass in one 
large cryostat. The cryostat rests on a rail system facilitating the move­
ment and parking for access to the detector center. Each coil has an 
axial length of 5m and extends radially from l.65m to 10.7m. The 
total assembly weight is 240 t. The peak field provided by the end-cap 
toroids is 4.1 T. 

2.3.2 Installation schedule 

Here the planned installation schedule as outlined in [2] is briefly sum­
marized. The real installation process of the ATLAS detector differs in 
some parts significantly from the planned schedule, both in sequence and 
time periods from this planned schedule. Nevertheless it gives a good 
overview of the major installation steps to be carried out. The progress 
of installation has to be considered in the design of the metrological 
network. The installed detector parts represent obstacles for the geode­
tic measurements. Information summarized in this section combined 

"'\ 
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with rough envelope specifications of the detector parts are included in 
a simulation of the ATLAS cavern network analyzed in Chapter 6.3. 

Considerations in the installation schedule had to incorporate many 
different factors including necessary space, weight of detector parts to 
be lowered, sequence of the assembly, special transport constraints of 
individual systems etc. The heaviest object to be lowered is the End­
Cap Toroid with 240 t. The biggest objects are the 8 individual coils of 
the Barrel Toroid each 25.3 x 5.3 x 1.1 m large. The total installation 
period of the detector was planned to be about 30 months and the in­
stallation schedule was divided into 15 phases. The following summary 
is focused on major detector parts, often neglecting nevertheless impor­
tant infrastructure installation. Survey interaction is demanded in all 
of the following steps but is not explicitly mentioned in the following 
description. 

• Phase 1-3: After the cavern is delivered to CERN general facilities 
are installed including ventilation, power, lights, access structures 
and travelling cranes. With these cranes in place, enabling trans­
port inside the cavern, the installation of access structures HO and 
HS starts and large cryogenic storage vessels are lowered into the 
cavern. Then the assembly of the ATLAS detector parts can re­
ally start with the installation of the support feet, see Figure 2.12 
and the first Barrel Toroid coils. 

Figure 2.12: Installation Phase 3: 
Start of the support feet and rail as­
sembly, {2}. 

Figure 2.13: Installation Phase 4: Bar­
rel Toroid coils 3 and 4 in place. Start 
of Barrel Tile Calorimeter assembly on 
side C, {2]. 
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• Phase 4-6: More Barrel Toroid coils are installed and in parallel 
installation of the Barrel Calorimeter starts on side C, see Fig­
ure 2.13. The Liquid Argon Calorimeter Barrel is lowered into the 
cavern and assembled in connection with the Barrel Tile Calorime­
ter. Then the first Solenoid connections are installed and the Bar­
rel Calorimeter is moved on rails to its final position inside the 
Barrel Toroid. The assembly of the End-Cap Calorimeter C can 
thus start on side C. 

Figure 2.14: Installation Phase 7: Liq­
uid Argon End-Cap cryostat lowered 
onto supports Tile C, {2}. 

Figure 2.15: Installation Phase 8: End~ 
Cap Calorimeter and Shield Disc C. 
Start End-Cap Calorimeter A. {2]. 

• Phase 7-9: The Liquid Argon End-Cap Calorimeter is installed on 
its supports in connection with the End-Cap Tile Calorimeter, see 
Figure 2.14. The End-Cap Calorimeter C assembly is completed 
and it is connected to the Barrel Calorimeter. The Shield Disc is 
foreseen to be lowered on side C, see Figure 2.15 and the End-Cap 
Calorimeter on side A is assembled as before on side C. 

• Phase 10-12: The Shield Disc on side A is lowered. All services 
to the Barrel Calorimeter and the Solenoid are connected. After 
first tests of the Solenoid the installation of the Inner Detector 
can start. For this the End-Cap Calorimeters are moved out of 
the Barrel Toroid (open position). The barrel part of the Inner 
Detector is positioned as well as the first section of the beam pipe. 
Installation of Muon Chambers into the Barrel Toroid begins. The 
chambers are slid on previously installed rails inside the Barrel 
Toroid, see Figure 2.16. 



Figure 2.16: Installation Phase 12: 
Start of muon chamber installation -
barrel side C, {2]. 
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Figure 2.17: Installation Phase 14: 
End-Cap Toroid A lowered onto sup­
port truck. Muon chambers side C, {2]. 

• Phase 13-15: The Muon chambers on the Big Wheel on side C 
and A are installed. The End-Cap Toroids are lowered into the 
cavern. As they are very big, they are the last systems to be 
installed. They restrict access, particularly if in closed positions 
as this requires closing up all other sub-detectors. Their cool­
down-time of 40 days is another restricting factor. During this 
period the installation of Muon Chambers on t.he wall structures 
can take place, see Figure 2.17. Finally ATLAS installation is 
completed and shielding blocks are lowered on both side A and 
side C. ATLAS is ready for taking collision data. 

2.3.3 Detector access scenarios 

When LHC is running, the experimental area (UX15 cavern) is not 
accessible due to radiation, [2]. 

Ultra-short shutdowns are planned to happen on a quite regular ba­
sis, allowing access to the experimental zone for a duration of approx­
imately one hour. The detector is not open during this period thus 
no detector system is displaced. The magnetic fields stay on. Only 
equipment on the periphery of the detector is accessible in this type 
of shutdown. Access is only given to a very limited group of people. 
No survey interaction is foreseen for this kind of shutdown but if it be­
comes necessary a very careful and detailed planning has to be carried 
out beforehand. 

I 
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In the short-opening scenario LHC and the detector systems are 
shut down and the experimental zone can be accessed under certain 
restricted conditions. The duration of these shutdowns is planned to 
be in the order of seven to ten days. The purpose of these shutdowns 
is to give access to some detector systems (muon chambers on the Big 
Wheels, Barrel muon chambers, space between End-Cap Calorimeters 
and End-Cap Toroids, outer faces of Inner Detector), thus some will 
be displaced, but major beam pipes stay in position and many service 
systems will stay connected. Survey interaction is only foreseen in very 
extraordinary cases and again needs to be planned in very high detail 
in advance. 

Regular maintenance will be carried out during the shutdown peri­
ods of the LHC machine, scheduled every year between November and 
April for a period of approximately 5 months. During this period the 
ATLAS detector is in open configuration called long-opening scenario. 
This requires a large movement of the End-Cap Toroids. Some systems 
might even be craned to the surface (Forward Shielding, Shield Discs) 
to free space in the cavern. Nearly all moving system services will be 
disconnected except services on the End-Cap Toroid and on the Liquid 
Argon Calorimeter that have to be kept connected continuously to keep 
the system at cryogenic temperature. Survey measurements will take 
place to control structural deformation of the cavern especially the cav­
ern floor, i.e. bedplates and to control and most importantly re-establish 
positions of detector systems before the next run. 

2.3.4 Positioning requirements 

The demands on surveys tasks in the context of the assembly and in­
stallation of the ATLAS detector are very diverse. To summarize, the 
steps of an individual detector part to be installed in the experiment 
are like follows: 

• Verification of manufacturing and pre-assembly precision: 
This refers to both individual detector modules or lager struc­
tures that are assembled from individual detector modules. The 
precision is given by engineering specifications or manufacturing 
tolerances. It is in general verified outside the cavern before instal­
lation. Assembly precisions are very diverse and range from 30 µm 
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for some parts in the Inner Detector to 5 mm for the Barrel Toroid 
coils, corresponding survey measurement precision demands vary 
between 50 µm - 1 mm. 

Different types of information requested in this step include di­
mensions of objects, planimetry and relative alignment of individ­
ual modules. The geometry of the detector parts are generally 
represented by at least a minimum set of selected points (fiducial 
marks) on the outer surface of the object which are visible and 
accessible in the installation procedure. These fiducial marks are 
in general equipped with a standard reference hole to fit survey 
targets commonly used by the CERN experimental survey group. 

• Accuracy of installation with respect to the nominal beam 
line: The installation of detector parts is guided by survey mea­
surements using the fiducial marks or other features of the object. 

The accuracy of the positioning of the individual detector parts is 
effected not only by survey measurement precision and accuracy 
in the metrological network but also by manufacturing precision 
and mechanical assembly constraints. Overall it can be said that 
the necessary accuracy for survey tasks is between 50 µm - 0.1 mm 
in the area of the Inner detector and between 0.5 - 2 mm on the 
outer. 

As one example for better illustration of the diverse requirements may 
serve the Inner Detector, [18]: 

The Inner Detector sits on rails attached to the inner diameter of the 
Liquid Argon Cryostat of the Inner Warm Vessel. These rails have to be 
aligned to be planar to ±0.1 mm and parallel to ±0.2 mm. The absolute 
position of the Inner Detector with respect to the nominal beam line 
depends thus on the accuracy in the metrological network and also on 
the positioning accuracy of the Liquid Argon Cryostat warm vessel. It 
is required to be ±1 mm. The error budget for the survey accuracy is 
0.1-0.3mm. 

The Inner Detector and the Liquid Argon Calorimeter are located 
in the very center of the ATLAS detector and are installed when the 
Barrel Toroid is already in place, thus access and network configuration 
are very difficult. A good reliability in the network is essential to give 
accurate positioning results. Special measures are taken (installation 
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of temporary additional network point monuments, etc.) in order to 
give a good connection to the network. The relative positioning of the 
individual detector systems in the Inner Detector are in the range of 
10-1000 µm, the most central pixel detector being the most demanding, 
and less for the TRT. 

When methods available to the survey group are not sufficient or the 
required access can not be given, relative positioning has to be achieved 
by other methods including services provided by a metrology lab or 
specially designed alignment systems. 

Positioning requirement details for any system can be found in the 
TDR (Technical Design Report) of each system in the Electronic Doc­
ument Management System (EDMS) at CERN. 

2.4 The metrological ATLAS cavern network 

A metrological cavern network was originally designed in a preliminary 
study considering the following constraints, [13]: 

• Space with respect to construction specifications and needs to per-
form geodetic measurements ensuring personal safety, 

• requirements for spatial uncertainty ( < 0. 2 mm (la) for each point), 
• local redundancy of observations (> 60%), 
• distance measurements are preferred over angle observations in 

order to minimize measurement uncertainty and effort. 

The resulting nominal network design consists of 116 point monu­
ments in the cavern, installed along the cavern walls, embedded in the 
floor and mounted to the HS and HO structures. This design study has 
been used as a guideline for the installation of the real network point 
monuments in the cavern but constraints that arise in the real situation 
cause the real network to differ in some places substantially from the 
design layout. 

Two figures illustrate some network point monument locations in 
this design network: In Figure 2.18 the monuments distributed on the 
HO structure on Side C can be seen. These monuments are plug-in 
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Survey points 

Figure 2.18: Network point monuments on HO structure Side C. Plug-in brack­
ets mounted on vertical posts of structure in different orientations, 
@CERN-TS, Ref. ATFIM ___ 0002. 

brackets, see more details about CERN point monumentation in Chap­
ter 3.2. In Figure 2.19 network point monuments along the US cavern 
wall are presented. The distribution considers the available space not 
interfering with infrastructure or other installations (not plotted here) 
and the necessary space to actually carry out theodolite observations 
from such a point, indicated by the spatial envelopes around the monu­
ments. Additionally, access to the point monuments from gangways and 
access structures should be possible and the demands on the network 
summarized above should be fulfilled. 
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Figure 2.19: Network points on cavern wall Side US. Foldable brackets attached 
to walls and the envelope of the necessary space around to make 
observations form these points, @CERN-TS, Ref. ATFIM ___ 0008. 

A simulation of measurements between ~he cavern network points 
inside the cavern was used to verify the network configuration. However, 
this simulation did not consider some important factors: 

• Datum definition: The ATLAS cavern network refers to LHC 
geometry (represented by reference points in the LHC tunnel). 
Points in the LHC tunnel are not directly visible from the cavern 
after a certain stage of installation thus the only connection is 
achieved passing through the survey galleries. The link through 
these small galleries is geometrically very weak and thus it will be 
realized by special metrological systems: A hydrostatic levelling 
system (HLS), a wire positioning system (WPS) and additionally 
a precise distance measurement system consisting of calibrated 
invar bars and capacitive sensors. See Section 3.3 for more infor­
mation on these special measurement systems. 
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The datum definition is transferred by these systems into the cav­
ern. As these systems are foreseen mainly to support LHC align­
ment (control of Inner Triplet quadrupoles) they are not avail­
able from the beginning of detector installation, see layout in Fig­
ure 2.20. Thus before these systems are available the connection 
to the datum definition is achieved directly via the tunnel exits 
(as longs as these are not blocked) or through the critical survey 
gallery link. 

• The progress of installation affects the network configuration severely, 
as many sightings that are possible at the beginning become ob­
structed as more objects are installed. 

A simulation of survey data considering the installation process and 
also possible deformation scenarios is used in Section 6.3 to analyze the 
nominal network layout and to evaluate the performance of the data 
processing algorithm presented in Chapter 5. 

•·· 
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Figure 2.20: Schematic top view for the installation of special measurement systems HLS, WPS and invar bars (IRS) in 
the LHC tunnel and ATLAS experimental zone, {2]. 

';~-

c... 
Q\ 

("') 

~ 
< 
)::. 

;::! 
)::. 
(J) 

Q 
~ 
~ 
~ 
-I a 
~ 



3 
Metrology at CERN 
applied to detector 

positioning and 
alignment 

Ever since CERN was founded more than 50 years ago, accelerator and 
experimental installations needed to be positioned and aligned. The 
challenges in these applications have always demanded for new and 
creative surveying solutions. Alignment techniques and high-precision 
measurement systems developed and employed at CERN and other ac­
celerator laboratories are different to other applications in engineering 
surveying. 

In this chapter an overview is given of techniques developed and used 
today at CERN in the context of metrology for high energy physics ex­
periments as well as some details about geodetic reference systems and 
corrections. Special focus is given to a selected group of high precision 
measurement systems employed in the ATLAS cavern network. Al­
though the development of measurement techniques or systems is not 
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part of the research work presented in this thesis the purpose of this 
overview is to illustrate the survey work and special developments car­
ried out in the CERN survey group over recent years. Most of the 
methods presented in the following are employed in the real ATLAS 
cavern network data set analyzed in Chapter 6.4. 

For more general details on accelerator alignment and related sur­
veying tasks reference is made to Chapter 4.1 in [33]. 

3.1 CERN reference systems 

The CERN reference system is a local geodetic reference system rep­
resented by the CERN Coordinate System (CCS), [23]. It is a three 
dimensional Cartesian coordinate system. Its principal point is a sur­
vey point in the center of the old PS accelerator, with the Z-axis being 
the vertical at this point, P 0 . The X and Y axes are defined locally 
forming a right-handed Cartesian coordinate system, see Figure 3.1. 

Part of the geodetic reference system are definitions for a horizontal 
and a vertical geodetic datum. The CERN horizontal geodetic datum 
is defined by a geodetic reference ellipsoid, in the form of the GRS80 
reference ellipsoid. Its relative position and orientation are defined by 
the geodetic coordinates of P 0 , setting the deflection of the vertical at 
this point to zero and fixing the geodetic azimuth of the CCS Y-axis in 
the direction of another real PS survey point. 

Additionally to the horizontal datum four different vertical datums 
are used at CERN. The complexity of the related models depends on the 
size and accuracy requirements of the accelerator project involved, [22]: 
Whilst for the PS accelerator with a diameter of 200 m a planar reference 
system sufficed, it was necessary for the SPS accelerator (diameter of 
2 km) to establish a spherical reference surface. 

For the LEP accelerator (diameter almost 9km) a local geoid model 
was derived. In a collaboration with Swiss academic and federal insti­
tutes a high resolution gravity field model was simulated for the CERN 
site and its results compared to astro-geodetic measurements. This 
geoid model is represented by a hyperbolic paraboloid and describes 
the equipotential surface of the gravity field passing through point Po 
which is the foot of the CERN ellipsoidal normal passing through the 
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principal point Po, see Figure 3.1. This model was also to be used for 
the LHC which is installed in the very same tunnel as LEP before. 

But for the CNGS Project - CERN Neutrinos to Gran Sasso (730km 
from CERN) - it was decided to update the geoid model over the CERN 
site, [24]. In collaboration with the Swiss Federal Office of Topography, 
values for the deflection of the vertical were extracted from the model 
used there (an evolution of the models used at the time of LEP) for 
a grid of points over the CERN site. As no analytical surface could 
provide a good fit to the values obtained, interpolation is carried out 
using splines. The new geoid model is referred to as RS2K and is applied 
to calculations for LHC today as well. 

z 

Local geoid 

p 

With these local geoid 
models it is possible to 
derive deflections of the 
vertical and geoidal un­
dulations for any point 
at CERN with respect 
to the geodetic refer­
ence ellipsoid. Further­
more it becomes possi­
hle to combine horizon­
tal and vertical positions 
to get 3D positions and 
to treat measurements to­
gether and not, as com­

Figure 3.1: CERN Coordinate System defined at mon in traditional meth­
the initial point P0 . Relationship to reference el- ods, to separate horizon­
lipsoid and local geoid model. tal and vertical networks 

in calculations. Similarly 
the relationship to any lo­

cal geodetic reference system (local survey reference system) can be de­
fined. Simplified transformation routines for all LHC interaction points 
can be found in [30]. 

Thus, with the information of a local geoid model, survey data can 
be adjusted and analysed in the CERN Coordinate system (CCS). To 
achieve this the observation equations are determined in the local geode­
tic system and the resulting matrices are transformed to the COS for 
adjustment. 

t 
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Survey measurements inside a particular experimental zone are cal~ 
culated in the respective local, horizontal experiment coordinate system, 
like the ATLAS survey coordinate system described in Section 2.1. The 
transformation parameters between the CCS and the ATLAS survey 
coordinate system defined for the LHC Point 1 can be found in [30]. 

Survey data inside such a local 
reference system are analyzed with­
out corrections for effects of the 
earth's curvature. Nevertheless net­
work measurements linking the local 
network to the LHC geometry and 
thus the CERN reference system are 
calculated in general including the re­
spective corrections. If the earth's 
curvature is not taken into account 
in the local system the resulting er­
ror estimate for a distance of 50 m is 
approximately 0.2 mm. This number 
(x) is obtained by a spherical approx­
imation of the geoid surface with a 
mean earth's radius of R = 6371 km 
and a length L = 50 m, see Fig­
ure 3.2. 

L 

R 

Figure 3.2: Estimation of error for 
neglecting earth's curvature. 

Note: The scope of this thesis is to present an algorithm solving 
deformation problems occurring in metrological networks and not to 
provide a complete survey data adjustment package. The survey data 
adjustment module providing data for the adaptive Kalman filter al­
gorithm presented in this thesis does not apply any corrections for the 
shape of the earth. This algorithm is supposed to be implemented as 
part of an survey data analysis program that provides the above dis­
cussed corrections if necessary, like the least-squares adjustment pro­
gramme LGC [31] developed and used by CERN's survey group. Thus 
the results for real network survey data presented later in this thesis 
are adjusted in a horizontal coordinate system, not considering any cor­
rections for the deflection of the vertical. More details are given in 
Chapter 6. 

( 
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3.2 Network point monumentation 

In high precision metrology special care needs to be taken in the point 
monumentation in order to minimize centering and repeatability errors. 
To further enhance repeatability, point coordinates generally refer to 
actually measured points. 

A reference surface that can be very precisely manufactured and its 
position reproduced, is a sphere. CERN reference points are generally 
realized by reference sockets, see Figure 3.3. 
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Figure 3.3: CERN survey reference socket. Vertical section (top) and top view 
(bottom). 
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These reference sockets are based on a simple principle: A sphere 
touches a coaxial conical surface along a circle. The very basic reference 
point is thus simply a base incorporating the conical surface on which a 
precisely manufactured Taylor-Hobson sphere is installed, see Figure 3.4 
(top left) and (top center). The sphere touches the conus along a well 
determined circle. If the sphere is rotated, it still touches the conus 
along that very same circle. The repeatability of this position is very 
precise ( < lOµm) but it can only be used for targets. 

To allow also the installation of an instrument referring to this point 
the principle of sphere and coaxial conical surface is employed another 
time. In the standard reference socket a sphere which serves as extension 
is positioned on the conical base surface, their axes coinciding. The 
sphere itself has a hole with a diameter of 30 mm. On the top this 
cylinder evolves into another coaxial conus, see Figure 3.3. The sphere 
can be fixed in its position by a cap touching the sphere along a circle. 
This cap is screwed to the base by three screws. The reference socket 
can be levelled by inserting a tool into the cylindrical hole which holds 
a precise spirit level. The sphere inside the socket is then rotated until 
its axis is aligned along the local vertical. 

The reference socket is then used to install either a Taylor-Hobson 
target, a similarly shaped prism or to station an instrument, see Fig­
ure 3.4 (bottom). A special base can be inserted into the socket. This 
base is either equipped with a standard Wild screw that is fixed to 
the Leica standard instrument base. Alternatively a Wild GDF 3-pin 
theodolite base (as used for the T2) accepting a theodolite is directly 
fixed to the insert part, see Figure 3.5, which enables a very precise 
centering of the instrument of< 20µm. 

In a working environment like an experimental zone or also the ac­
celerator tunnel it is important that survey reference point monuments 
can be protected from any external forces. This is achieved in some 
cases by removing part of the monument structure or by embedding 
monuments in the floor and applying additional protection measures. 

In the following standard reference point monumentations are de­
scribed and examples for application in the ATLAS cavern network 
shown. 
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Figure 3.4: CERN survey reference socket. Base only (top left), base with Taylor­
Hobson target (top center), base with sphere (top right). Completely 
assembled socket with cap (bottom left), socket with Taylor-Hobson 
Target (bottom center) and socket with theodolite base (bottom 
right). 

•·· 
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Figure 3.5: Instrument base fitting into standard socket. Wild GDF base (left) 
and Wild standard screw (right). 

Figure 3.6: Foldable reference point bracket. Bracket folded up (left) and in 
position for use, here equipped with close-distance Taylor-Hobson 
target sphere (right). 

Foldable brackets These brackets are used for wall points along the 
cavern walls, see Figure 3.6 and Figure 3.7. They had already been 
used in LEP experiments and proved a repeatability of< 50µm. These 
brackets need very little space when not in use and are quickly installed. 
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Figure 3.7: Foldable reference point bracket. Side view (top) and top view (bot­
tom). Dimensions are given in mm. 

The work position of the foldable bracket is achieved by unscrewing 
a security pin and folding the bracket down. The reference socket for 
this type of bracket is similar to the standard socket by means of the 
sphere with coaxial cylindrical hole and conical top finish. As before it 
can be levelled by rotating the sphere in its three-screw-fixation. 

Plug-in brackets These brackets are used in the ATLAS network 
mounted on the access structures HS and HO or other structures. They 
are completely removed when not used and stored in safe areas close­
by, except a baseplate which remains in place. The brackets referring 
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Figure 3.8: Plug-in reference point bracket - type right. Dimensions in mm (left) 
and picture of bracket mounted on HO access structure in the ATLAS 
cavern (right) equipped with prism in sphere. 

Figure 3.9: Plug-in reference bracket - type forward. Left: Bracket stored, base­
plate and plug-in surface protected by plastic covers. Center: Bracket 
pins are inserted into baseplate. Right: Bracket in work position. 

to different points should not be interchanged, to ensure repeatability. 
These brackets exist in different types depending on the direction they 
are fixed to the metal structures. 
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The base plate is screwed to the metal structure or a wall. Screws are 
also used to fix the bracket to the base plate. When installing, first two 
pins on the bracket are inserted into each one hole and one slot (allowing 
horizontal movement only) in the baseplate until the bracket touches the 
baseplate on three defined points. This is done so that these pins take 
the load of the bracket weight instead of the later inserted screws and to 
avoid any strain on the bracket itself. See for illustration Figure 3.8 and 
Figure 3.9. These brackets have been found to reproduce a reference 
point's position within < 50µm even under a load of 15 kg. They are 
directly equipped with a standard reference socket. 

LHC tunnel reference points These monuments stem from the 
period of the LEP project. They are embedded in the floor in special 
pots below floor level, covered by a protection plate, see Figure 3.10. 
A metallic insert finishes with a conical surface ending in a cylindrical 
hole below. This insert accepts an similarly shaped extension of 70 mm, 
with a cylindrical base, leading into a conical shape, housing another 
cylindrical hole and finishing in a conical surface. On this surface then 
a Taylor-Hobson sphere target can be positioned, its center representing 
the reference point to which coordinates refer. 

Figure 3.10: LHC tunnel reference monument embedded in tunnel floor. Pro­
tected by plate (level with floor) and plug. 70 mm extension to be 
inserted into this monument (le~). Extension added and Taylor­
Hobson sphere for long-distance observation positioned (right). 

For setting up an instrument station above this type of point special 
portable survey columns are used, see Figure 3.11. Such a survey column 
has a spherical pivot insert on its base. Its three feet are used to align 
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Figure 3.11: Survey column for LHC tunnel reference points (left). Pivot sphere 
on the bottom (right). 

the column with respect to the local vertical. Precise manufacturing of 
all mechanical parts again ensures that all of these elements are coaxial, 
resulting in a very precise centering and repeatability of the reference 
point's position of< lOµm. 

Cavern floor points These mon­
uments are embedded in the ATLAS 
cavern floor. The small reference sup­
ports are generally screwed to the 
base slab concrete approximately 3 cm 
beneath the floor level and are pro­
tected with a lid, level with the floor, 
see Figure 3.12. In some special loca­
tions close to the cavern corners, mon­
ument bases have been installed be­
fore the concreting of the final floor 
level and small reference sockets fixed 

Figure 3.12: Reference point mon­
ument embedded in cavern floor. 
Protection plate level with floor. 

t 
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Figure 3.13: Reference point monument embedded in cavern floor. Monument 
with cup protection (left) and equipped with Taylor-Hobson sphere 
(right). 

to them. In these cases sockets are not level with the floor and have 
to be protected by robust caps, see Figure 3.13. Repeatability for this 
type of point realizations in combination with a Taylor-Hobson sphere 
is< lOµm. 

Deep refe~en(!e points in LHC tun­
nel These type of points are actively 
linked to the bedrock by a rod in a depth 
of 20 - 30 m. These monuments serve as 
height reference and are regularly mon­
itored. The link to levelling measure­
ments is achieved by a rod with a con­
ically shaped surface finish end piece, 
accepting levelling staff feet, see Fig­
ure 3.14. A cover similar to LHC tun­
nel reference points is used to protect Figure 3.14: Deep reference em­
these monuments. They are located in bedded in bedrock below LHC 
the LHC tunnel, one or two in the vicin- tunnel. 

ity of each LHC interaction point. 
In the case of the ATLAS experiment two points are available, one 

on each side of the cavern. 
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Points on plug-in tripods These 
monuments are installed on steel tripods, 
fixed with three screws to the floor, 
see Figure 3.15. Special brass plugs in 
the floor secure the screws. A stan­
dard reference socket is fixed to the tri­
pod and thus an instrument can be sta­
tioned. These tripods are easily in­
stalled and also removed if necessary, 
the repeatability is within < lOOµm. 

Figure 3.15: Tripod with Taylor-Hobson target. 

3.3 Measurement methods 

In order to accurately position detector parts and other installations, 
different measurements methods are employed. In this section a short 
summary is given of the various types of measurements used in the 
ATLAS cavern network. Special focus is given to non-standard systems 
which have been specially developed or adapted for this application. 

The standard instrument to carry out classical tachymetry is the 
Wild TC2002 instrument, in combination with Taylor-Hobson sphere 
targets. Angle and distance measurements are carried out separately, 
exchanging the target with a corner cube prism. Measurements are 
controlled on-line using a special software module running on a portable 
computer. The data is immediately corrected for atmosphere and prism 
constants and stored. 

Leica Laser Tracking Devices (LTD500) are also available in CERN's 
survey group to carry out precise point positioning ( < 0.1 mm). This 
tracker's portability is limited as are possible applications inside a cavern 
network. Instrument stations would only be possible on the cavern floor 
due to the instrument's weight arid demands for a stable platform. Thus 
it is not employed in the cavern networks and is not discussed here in 
detail. 

I 
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Spatial distance measurements 

Electro-optical distance measurements are part of classical tachymetric 
measurements, carried out generally with Wild TC2002 instruments. A 
precision of < 0.3 mm+ 1 ppm for a distance measurement to a prism is 
achieved. Additionally two KERN Mekometers ME 5000 are available 
with precision of < 0.2 mm+ 0.2 ppm for distances > 3 m but are rarely 
used. 

Atmospheric corrections are applied to the distance measurement 
directly taking into account measured temperature and pressure corre­
sponding to formulas provided by the manufacturers. Generally only 
temperature measurements at the instrument station are taken, as the 
distances are short and the atmospheric environment is considered sta­
ble in this area. Instruments are regularly calibrated on the CERN 
interferometric calibration base in certain reflector combinations. The 
appropriate prism constants are then applied to every distance measure­
ment. 

Methods employing Distinvar (an automatic in var wire measurement 
system developed at CERN) have not been heavily used in recent years 
for measurements in the experimental caverns. These systems are far 
less flexible in their use than electro-optical distance measurement sys­
tems, as the invar wires are always of a fixed length and measurements 
are only possible for approximately horizontal lines. Nevertheless, these 
measurement methods are very precise ( < 0.1 mm) and are thus not 
easily replaced where their application is necessary. 

Vertical distance measurements - geometrical level­
ling 

Precision levelling is carried out generally with either a Wild N3 or 
NA2 level with micrometer plate achieving an accuracy of < 0.2 mm 
and < 0.3 mm for 1 km double path levelling, respectively. The instru­
ments are regularly checked on a collimator in the laboratory. The NA2 
minimum focus range is 1.6 m. If shorter sightings have to be done, a 
Wild N3 instrument has to be used. Its shortest focus range is 45 cm. 

Invar-levelling staffs are equipped with special feet to reproduce the 
feet's position precisely, similar to the reference sockets described above 
and also to achieve the interface between levelling and 3D measurements 
without any loss of accuracy, see Figure 3.16. The foot is dimensioned 
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Figure 3.16: Foot of standard levelling staff (left) and small ruler used for levelling 
inserted into standard reference socket(right). 

to set the zero level of the staff in exactly the same height as the cen­
ter of the Taylor-Hobson sphere when inserted to the same reference 
monument. 

The reason for using traditional levelling instruments and not instru­
ments of the new, digital generation lies in the diversity of applications. 
For a digital level to measure precisely it is necessary that a major 
portion of the levelling staff is visible from the instrument. In an envi­
ronment like experimental installations this can often not be achieved 
as objects may obstruct the sight to parts of the levelling staff. Also 
it is sometimes necessary to use very small staffs or even rulers with 
lengths of down to 20 cm. 

Horizontal and vertical angle measurements 

Angle observations are carried out with Wild TC2002 instruments on 
both faces for network measurements. Each single measurement is car­
ried out twice and the average value stored, see Figure 3.17. 



For angle measurements a 
Taylor-Hobson sphere with an 
illuminated target of concen­
trical rings is used. Target 
patterns are available in dif­
ferent types, to be better vis­
ible in different situations, es­
pecially for different distance 
ranges. The measurement 
precision of a single reading is 
< i.5cc horizontally and verti­
cally. The field procedure re­
quires each set of angle mea­
surements to be finished by a 
closure (remeasuring the first 
point again at the end) in or­
der to check for any instabili­
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ties during the set of measure- Figure 3.17: Angle and distance observa­
ments. The instruments' col- tions carried out with a TC2002 in the AT­
limation is regularly checked LAS cavern. 
in the field. 

Wire Positioning System - WPS 

The Wire Positioning System is one of the new special survey systems 
that have been applied at CERN in recent years in order to solve high 
precision survey tasks in the LHC and also for a new generation of linear 
colliders like CLIC (Compact Linear Collider) which might follow after 
LHC. 

In the vicinity of the ATLAS cavern the systems WPS, HLS (Hy­
drostatic Levelling System) and IRS (Invar Radial System) are used 
to establish a connection between both sides of the LHC accelerator 
through the experimental zone. The alignment of these last sections 
with respect to each other is very critical and has to be monitored con­
tinuously. These systems are also used to transfer the LHC geometry 
realized by point monuments on the magnets into the cavern network 
and thus also the datum information. For the overall layout see again 
Figure 2.20. 

•·· 
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Figure 3.18: Wire positioning system: Sensor and stretched wire, (left) in open 
position and (right) in closed position installed on reference support 
with interface to HLS system. 

WPS measures offsets of a stretched wire in two directions orthog­
onal to the wire by the principle of a capacitive sensor, [9]. The wire 
passes the WPS which has the form of rectangular parallelepiped, see 
Figure 3.18. The wire representing the spatial reference is actually a 
twisted carbon composite fibre wire. Together with the sensors made 
out of metal and ceramic a variable capacitor is formed. The sensors 
used at CERN are manufactured by Fogale nanotech and have a mea­
surement range of ±5 mm and a precision of < 5µm. The sensors have 
two electrodes per axis which gives very precise results. If necessary 
the electronics connected to the sensors can be some tens of meters 
away which is necessary in high radiation areas. The wire is stretched 
with an appropriately dimensioned counterweight. Precise modelling of 
the catenary (considering the length of the wire, its weight, the coun­
terweight and the height differences between wire endpoints and wire 
mid-point) is necessary in order to achieve the maximum precision. 

The WPS system is installed on the LHC Inner Triplet quadrupoles 
on both sides, [10]. Its main objective is to monitor the horizontal ra­
dial alignment of these magnets with respect to each other. To achieve 
the link of both sides an Offset Reference Line passes through the sur­
vey galleries and the experimental cavern over a length of 126 m, see 
Figure 3.19. The connection between the Inner Triplet Lines and the 
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D1 03 02 02 03 D1 

Figure 3.19: Layout of WPS and IRS installation around ATLAS cavern. 

Offset Reference Line is achieved by a radial system of invar rods (IRS) 
composed of three rods on each side of the cavern. 

Invar Radial System - IRS 

The invar rods with a length of 16 mare installed radially between the 
survey galleries and the LHC tunnel in 12 m long boreholes of 40 cm 
diameter, [34]. They are calibrated beforehand at CERN's interfer­
ometric calibration base. Each en<l of the invar rods is equipped with 
sensor targets, see Figure 3.20. Capacitive sensors that are fixed to WPS 
sensors measure the distance to these targets continuously. By applying 
atmospheric corrections the offset of the WPS Inner Triplet Line and 
the Offset Reference Line in the horizontal plane is thus known with a 
precision of < lOOµm. 

Hydrostatic Levelling System - HLS 

In vertical direction the link between both sides of the LH C Inner 
Triplets is realized by a closed hydrostatic loop with one step. The 
step is necessary as the inclination of the beam over the length of the 
hydraulic pipe exceeds the measurement range of the sensors. Thus 
two individual hydraulic pipes are used. At the step, two HLS sensors 
are linked mechanically, thus the offset is well determined. The HLS 
is installed passing the survey galleries and the experimental zone, see 
Figure 3.21. The combination of this HLS with the WPS and IRS de­
termines the radial geometrical component of this link very well. The 
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Figure 3.20: lnvar Radial System IRS linking stretched wire lines in the LHC 
tunnel and survey galleries, {10} . 

JDDU 
Hydraulic Pipe 

UDDL 
Figure 3.21: Layout of HLS installation around ATLAS cavern. 

longitudinal position is of lesser interest for the accelerator position but 
has to be determined for the cavern network by distance measurements. 

The Hydrostatic Levelling 
System works on the principle 
of communicating vessels, see 
Figure 3.22. The sensors used 
at CERN have been manufac­
tured by Fogale nanotech, see 
Figure 3.23. They measure 
the distance to the liquid sur­
face based on the principle of 

Figure 3.22: Principle of HLS: Communicat­
ing vessels. 
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Figure 3.23: HLS sensor installed in ATLAS survey gallery. 

a capacitor. The accuracy achieved is < 5µm for a measurement range 
of ±2.5 mm, [10]. Effects of pressure and temperature have to be con­
sidered as well as tidal effects and gravity anomalies if the distances 
of the hydraulic network become longer (i.e. > 200m), [5]. Again the 
electronics for this system can be remote from the actual measurement 
system in order to minimize radiation exposure. 

WPS and HLS sensors will be installed with mechanical interfaces 
to each other and to ordinary survey measurement systems by standard 
reference sockets (described in Section 3.2) mounted on top of the com­
bined WPS /HLS sensor setup. This allows to make the necessary link 
from the LHC geometry transferred by these systems into the survey 
galleries and the cavern network. 

Unfortunately these systems are not available for the most part of 
the ATLAS detector installation process. Parts of the HLS and WPS 
have been installed so far but the important link between the systems 
as well as the link to LHC geometry are not yet available. As discussed 
already before in Section 2.4 this link is very important for the ATLAS 
cavern network as it represents the network datum. This has the effect 
that the essential connection to the LHC geometry (represented by LHC 
tunnel reference point monuments until fiducial points on the Inner 
Triplet Quadrupoles Q1 Q2 and Q3 are installed) is realized by angle 
and distance measurements passing through the survey galleries which 
gives a poor network configuration. 

Six HLS sensors have been installed on the ATLAS bedplates in 
order to monitor any movements in this structure during the installation 
process. These sensors have been linked by geometrical levelling to 
the cavern network and some sample measurements are included in the 
results presented in Chapter 6.4. 
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Digital close range photogrammetry 

Digital close range photogrammetry has been extensively used in the 
context of verification, assembly and fiducialisation of detector parts for 
all CERN experiments. Likewise many ATLAS detector parts have been 
measured and verified during their production and assembly at CERN 
and at external manufacturers. For ATLAS digital photogrammetric 
measurements have been carried out for some detector systems (e.g. 
Inner Detector and Tile Calorimeter, see Figure 3.24) asking for high 
accuracy and measurement of a high number of points. 

In the context of the cavern network these measurements are not 
considered even though some network points are measured for trans­
formation purposes (demanding thus availability of good network point 
positions). Object point measurements prevail, but this method repre­
sents an interesting and very. powerful technique in the context of large 
scale physics experiments by means of its portability and high precision 
capabilities. 

Figure 3.24: Digital photogrammetry. SCT of the ATLAS Inner Detector (left). 
Tile Extended Barrel Side A Assembly in the ATLAS cavern (right). 

t 



4 
Standard network and 
deformation analysis 

In this chapter standard network and deformation analysis methods are 
summarized and briefly discussed, considering especially the problem of 
deforming networks with changing configurations. 

The main reference for this chapter is [44]. It is only referred once 
in each section it applies to. Detailed expressions of most formulas are 
omitted here and can be found in this reference or any other reference on 
geodetic network analysis methods. The nomenclature in this chapter 
follows [16]. 

4.1 Network analysis 

The main aim of network analysis is to assess the quality of a network 
of geodetic measurements. The definition of a geodetic datum influ­
ences the results of network measurements and is also addressed here 
briefly. The quality of a network is assessed by measures of accuracy 
and reliability. 

59 
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In this chapter the formulation of least-squares adjustment according 
to the Gauss-Markov model is used: 

y+e =A·e 
:Eyy = o-5. v 

(4.1) 

(4.2) 

where y is the vector of observations, e are the residuals, A is the de­
sign matrix representing the functional model of linearized observation 
equations and e is the parameter vector (vector of unknowns). :Eyy as 
covariance matrix of the observations describes the stochastic model by 
means of the cofactor-matrix V scaled by the unit variance o-5. The 
solution of (4.1) with respect tot, defined as the best linear uniformly 
unbiased estimate (BLUUE) is 

t = (ATPA)-1 A Tpy (4.3) 

if A is of full rank and with P = v-1. 

For a detailed discussion of least-squares adjustment and hypothesis 
testing the reader is referred to [44, 59, 8, 61]. 

4.1.1 The geodetic datum 

A network of survey measurements determines generally only the in­
ternal geometry of the concerned network points. In order to derive 
coordinates in a given reference system the measurements do not give 
sufficient information. The network is rank deficient in terms of the 
coordinate system definition. The choice of the datum elements relat­
ing the internal network geometry to the reference coordinate system 
directly effects the network's adjustment results. The number of free 
datum parameters d in a network depends on the dimension of the net­
work and the types of measurements used. It corresponds to the rank 
deficiency in the design matrix A describing the relationships between 
u unknowns by means of the observation equations, rank( A) = u - d. If 
only relative observations are available and no datum has been defined, 
this as well as the matrix of normal equations N = A Tp A are rank de­
ficient, thus they can not be inverted regularly or solved unambiguously. 
By defining a geodetic datum, one can dispose of the rank deficiency. 

A three dimensional network generally has seven free datum param­
eters: Three translations, three orientations and one scale factor. This 
is reduced to six if distances have been measured, fixing the scale factor. 

' I. 
' I 
I . 

I 



NETWORK ANALYSIS 61 

If at least two vertical angle measurements are included, the number of 
free datum parameters is reduced to four, as rotations around X and Y 
axes are determined. The information inherent in the observations can 
thus define part of the geodetic datum. 

Several methods exist to define the remaining datum parameters, 
[44]. Generally, two approaches have to be distinguished: 

• The datum definition constrains the network's geometry. 

• The network is adjusted unconstrained. 

Classical (hierarchical) adjustment approaches define a group of points 
of assumed superior accuracy as datum points, e.g. points that are 
part of a higher order network. These datum points are fixed and no 
coordinate changes for these points are allowed in the adjustment. Con­
sequently, no error estimation is available for these points after adjust­
ment. If the number of coordinate components included in this defini­
tion is equal to the number of free datum parameters, no constraint is 
forced on the network, it is adjusted freely. If, however, the number 
of elements in the datum definition exceeds the number of free datum 
elements, the network adjustment solution is constrained by this datum 
definition. Errors in the datum points' relative geometry directly affect 
the remaining network. 

More general methods of defining a datum include conditions on the 
parameters or additio:qal information in the adjustment model, which 
dispose of the rank deficiency problem: 

• Condition: Minimize parameter estimates for all points: 11€11 = 
min. This solution is obtained by applying the algorithm of a 
Moore-Penrose matrix inversion to the matrix of normal equations 
N. The Moore-Penrose inverse is also referred to as the pseudo­
inverse. The resulting cofactor matrix V €€ has minimum trace 
Li V ff ( i, i) = min. Consequently this method of datum definition 
is in German referred to as 'Gesamtspurminimierung'. 

• Condition: Minimize parameter estimates for a selected group of 
datum elements: 11€v II = min. Similarly to the method above 
the resulting cofactor matrix for the selected datum elements has 
minimum trace Li Vuv(i,i) =min, and in German is referred 
to as 'Teilspurminimierung'. This method is well adapted for 
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applications were network points of higher order are used for the 
datum definition but their accuracy is questionable. 

• Additional information: Include stochastic information for da­
tum elements. Datum point coordinates are introduced as addi­
tional observation data to the functional adjustment model. The 
stochastic model is extended by the corresponding stochastic in­
formation. This method is well adapted for applications where 
datum elements with stochastic information exist which is often 
the case in geodetic networks. 

To change the datum definition without re-adjusting the entire model, 
similarity (S)-transformations can be applied. This method is presented 
in more detail in Appendix A. 

The definition of the geodetic datum is important in deformation 
analysis problems as the choice of the datum can effect the deformation 
analysis. Constraints from the datum definition on the network geom­
etry affect the deformation analysis results and have to be avoided. If 
this is not possible special care needs to be taken to ensure identical 
datum definitions in all measurement epochs. 

4.1.2 Accuracy 

The accuracy of a network describes how well the unknown parameters 
can be determined by the observations available, assuming that the 
functional and stochastic models are correct. It determines the quality 
of the network configuration, [44] and is affected by the choice for the 
datum definition. Several measures of accuracy can be derived from 
the cofactor matrix of unknowns V €€ = N-1 . Thus these terms can 
be derived from the definition of the functional and stochastic models 
only, no actual observation data is necessary. This makes these terms 
powerful tools for the planning of measurements. 

Accuracy measures are divided into two groups: 

• Local measures of accuracy refer to parts of the cofactor ma­
trix V €€ only. They include standard deviations of individual un­
known parameters, confidence-ellipsoids for individual points and 
relative confidence-ellipsoids between two points. 

I 
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• Global measures of accuracy make use of the full VU ma­
trix which allows for different network configurations to be com­
pared. Terms include confidence hyper-ellipsoids, measures for 
homogeneity and isotropy of error ellipsoids and spectral analy­
sis of V ~~ giving the so called principal components. Principal 
component analysis can be interesting in deformation analysis ap­
plications with high parameter correlations, as weak areas in the 
network can be identified. The worst-determined direction in the 
network found by principal component analysis, should not coin­
cide with the expected direction of deformation. 

Details for all terms can be found in [44]. 

4.1.3 Reliability 

Reliability refers to the ability of the network to control individual mea­
surements and their influence on the unknown parameters. It describes 
the quality of the network realization. The cofactor-matrix of the resid-

. uals Vee = V -AV uA T is used to derive various measures of reliability. 
A geodetic network is considered to be reliable, if gross errors in the 

observation data can be detected (internal reliability) and in case gross 
errors remain undetected, they have minor influence on the resulting 
parameter estimation (external reliability). 

Redundancy A fundamental term in assessing the reliability of a 
network is the redundancy number ri of an individual observation. It is 
defined as: 

ri=R(i,i) (4.4) 

with R being defined in the following way 

R=Vee·P. (4.5) 

The redundancy numbers are 0 ::; ri ::; 1 for uncorrelated observations. 
The redundancy R of a network of n observations and u unknown pa­
rameters is obtained as 

n 

R = trace(R) = L ri = n - u. 
i=l 

(4.6) 

I 
r-
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The redundancy number of an individual observation describes the con­
tribution of this observation to the overall network redundancy. If it 
is very small the observation is poorly controlled. Errors in such an 
observation are difficult to detect but have a major influence on the 
adjustment results. If the redundancy is large the corresponding obser­
vation is very well controlled. Any error in such an observation is easily 
detectable or if it remains undetected, has a very small influence on the 
adjustment result. If the redundancy is equal to 1, the observation is 
completely redundant and thus dispensable. 

Gross error detection Tests for gross errors traditionally employ 
observation residuals e = At-y. If the null hypothesis Ho, stating no 
gross error being present, is valid 

Ho : E(y) =A~, (4.7) 

the residuals e follow a normal distribution 

(4.8) 

Thus a gross error in the observation data can be identified by using 
the following probability relationship 

(4.9) 

This simple test is repeated for each observation to identify gross errors 
at a level of significance of (1 - a). 

Internal reliability can be assessed by determining the minimal de­
tectable bias (MDB) in each observation given a certain level of signif­
icance ( 1 - a) and power of the test ( 1 - /3). a is referred to as the 
type I error probability. It is the probability by which an alternative 
hypothesis HA is accepted while the null hypothesis Ho is true. /3 is 
referred to as the type II error probability and describes the probabil­
ity of accepting Ho, if HA is true in fact. For an illustration of the 
relationship between a and /3 see Figure 4.1. 

In gross error detection the alternative hypothesis is generally for­
mulated assuming only one gross error D.i to be present in the observa­
tions, as defined by Baarda in [4]. For every observation the following 
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Ho 

~ Zt-a ti 
~oi~ 

Figure 4.1: Level of significance (1 - a), power of the test (1 - /3) and non­
centrality parameter c5i in the hypothesis test. 

alternative hypothesis can thus be formulated 

(4.10) 

By including the error ~i in the functional model Niemeier shows in 
[44, p. 279] that an estimate Lii for the error and its cofactor can be 
derived 

Lii 'IJ[iJPe 
(4.11) 

7JRjPVee.P'IJ[iJ 

Vt:.; = ( 'IJRJ PV ee.P'IJ[iJ) - i (4.12) 

where 'IJ[i] is a unity vector with zeros for all elements but the element 
i, which is 1. A test statistic n~ for this parameter can be derived as 

AT A ATp . TpA 
2 ~i ~i e 'IJ[i]'IJ[i] e 2 

ni = -2-- = 2 T PV p f""V X1-a,l,8; 
aov'V'; O"o'IJ[i] ee 'IJ[iJ 

(4.13) 

which follows a x2-distribution with the non-centrality parameter 8i. 
This is due to the fact that n~ is the squared form of the variable 
Lii which follows a non-central normal distribution. By executing the 
test it can be decided if an error in the observation Yi is significant 
or not. The non-centrality parameter 8i gives information about the 
separability between the null and alternative hypothesis and thus the 
power of the test. It can be determined from the true value ~i of the 

I 



66 STANDARD NETWORK AND DEFORMATION ANALYSIS 

gross error or alternatively, as the true error is generally not known, for 
a given value ~i-

(4.14) 

In case the observations are uncorrelated (P = diag(pi)), the terms 
described above become simple. Equivalent to ( 4.4) the redundancy 
numbers are 

(4.15) 

the estimation for the error and its cofactor in (4.11) become 

(4.16) 

1 
(4.17) 

and the non-centrality parameter according to (4.14) 

(4.18) 

Given a level of significance ( 1 - a) and a chosen value for the power 
of the test (1 - (3), a non-centrality parameter Ji,O and consequently a 
value for the MDB \i'i can be derived as 

(4.19) 

In these simple formulas it can be seen, that the internal reliability 
is directly affected by the redundancy number of each observation and 
the observation precision. For a given observations precision, it is easier 
to detect an error in well controlled observations (e.g. Ti > 0.6), as 
the non-centrality parameter and thus the power of the test increases, 
see (4.18). The factor Ti emphasizes the error. Iri a well controlled 
observation, smaller errors become detectable, according to (4.19). 
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External reliability describes the influence of an undetected error 
on the parameter estimates. A single MDB \7 i in the observation data 
can change all parameters by A€v

1
, 

(4.20) 

This term depends on the choice of the datum, as A€v, depends on 
Vu. By squaring (4.20) a term flf can be defined 

2 A T -1 A 2 T T -1 
()i = Afol Vu Afo, = 'Vi7/[i]PA VuV€€ VuAP7/[i] 

= 'VT11fi1 PATV €€AP77[iJ = 'VT11~ PV yyP7/[iJ 

= 'VT11~P (V - Ve;;) P77[iJ 

= 'VT11fi1 PVP77[iJ - 'VT11fi1 PV eeP7/[iJ. 

(4.21) 

Assuming uncorrelated observations e; follows as 

e; ='VT. Pi - 'VT. Pi. Ti= 'VT. pi(l - ri). (4.22) 

This distortion parameter B[ is independent of the datum definition. If 
the observation redundancy number is larger, the distortion decreases 
(for same measurement precision and observation error). Thus, as stated 
before, an error in a well controlled observation has less effect on the 
network results than a poorer controlled observation. 

4.2 Standard deformation analysis 

A geodetic network that has been measured in several epochs (i.e. at 
different instances in time) can be analyzed for any changes in the net­
work's geometry. In this section the standard method of congruency 
testing is shortly reviewed following [44] closely as main reference, but 
more detailed information can be found in [43, 47, 48]. 

Changes in the network geometry are detected by a global congru­
ency test. In case a deformation has been detected the reason for it is 
identified in a ~ubsequent localization procedure. 

Information required for each measured epoch i include: the esti­
mated point coordinates €i, corresponding covariance information a5,i · 
V €;€; and the degree of freedom in the estimation k Generally it is 
assumed that the network has been measured in identical configuration 
in each epoch. 

( 
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Global congruency test Let us assume, a network has been mea­
sured in two epochs and needs to be analyzed for possible deformations. 
The measurements are combined into one model. It is assumed that 
no correlations exist between the two measurement epochs and that the 
approximate point coordinates are identical: 

[~~]+[:~] = [~1 1
2

] [i~J, ~yy=a5V=a5 [V~i ~J. (4.23) 

The null hypothesis Ho stating no significant movement between the 
two epochs can be formulated as 

Ho : e2 - ei = O, (4.24) 

or alternatively in matrix notation (with unity matrix I) 

Ho : [-I I] [1~] = 0. (4.25) 

A test term !12 can be formulated as 

resulting after multiplication in 

The pseudo-inverse (indicated by +) is used for reasons of generaliza­
tion in this expression, as singular measurement configurations do not 
necessarily have to be excluded. ( 4.27) is further simplified by defining 
the difference vector 79. 

(4.28) 

The corresponding cofactor-matrix V fHJ follows as 

vf)f) = v€i€1 + v€2€2 = (AfP1A1t + (AIP2A2t. (4.29) 

t 
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It is of rank h = rank (V {){)) which is in case of identical network con­

figurations and datum definitions for both epochs h = rank ( V €
1
€

1
) = 

rank ( V €
2
€

2
) = u-d with d being the number of free datum parameters. 

Thus ( 4.27) can be rewritten as 

(4.30) 

To determine a representative estimate for the value of estimated unit 
variance &5 it has to be assured that individual estimates for both epochs 

&5 1 = effP101 and 0-0
2 

2 = effP202 do not differ significantly. The base 
' 1 , 2 

hypothesis is defined as H B 

(4.31) 

which is tested by the following relationship 

(4.32) 

employing the Fisher distribution quantile. 
If (4.31) is established to be valid the global congruency test can be 

defined as 

(4.33) 

with the probability relationship 

P{F :S Fh,f,1-alHo} = 1- a. (4.34) 

If F exceeds the quantile of the corresponding Fisher-distribution, the 
null hypothesis Ho is rejected and deformation has occurred between 
the two epochs with a level of significance (1 - a). In the following 
localization procedure it has to be decided which point(s) have moved. 

The assumption above on identical network configurations in all 
epochs is not stringent. Methods employing S-transformations or free 
adjustments to match identical points can be applied. 
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Localization In case a significant difference between epochs has been 
found, points that have moved need to be identified and separated from 
stable points. The group of stable points forms the reference for defor­
mation values, as the information in the difference vector 1J is relative. 
In some applications the reference definition is implied in the problem 
description, i.e. a group of points is defined as stable or assumed sta­
ble because these points are outside the deformation area. Nevertheless 
such reference assumptions have to be verified in order to avoid any 
bias in the deformation analysis results by any undetected deformation. 
In other applications a stable reference has to be identified statistically 
within the group of all points. In both cases the following iterative test 
strategy can be applied. 

Again the example of only two epochs in identical configurations 
is used, with p identical points. The global congruency test in ( 4.34) 
indicates a significant deformation between the two epochs. Each point 
is now individually suspected of having moved. In the first step p - 1 
points are assumed to be stable, defining the reference. One point in 
suspected to have moved. The parameter vector is thus split up in the 
following way 

2j - [€~kl '>k - A• 

~~k 
fork= 1, ... ,p. (4.35) 

€~k refers to the group of p - 1 assumed fixed points and €~k refers to 
the one point k suspected of having moved. The superscript j refers to 
the datum definition. It is necessary to make a datum transformation 
from datum j which includes all identical points to datum i which is 
represented by the p - 1 points considered to be fixed. This is achieved 
by S-transformation, for details see Appendix A. 

The difference vector and its cofactor matrix for the fixed points €h 
between the two epochs are defined as, [44, p. 379] 

= (€h)2 - (€k)l (4.36) 
1J'l'J1h = (v~FJ 1 + (v~FJ2, 

where the subscript k indicates that the point k is excluded from this 
difference. Similarly to ( 4.33) a test term can be defined as 

(4.37) 

I 
I. 
I 
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For each of the p points a value for Fk is calculated. The point s 
corresponding to the smallest value for Fk is considered to be the point 
which has most probably moved. 

If F 8 :::; Fh,,f,1-a then s is the only point having moved at the 
significance level of (1 - a). If this is not true, at least one more point 
has moved. Thus in the next step each of the remaining p - 1 points is 
suspected to have moved additionally to point s and each corresponding 
value Fk is determined. This process is repeated until a set of identical 
points has been found for which the congruency test is accepted. 

This method is also referred to as the backwards strategy. In the 
beginning all points are considered to be stable. Then each of them 
is checked individually and if tested positively for having moved, is ex­
cluded from the group of stable points. In applications with a predefined 
group of presumably stable reference points these points also need to 
be checked in this way. Such a process can be followed by a forward 
strategy which checks other identical points considered as moving from 
the very beginning, for being stable points. In this case one single point 
is added to the fixed points in each calculation step until no more stable 
points can be identified. 

Applying this standard method of deformation analysis to a large 
geodetic network poses a complex task for several reasons: 

• Many calculations steps are necessary to check for all combinations 
of points in the backward and possibly also forward strategy. 

• If network configurations are different in each epoch, analysis for 
individual points becomes difficult especially in larger networks. 
e.g. Point P1 is measured in epoch 1, 3, 4, 5, 8 and 13. Deforma­
tion analysis needs to be carried out for epoch pairs (1, 3), (3, 4), 
(4, 5), (5, 8) and (8, 13) and possibly all other combination pairs. 
Point P2 is measured in epoch 2, 3, 7, 10 and 12. Deformation 
analysis needs to be carried out for epoch pairs (2, 3), (3, 7), (7, 
10) and (10, 12) and possibly all other combination pairs. 

• Same datum definitions in each epoch can be achieved by S­
transformations or free adjustment. If measurements do not in­
clude a link to a predefined 'absolute' reference, it is difficult to 
relate results to the reference, or to compare results. 

I 
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4.3 Conclusion 

In this chapter some basics of network and deformation analysis have 
been briefly reviewed. It could be seen that measures of accuracy depend 
on the measurement configuration and datum definition. Measures of 
reliability depend on the realization of the network measurements which 
includes measurement precision but also network configuration and da­
tum definition. It was shown that one of the most important reliability 
measures in a network is the redundancy of observation data. 

Standard deformation analysis methods employ epoch-to-epoch com­
parison of network measurement results. Clear and thorough analysis of 
networks in changing configurations and datum definitions is complex 
and demanding by means of organization of measurement data and re­
sults. This is especially true if the size of the network to be analyzed 
becomes larger. A method which incorporates an easy and structured 
handling and analysis of the data and the necessary deformation anal­
ysis would make this task much more accessible and manageable. A 
solution to this problem is discussed in the f<?llowing Chapter 5. 



5 
An alternative approach 

to adjust 3D networks 
subject to deformation 

and changing 
con.figuration 

In this chapter a more general approach to geodetic networks is taken, 
namely as time-variable systems, in contrast to classical methods dis­
cussed in Chapter 4. 

A short summary of a classification of deformation models is given 
in Section 5.1. Based on this categorization, a concept to handle these 
deformation models using a Kalman Filter (KF) approach is developed. 

The motivation for the use of a KF for geodetic applications in Sec­
tion 5.2 is followed by Section 5.3 on KF basics. In Section 5.4 the KF 
equations are set up for a kinematic three dimensional (3D) geodetic 
network observed in several epochs in changing configurations. Ulti­
mately this KF setup has to be extended to an adaptive or self-tuning 
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filter to enable the estimation of the deforming network. The key fea­
tures of this implementation are presented in Section 5.5. Methods to 
enhance the filter's performance to identify deformations are discussed, 
including additional information which is outlined in Section 5.6. 

Many terms in the following sections originate from or are strongly 
related to system or control theory and are explained or interpreted for 
geodetic matters as they occur. The notation generally found in liter­
ature on KF is used in an adapted version. The KF notation diverges 
from the notation commonly used in geodetic least-squares estimation 
which is also applied in Chapter 4. f ~3. 

5.1 Deformation models 

A commonly agreed classification of deformation models in the geodetic 
context refers to terms known from system theory. Two main groups 
of deformation models are differentiated: Descriptive models and cause­
response models, [60]. 

Descriptive models do not consider any acting forces causing the 
deformation. If the motion can be described as a function of time a 
kinematic model can be defined. If this is not the case standard defor­
mation analysis methods can be applied based on a congruence model. 

Cause-response models relate acting forces to resulting deformations. 
If this relation can be modelled by a time dependent function, a dynamic 
model can be defined. If otherwise the time dependency can not be 
described or can be neglected, the special case of a static model arises. 

The dynamic model thus represents the ideal case in terms of analysis 
capabilities, as it enables to describe the system's behavior best. The 
definition of a dynamic system requires the relationships between the 
system's input (i.e. forces) and the output (i.e. deformations) to be well 
known by quality and quantity, which very often proves to be difficult 
or even impossible. 

I 



KALMAN FILTER IN GEODETIC APPLICATIONS 75 

5. 2 Kalman Filter in geodetic applications 

The KF has had a considerable impact in many scientific and engi­
neering branches after its first publication in 1960, [26]. Applications in 
controls and navigation were among the first to pick up rapidly this new 
approach and many others followed. For examples of the wide range of 
applications see [58]. 

The most common application in the field of geodesy and survey­
ing is the control, navigation and tracking of satellites. A satellite is 
considered as a moving object whose position is to be determined by 
measurements from known static ground stations. 

Common to all traditional KF applications including navigation and 
control is the large quantity of repeatedly available data, i.e. data in 
many different time epochs. In geodetic deformation analysis applica­
tions this is generally not the case and data is available in only few 
epochs. 

Pelzer was one of the first to introduce the kinematic approach to 
handle geodetic, time-variable networks for deformation analysis, see 
[48, 49]. 

One of the most thorough and dedicated studies since then was sup­
plied by Heunecke [19], who joins the theory and concepts of system 
theory, mechanical engineering and engineering geodesy in order to an­
alyze deformation processes. He derived and developed the KF as a 
special interpretation of least squares adjustment following the Gauss­
Helmert and Gauss-Markov models. Heunecke introduced the so called 
'Hannover-Filter', an adaptive filter incorporating cause-response defor­
mation models considering the causing forces' parameters as stochastic 
variables, that can be determined within the filtering process. A very 
sound theoretical basis to this topic is developed, which does not extend 
to the practical implementation. 

The approach chosen by Heunecke [19] can also be applied to the case 
of a network like the ATLAS cavern network, but in a modified way. The 
Hannover filter adapts to deformations acting on the geodetic network 
by including additional causal physical parameters. For the ATLAS 
cavern network no cause-response model is available, as discussed in 
Chapter 2. In such a case the adaptive filter has to be interpreted and 
solved differently. The approach chosen and described in the following 
incorporates a descriptive and kinematic deformation model. 
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A key issue in any KF implementation is the correct identification of 
the stochastic models in order to avoid divergence and to ensure accurate 
estimates. The chosen approach iteratively adapts the stochastic models 
in a robust manner, using statistical tests based on innovation analysis. 

The main features of the KF implementation presented in this chap­
ter considering a geodetic network like the ATLAS cavern network can 
be summarized as follows: 

• The geodetic network is interpreted as a kinematic system. 
• Changing network configurations are easily handled in the KF, 

measurements with rank deficiency resulting from insufficient da­
tum definition are possible. 

• The main interest is the correct system description representing 
the network. Although deformation analysis in the classical sense 
is not the main issue it can easily be derived. 

• A well known system description can be used in later epochs to 
ensure network reliability, also applicable if the network configu­
ration degrades. 

• Accuracy information for each network point is always updated, 
which can be useful for the planning and management of geodetic 
measurements referring to the network information. 

In the subsequent sections the KF formulation and its theoretical 
background is described, resulting finally in the detailed description of 
the implemented adaptive KF approach for the ATLAS cavern network. 

5.3 Kalman Filter basics 

The KF was first introduced in the commonly known form by R.E. 
Kalman [26]. The novelty of this paper was a recursive algorithm to 
solve a time-dynamic problem described in a state-space model. This 
publication was followed by many others. The main references used here 
include [6, 15, 21, 35]. 

The formulation and notation in the following is based on [15]. To 
avoid continuous repetition, a source is only referenced if different. 
There are slight changes in the choice of time indexing, which are simi­
larly found in [38]. As a consequence of using KF notation, terms which 
also occur in geodetic least-squares adjustment might thus be referred 
to in a different way. 
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Noise 

• 
Input -+ Object -----.. Output 

Figure 5.1: The state-space model. 

For details on random variables, stochastic processes and general 
least-squares adjustment the reader is referred to [27, 44, 59, 6, 15, 35]. 

5.3.1 State-space model 

Physical, time-variant problems are commonly described by differential 
equations. For notational and mathematical convenience these equa­
tions can be formulated in matrix notation. In system and control 
theory this formalism is applied in the time domain (in contrast to 
frequency domain) to yield a so called state-space model, see also Fig­
ure 5.1. 

A linear dynamic system can be described by a first-order differential 
equation: 

x(t) = F(t) · x(t) + G(t) · w(t) + L(t) · u(t) (5.1) 

where x(t) is the system state vector, w(t) is a random forcing function, 
which is assumed to be white noise and describes the system noise, 
u(t) is a deterministic (control) input (i.e. forces or other causes). F(t), 
G(t) and L(t) are in general time-dependent, rectangular matrices. The 
state vector may contain parameters of different nature, for example 
coordinates, velocities, acceleration, forces, momenta etc. depending on 
the individual problem at hand. If u(t) = 0, the system is assumed to 
be not influenced by a deterministic input and the differential equation 
describes only the kinematics of the system. 
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Considering only the homogenous part of (5.1) gives 

x(t) = F(t) . x(t). (5.2) 

This differential equation can be solved if F(t) is constant (i.e. time 
invariant) which includes the case where F(t) is a function of (t - to) 
only. Then the solution 4>(t, t0) is the inverse Laplace transformation 
c-1 of (s ·I - F)-1: 

x(t) = 4>(t, to) · x(to), (5.3) 

where 4>(t, to) represents the transition matrix of the system. 
Solving for the particular solution of the differential equation (5.1) 

finally leads to the continuous model description 

t t 

x(t) = 4>(t, to)·x(to)+ J 4>(t, T)·G(T)·w(T) dT+ J 4>(t, T)·L(T)·u(T) dT. 

to to 

(5.4) 

The continuous model can be transformed into a discrete model: 

Xi= 4>(i, i - 1) · Xi-1 + r(i - 1) · Wi-1 \- A(i -1) · Ui-1 (5.5) 

where 

4>(i, i - 1) 
t; 

r(i -1). wi-1 = J 4>(ti, T). G(T). w(T) dT 

t;-1 

t; 

A(i - 1) · ui-1 = J 4>(ti, T) · L(T) · u(T) dT. 

ti-1 

(5.6) 

4> ( i, i - 1) is the transition matrix in time-discrete representation. w i-1 
is the (white) system noise process, its relation to the state vector Xi 
is described in time-discrete formulation by the corresponding matrix 
r(i - 1). The vector Ui-1 represents the deterministic input and the 
rectangular matrix A( i -1) summarizes the input's effect in the discrete 
model. 

( 

I 
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(5.5) represents a recursive formulation in matrix description of a 
time-discrete process. Such a system equation can then be used to fit a 
sequence of observed data, thus an estimation problem is defined. The 
observation data zi is introduced by defining the measurement equation 
which relates the observed data to the state vector: 

(5.7) 

where vi is the measurement noise, which is as the system noise before 
assumed to be white noise. Hi is the matrix of linear or linearized 
relationships between the state vector and the measurements. 

Here, a time-discrete representation of the measurement equation 
has directly been chosen, which is most suitable for sampled observation 
data. 

As indicated before the measurement noise vi and the system noise 
wi-1 in (5.5) are to be understood as white-gaussian sequences that are 
uncorrelated. 

E{wi-1} = O; 

E{vi} = O; 

E{wi-1 · wf_1} = Qi-1 · 8ij 

E{vi · vf} = Ri · 8ii 

E{vi · wf_1} = 0, for all i,j, 

(5.8) 

8ij being the Kronecker-Delta function defined as 8ij = 1, if i = j 
and 8ij = 0 otherwise. Ri, Qi-l are the covariance matrices of the 
measurement and system noise, respectively. 

The measurement and system noise describe model disturbances and 
noise corruption that affect the system, but also uncertainty about the 
model. 

5.3.2 Discrete Kalman Filter 

The discrete KF determines a minimum mean-square error (MMSE) 
estimate for the state vector as described in (5.5) based on measurement 
data included in (5.7). 

The proof of the KF properties that lead to a MMSE estimate is 
given in Kalman's original paper [26]. Kalman's original derivation 
is based on the Orthogonal Projection Lemma which states, that the 
minimum estimate is the orthogonal projection of the state on the mea­
surement space. Other derivations can be found in the literature and 

I 
I. 
' 
I 

I 
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include different approaches (e.g. [35, 21) taking conditional probability 
approaches). In [19) the KF is derived as special cases of the Gauss­
Helmert and Gauss-Markov models providing additional possibilities for 
statistical interpretation interesting to geodetic applications which are 
missing in other formulations. An extended innovation analysis enabled 
by this approach is described in the later Section 5.5.2. Other useful 
terms include the terms of observability, controllability and disturbability 
summarized in Section 5.3.5. 

The estimate of the state vector xiii at a time ti is obtained as an up­
date of the previous state vector by incorporating information obtained 
by adding the measurements Zi: 

(5.9) 

where xiii represents the estimate for the state at time i based on mea­
surement information up to and including time i, Zi· The vector xiJi-1 
represents the estimate (prediction) for the state at time i based on 
measurement information up to and including time i, Zi-1· The term 
HiXiJi-l describes the expected measurement values for time i, based 
on the measurement equations and the state, predicted for time i. The 
gain matrix Ki links the real and predicted measurement values to the 
updated state vector, by means of the mean-square error minimum. 

Similarly, the update of the state vector's covariance matrix Pili is 
obtained as 

(5.10) 

An alternative, numerically more stable form, referred to as the 
Joseph form is defined as, [6, p. 261): 

(5.11) 

Its symmetry reduces some numerical problems due to e.g. large initial­
ization values for the state uncertainties. 

In (5.9) XiJi-l is the state estimate predicted for time i, based on 
measurement data up to and including time i -1, Zi-1· It is 

:X'.;Ji-1 = CI>(i, i - l)X;-lJi-1 + r(i - l)wi-1· 

Because of 

(5.12) 

(5.13) 
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the prediction follows as: 

xili-1 = «I>(i,i-1) xi-lli-1 (5.14) 

pili-1 = 

«I>(i, i - l)Pi-lli-1 q;T (i, i - 1) + r(i - l)Qi-lrT (i - 1), 

(5.15) 

where «I>(i, i - 1) is the transition matrix which propagates the state 
variables from time i - 1 to i. Some of its significant properties include, 
[15, p. 58f]: 

•«l>(i,i)=I 

• for any i and i - 2: 

«I>(i,i-2) = «I>(i,i-1). «I>(i -1,i-2) 

• non-singularity: 

«I>(i, i - 1) · «I>(i, i - 1) = «I>(i, i) =I 

premultiplying this expression by q>- 1(i, i - 1) yields 

q;-1(i, i -1) = «I>(i - 1, i). 

(5.16) 

(5.17) 

(5.18) 

As mentioned before, Ki as in (5.9), is referred to as the Kalman 
gain matrix as it specifies the new observations' influence on the state 
vector update. If the gain is small, then the new estimate largely relies 
on the previous state vector as more weight is given to the system than 
on the new measurements. The gain matrix is obtained by 

(5.19) 

where Pili-l is the predicted error covariance matrix for the state at 
time i. 

To start the filter at time t = 0, initial estimates for x and P have 
to be provided. At this point it is sufficient to define the initial state as 
a random vector 

E{xo} = :Xo; 

E{(xo - :Xo1o)(xo - :Xo1of} = Po10· 
(5.20) 

.. 
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The term (zi - H{xili-l) in (5.9) is also referred to as the vector of in­
novation d. The corresponding covariance matrix is D. The definitions 
are summarized as 

(5.21) 

(5.22) 

The innovations represent the discrepancy between reality (measure­
ment equation) and the model (system equation). Thus it can be used 
to determine the suitability of a certain model to represent specific data. 
If Ki is the optimal gain for the process described, the innovations pro­
cess d is a white noise process. This innovation property is a key per­
formance indicator of the KF and is pursued later in more detail, see 
Section 5.3.4 and 5.5.2. 
A summary of the algorithm, its inputs and variables, is depicted in 
Figure 5.2. 
A remark on notation: Gelb [15] denotes the innovation as v, and does 
not list a specific term for its covariance matrix. Maybeck in [35] prefers 
the term residuals ri. As residual is already a heavily used term in classi­
cal geodetic least-squares calculations, the term innovation is preferable. 
Nevertheless it should be noted here that some methods summarized by 
'residual monitoring' make use of the definition as by Maybeck. Resid­
ual monitoring in this context corresponds to later discussed innovation 
analysis methods, forming the basis for adaptive filtering. Many other 
authors use d for the innovations and D for its covariance. These terms 
are also used here. 

5.3.3 Nonlinear filtering 

The KF algorithm as described in the previous Section 5.3.2 is formu­
lated in linear matrix algebra. A major part of real, physical problems 
are nonlinear. Still, the KF can be effectively used for nonlinear prob­
lems. The nonlinearity can occur in the description of the system dy­
namics or in the measurement equations, or both. The system equation 
thus reads 

x(t) = f(x(t), t) + G(t) · w(t) + L(t) · u(t), (5.23) 

•·· 
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~i=l 

Prediction 
___.., :X:;Ji-1 = cf>(i, i - 1) :X:;-lJi-1 

P;i;-1 = cI>(i, i -1) Pi-1Ji-1cf>T(i, i -1) + r(i - 1) Q;-1rT(i -1) 

+ .... 

Gain 
,, 
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R; 
Update 

:i;1; = :i;1;-1 + K; (z; - H;:X:;1;-1) I 

P;1; =(I - K;H;) P;Ji-1 

I 

Figure 5.2: The discrete Kalman Filter. 

where f is a nonlinear function of the state. The matrices describing 
the forcing functions G(t) and L(t) are assumed to be linear. 

Similarly the measurement equations are obtained 

z = h(x(t)) - v, (5.24) 

where h is a nonlinear measurement equation. 
It is possible to linearize around nominal values if an approximation 

for the state variables is available (i.e. a trajectory in the state space 
model). If a nominal trajectory is given, which is independent of the 
measurements included in the filter, the resulting algorithm is referred 
to as linearized KF. If, on the other hand, linearization occurs around 
the most recently updated state estimate, that has been determined 
from measurement data, the resulting filter is called an extended KF. 



84 ALTERNATIVE ADJUSTMENT OF DEFORMING NETWORKS 

If x* ( t) refers to the nominal trajectory, the state variable definition, 
(5.23) and (5.24) become 

x(t) = x*(t) + Ax(t); 

x* +Ax = f(x* +Ax, t) + G(t) · w(t) + L(t) · u(t); (5.25) 

z = h(x* +Ax, t) - v(t). 

Assuming that the correction term Ax is small, a Taylor series expansion 
of the nonlinear equations to the first order is carried out, resulting in 
the following linear approximations 

x* +Ax Rj f(x*' t) + [ !!] X=X*. Ax+ G(t). w(t) + L(t). u(t); 

z Rj h(x*, t) + [~~L=x* · Ax-v(t), 

(5.26) 

where the matrices of partial derivatives [ g~] and [ g~] are the equiv­

alents to the matrices F and H from Section 5.3.1 respectively: 

[~ 
.fill.. 

··l [~ 
fil!l. .. · i F= ar = ~ ~ H= ah= ~ ~ 

ax . 8x2 ax 8xl 8x2 

(5.27) 

If the nominal trajectory x*(t) is chosen to satisfy the differential equa­
tion x* = f(x*' t), the linearized model reduces to an incremental model 
where only the increment of the state Ax is the unknown to be esti­
mated: 

Ax = F ·Ax+ G(t) · w(t) + L(t) · u(t); 
z-h(x*,t) =H·Ax-v(t). 

(5.28) 

For the remaining incremental state variables Ax the update equations 
in the discrete case (compare (5.9)) become 

(5.29) 
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where Zi -h(xi) is the incremental measurement (compare (5.28)). For 
the extended KF, where the 'best' state estimate available is used as 
nominal trajectory, the 'corrective' terms h(xi) and Hi.6.xili-1 are sum­
marized to give a predicted measurement zili-l = h(x;) + Hi.6.xili-1· 
Then the measurement residuals, or innovations, become 

(5.30) 

Brown and Hwang show in [6] that it is easy with this method to keep 
track of the absolute estimates in the filter. Considering (5.30), (5.29) 
can be extended again by the nominal trajectory x; to give 

(5.31) 

which is equivalent to the original form (5.9), as x; = xili-1· In the 
case of the extended KF the incremental .6.xili after the update of the 
absolute state variables reduces to zero, thus its projection to the next 
epoch i + 1 vanishes. Thus zi+lli reduces to zi+lli = h(xi+lli)· 

5.3.4 Innovation Analysis - Adaptive filtering 

As noted before in Section 5.3.2 the vector of innovations d, or simply 
referred to as the innovation, is a key term in the KF algorithm. It 
describes the discrepancy between the system description and the mea­
surement information. In this section the properties of d are briefly 
presented which can be used to correctly identify the stochastic models 
in the KF. The correct stochastic models are essential in any KF im­
plementation for the algorithm to work and to avoid divergence. A KF 
implementation based on the analysis of the innovations in this context 
is generally referred to as an adaptive KF and possibilities to derive 
such an algorithm from the innovation properties are discussed in this 
section and are later applied in Section 5.5.2. 

The vector of innovations is defined as 

(5.21) 

The innovations represent the part of information in Zi, that is new to 
the system knowledge Hi~li-l· The latter describes, what the observa­
tion data are expected to be, given the knowledge and measurements of 
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the system up to and including time i -1, thus it can also be interpreted 
as 

(5.32) 

Maybeck derives in [35, p. 228] that di is independent of {zo, z1, ... , Zi-1} 
and therefore also independent of any dk, for k < i. Accordingly, the 
innovation property, [25], states: 

for i =I= j. (5.33) 

The innovation process is referred to as a white process. Its mean and 
covariance are 

E{di} = 0 

E{ di · df} = HiP ili-1Hf + Ri = Di. 
(5.34) 

It can be shown (see, e.g. [35, p. 228~ or [1, p. mom that as di is a 
linear combination of jointly Gaussian random variables, it is Gaussian 
for all i. 

The information contained in the innovation di describes the discrep­
ancy between the actual measurement data and the best measurement 
predictions based on the filter model. This is an indicator for erroneous 
model formulation, which might also be caused by changes in the real 
system. The steady-state of the filter and the optimal gain is found, 
when no information is contained in the innovations. Optimal is de­
fined in the sense of the MMSE, resulting in the best state estimate 
considering all measurement data and previous knowledge about the 
system. The optimal filter can hardly be achieved in real applications 
and very often the a priori stochastic noise model can only be chosen 
approximately, resulting in a suboptimal filter. With more data avail­
able to the filter the stochastic information needs to be readjusted based 
on information obtained from measurement data. This task is often re­
ferred to as filter tuning and the corresponding algorithms as adaptive 
or self-tuning estimation algorithms. 

The term adaptive filter is a heavily used term and a variety of dif­
ferent approaches are named by it. Common to all is that some kind of 
uncertainty within the algorithm is to be minimized by analyzing the 

t 
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innovations of the filtering process to adjust the system model with re­
spect to the real system. This includes methods to extend the state vec­
tor by more parameters (e.g. physical parameters, [19]) or approaches 
to identify uncertainties in various system model formulation terms. 
This section focuses as already outlined briefly, on uncertainties in the 
stochastic model, represented by noise variance terms Qi-1 related to 
the system noise vector wi-l and Ri related to the measurement noise 
vector vi. 

Various methods of exploitation of the innovation property are pro­
posed in the literature to find the correct noise variance matrix. Mehra 
gives a summary of methods and groups them as follows, [39]: 

• Maximum likelihood estimation: Discussed in great detail in [36]. 
This approach assumes constant unknown parameters, or at least 
constant-over-N-steps. 

• Bayesian and multiple model estimation: in e.g. [6]. Different 
possible realizations of unknown system parameters ( Qi-1 or Ri 
elements) are analyzed. One set of parameters is considered to 
relate to a particular KF implementation. The optimal estimate 
is found as the weighted sum of all KF implementations, where 
weights are defined by probability density functions of system pa­
rameters conditioned on observations. The parameters are as­
sumed to be constant over time. 

• Correlation methods or residual 'whitening': These methods are 
based on correlation analysis of sequences of innovations, [38]. 

• Covariance matching techniques: The unknown variable(s) Qi-1 
or Ri are modified until the innovation covariances match the 
theoretical values, [21]. 

These methods all rely on the fact that the unknown values in Qi-1 
and Ri are constant over time. Time series of innovation sequences 
are necessary to do this, making use of series of measurement values 
of the same nature throughout the whole process. As is seen later in 
Chapter 5.5, both issues are unsatisfiable conditions for applications like 
a geodetic network with changing configurations. 

A less demanding and easily implemented method to adapt the 
stochastic system noise model is stochastic stabilization (also found in 
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the literature as Q-Stabilization) as proposed by Schrick, [57]. This 
method was also suggested by Pelzer, [49] in the context of deforma­
tion analysis for kinematic geodetic networks. Only the system noise 
variance Qi-1 is assumed unknown. Its difficult direct derivation is 
compensated by an iterative increase of the noise variance (or variance 
inflation) until the system has sufficiently adapted to incorporate inno­
vation information, which 'stabilizes' the filter. One condition for this 
method to work is that the system state is completely disturbable, a term 
which is defined in the following Section 5.3.5. Disadvantages ofiterative 
noise variance augmentation are outlined in [19]: The noise uncertainty 
level is unnaturally high and remains so until the next measurement in­
formation is available, resulting in a suboptimal filter behavior. It needs 
to be addressed for a particular application if this is indeed wanted or 
an acceptable behavior. 

It should be noted that interventions into the stochastic model in a 
filtering process causes (deliberate) changes in the very important rela­
tion between the system noise stochastics and measurement stochastics. 
So, any conclusion on the stochastic system model is based on the as­
sumption of a correct measurement stochastic model. Any undetected 
gross errors in the measurement data bias the filter. Later in this chap­
ter it is shown that an adaptive filter can incorporate also gross error 
detection in the observation data in parallel to identifying the correct 
system noise stochastic model. 

5.3.5 Some characteristics of the KF 

In order to better understand and illustrate some processes in the KF, 
some characteristic terms are introduced. The details on the structure 
and importance of these terms is kept to a minimum here, becoming 
apparent in the application to the practical example of the kinematic 
network in later sections. 

If the KF is applied to a changing measurement configuration, it is 
important to keep track of the availability of information to estimate 
the state variables. In the context of stochastic stabilization, it has to 
be assured that the system description can be 'disturbed' (or excited) 
by changes in the stochastic system noise model. Similarly, if a deter­
ministic input u applies, it is of interest, if this input has an effect on 
the state. Three terms are defined to analyze the structure of the KF, 
[15, 19]: Observability, controllability and disturbability. 
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Observability defines the ability to determine the state variables 
from available measurements. The system description (5.14) reads: 

xili-1 = <P(i,i-1) · xi-lli-1· (5.35) 

It is assumed that noise-free measurements are available: 

Zi =Hi. Xi· (5.36) 

Summarized for all, say n, epochs the two above expressions can be 
combined to give 

zo =Ho·Xo 

z1 = Hl · x1 = Hl · <P(l, 0) · xo 
(5.37) 

Zn = Hn · Xn = Hn · <I>(n,O) · Xo 

or in matrix notation 

(5.38) 

The matrix product term above can be summarized as matrix sT. 

';::;'-(HT ...... - 0 <PT (1, 0) · H'f I <PT(n,0) · H;z;:]. (5.39) 

In order to determine values for the state vector at time 0, xo and 
at any other time i, Xi, the matrix ;sT must be invertible, i.e. non­
singular. Then the system is fully observable. To fulfill this condition 
of observability, 8 must have full rank (i.e. rank(S) = r = u where u 
is the dimension of the state vector x). The symmetric matrix product 
(ST· 8) is referred to as the observability matrix, [19]. 

The structure of the matrix reveals, that if the individual matrix 
products <PT(i,O) ·Hf are not of full rank, the composite matrix 8 
can still be of full rank. Linear dependent columns in <PT ( i, 0) · Hf are 
added to columns in 8 where this composition may cause the rows of the 
complete matrix to be independent from each other. Thus state vector 
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entries can be observable even if no direct observations of these states 
are available, e.g. point coordinate velocities. This is mainly due to the 
properties of the transition matrix, as can be seen later in Section 5.5.4 
where the observability term is derived for the example of a kinematic 
network. 

In case the rank r = rank(E) < u , only r state variables can be 
observed or determined by the observational data. 

Controllability Controllability determines under which conditions 
the state vector can be completely controlled by a deterministic input 
in systems that are subject to control inputs (ui-1 =I= 0). According to 
[19] the matrix er is defined as: 

er= [A I CJ.>(1,0). A I CJ.>(n,O)·A]. (5.40) 

Full controllability which implies that the state vector can take any 
desired value, is achieved if the matrix er has full rank. The control­
lability matrix is defined as (0T · 0), [19]. 

Disturbability describes the ability of a system to activate state 
variables by system noise disturbance Wi-l and the corresponding co­
variance matrix Qi-l· For the stochastic stabilization outlined in Sec­
tion 5.3.4 it is essential that the system is fully disturbable, implying 
that changes in the system noise error affect the state vector. 

WT= [r(l) CJ.>(2, 1). r(1) CJ.>(n, 1). r(1)]. (5.41) 

Full disturbability is obtained if matrix wT has full rank. The disturba­
bility matrix is defined as (wT · w), [19]. It is derived for the example 
of a kinematic network in Section 5.5.4. 

5.4 The Kalman Filter equations for a kine­
matic 3D geodetic network 

In this section I formulate all necessary equations to setup the KF for 
a kinematic 3D geodetic network. The state vector x is composed of 
components for position, velocity and acceleration for each point. Kine­
matic system equations for an unforced, uniformly accelerated motion 
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are set up and the necessary terms derived, including the transition 
matrix <I>(i,i-1) and the noise matrix r(i -1). 

5.4.1 From equations of motion to system equations 

The physical, time-variant problem description expressed in differential 
equations is formulated in a state-space model. As defined in (5.1) a 
linear, dynamic problem in general is described in matrix notation as 

x(t) = F(t) · x(t) + G(t) · w(t) + L(t) · u(t). (5.1) 

A deforming, three dimensional geodetic network, with little knowledge 
of the expected movements of the network points, is modelled by a sys­
tem equation for an unforced (u(t) = 0), uniformly accelerated motion. 
This implies that jerk (third derivation of position with respect to time) 
and higher order terms of motion are considered as system noise and 
are thus not explicitly modelled: 

Y'(t) = w(t). 

With the following definitions 

x1(t) = y 

X2(t) = y 
x3(t) = y 

position, 

velocity, 

acceleration, 

a system of differential equations is defined as 

X1(t) = Y = X2(t) 
X2(t) = Y = X3(t) 

x3(t) = Y = w(t) 

=O·x1(t) 
=O·x1(t) 

=O·x1(t) 

+I· x2(t) 
+ 0 · x2(t) 

+O·x2(t) 

+ 0 · X3(t) 
+l·x3(t) 

+O·x3(t) 

(5.42) 

(5.43) 

+ 0 · w(t) 
+ 0 · w(t) 
+I· w(t). 

(5.44) 

In matrix notation this gives the system differential equation: 

x(t) = F · x(t) + G · w(t), 

~th F ~ [ ~ ~ ! l ; G ~ m (5.45) 

•·· 
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The homogenous solution to the system differential equation is found 
(compare with (5.3)) as the solution to 

x(t) = F · x(t). (5.2) 

Splitting x(t) up into its three components again gives 

X1(t) = X2(t), 

X2(t) = X3(t), 
x3(t) = 0. 

(5.46) 

Integration over ft: with (.D..t = t - to)), and back-substitution gives 

X1(t) I. C1 + .D..t· I· C2 + 1 2 I. C3 -.D..t. 
2 

X2(t) 0 · C1 + J. C2 + .D..t· I. C3 (5.47) 

X3(t) 0 · C1 + O·c2+ I. C3 

which is written in matrix notation as 

[

I .D..t ·I !.D..t
2 

·I] [c1] 
x(t) = 0 I .D..t ·I c2 . 

0 0 I C3 
(5.48) 

The initial conditions summarized in the vector [ c 1 T c 2 T c3 T] T are 

given by the state vector x at time to 

x1(to=O) 

X2(to = 0) 

X3(to = 0) 

Thus the solution to (5.2) is 

Xo, 

:Xo, 

thus [~:] ~ x(to). (5.49) 

[

I .D..t · I ! .D..t
2 

• I] 
x(t) = ~ ~ .D..~· I · x(to) = <J?(t, to)· x(to). (5.50) 

I 
~·· 
I 

I .· 
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For any flt= (ti - ti-1) 

Alternatively the transition matrix CJ>(t, to) could have been obtained 

by the Laplace transformation, as shown in Section 5.3.1: 

CJ>(s) =(s·I-F)-1 

~(['~I 0 0] [O I OJ r S·I 0 - 0 0 I 
0 s·I 0 0 0 (5.52) 

~([sf -I 0 l r [;1 1 I 'I] 82" SS" 
s·I -I = 0 .!.1 :;\-I ' s sl 

s·I 0 0 -I s 

[

I t I !t2Il 
CJ>(t) = .c-1 {CJ>(s)} = 0 ~ t ·I , 

0 0 I 
(5.53) 

[

I flt · I ! flt
2
1] 

CJ>( flt)= CJ>(t, to)= 0 I flt· I , 
0 0 I 

(5.54) 

which is in fact equivalent to (5.50). 

In order to find the inhomogenous solution of the differential equa­
tion ( 5.4), the matrix superposition integral is employed for flt = t - to, 
[15], 

x(t) = CJ>(t, to)·x(to)+ t CJ>(t, T)·G(T)w(T)dT+ t CJ>(t, T)·L(T)u(T)dT. ho }~ 
(5.4) 
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For the differential equation in matrix notation (5.45) considering u(t) = 
0 and 7 E [to, t] : w constant 

x(t) ~ [~ At · I ! At
2 

• I] 
I 

2 
At· I · x(to)+ 

0 I 

t [I 7 · I !7
2 

• I] [O] +1 0 I 
2

7·1 · 0 d7·w(t) = 
~ 0 0 I I 

At · I ! At
2 

• I] t [!7
2 

· I] ~ 
2

A~·I ·x(to)+ 1
0 

2

7/ d7·w(t)= 

A~· I !t:~ i 1] · x(to) + [t~~:: ~i -w(t) 
0 I At· I 

x(t) = <P(t, to) · x(to) + r(t, to) . w(t). 

(5.55) 

The system noise matrix product r(i - l)Qi_1rr(i - 1) can be 
obtained by using the formulation given in [15, p. 74fj: 

r(i -1)Qi-1rr(i -1) = 

E{ 1t; 1t; <P(ti, 7)·G(7)w(7)wT (s)GT(s)·'PT(ti, s) d7 ds }, 
ti-1 ti-1 

(5.56) 

taking the expectation operator inside the integral (proof can be found 
in [15]), gives 

r(i -1)Qi-1rr(i -1) = 

1t; 1t; <P(ti, 7)·G(7)E{ w(7)wT (s) }aT(s)·<PT(ti, s) d7 ds, 
t;-1 t;-1 

where the covariance of the white noise w(t) is defined as 

E{w(7)wT(s)} = Q(7)8(7 - s), 

(5.57) 

(5.58) 
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operator r5 being the Dirac delta function. The properties of the Dirac 
delta function are used to integrate over s, giving 

r(i- l)Qi-lrT(i-1) = 1,t~ 1 c:P(ti, r)G(r)Q(r)GT(r)c:PT(ti, r)dr. 

(5.59) 

Using the definitions for c:P(t, r) and G(r) as in (5.55) the system noise 
matrix product can be obtained as 

l
t; 

- ti-1 

l
t; 

- t;_1 

r ·I !r2 ·I] 
I T. I . 
0 I 

(5.60) 

As Gelb points out in [15, p. 75], it is important to differentiate be­
tween the two matrices Q(t) and Qi-1: Q(t) is the spectral density 
matrix whereas Qi-l is the covariance matrix. A spectral density ma­
trix may be converted to a covariance matrix through multiplication by 
the Dirac delta function, r5(t - r). Since the delta function has units 
of {1/times], it follows that the units of the two original matrices are 
different. 

In practical applications the term r(i - l)Qi-lrT(i - 1) can be 
obtained directly by error propagation, given r( i - 1) as obtained in 
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(5.45) and a given definition for Qi-1: 

5.5 Adaptive Kalman Filter for a kinematic 
network 

In the following, an adaptive or self-tuning KF for the estimation of a 
deforming 3D geodetic network is developed, based on the innovation 
analysis discussed in Section 5.3.4. Detailed formulas and derivations 
of the KF have been given in the previous sections. All necessary terms 
for the KF setup are now summarized and additional assumptions are 
defined. 

The KF needs to adapt to deformations in the network, which are 
not known before and may change over time. The KF is started with 
very rough approximate state parameter values (i.e. 0 for the states for 
velocity and acceleration, see also helow), as this guess represents the 
best a priori information available. Therefore the system description 
is badly known. If this situation is not appropriately reflected in the 
stochastic system model, the system is unable to adapt to data con­
taining information differing from the assumed starting values, possibly 
resulting in divergence. If the uncertainty in the system model is in­
creased by a sufficiently large system noise error, it is able to let the 
estimates adapt within its range. The system uncertainty should be 
large enough to let the system adapt to a new situation if deformation 
is expected. If there is no deformation (or more generally: unexpected 
change in the system), the system uncertainty (i.e. system noise error) 
should be small, not to degrade the state estimation. 

The a priori system noise error is initialized with small values and 
the KF determines itself, if the system noise error has to be increased, 
based on the comparison between new measurement data and the sys­
tem description (i.e. innovation analysis). A discrepancy between the 
measurement data and the system description can indicate a wrong sys­
tem description. 

t 

I 
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Gross errors in the observation data also result in a discrepancy be­
tween the system description and measurements. It is in fact possible to 
detect and identify unexpected point movements and observation gross 
errors in the same way. The stochastic models are iteratively adapted 
until system description and measurement data agree. This stochastic 
stabilization method has already been briefly outlined in Section 5.3.4. 

If the measurement configurations are changing in a geodetic net­
work it is necessary to keep track of the structure of the state vector. 
For this, the terms of observability and disturbability, discussed in Sec­
tion 5.3.5 are important as they define, if a state is observable (i.e. it is 
possible to derive an estimate update) and disturbable. Non-disturbable 
parameters cannot take part in the innovation analysis and stochastic 
stabilization process, as a change in the related noise uncertainty does 
not have any effect on them. 

The Kalman gain matrix K is the 'core' of the KF algorithm. Its 
structure is analyzed in Section 5.5.5. The system noise and measure­
ment variances are the only two terms that can be chosen to influ­
ence individual elements in the gain matrix thus providing the basis for 
stochastic stabilization to work. 

The section is concluded with a short discussion of a simple method 
to decide on the correct system model description for an application, 
Section 5.5.6. 

5.5.1 Summary of KF terms for estimation of a kine­
matic 3D network and assumptions for the 
stochastic models 

The state vector is interpreted as a composite: It contains for each point 
in a 3D network position, velocity and acceleration coordinate compo­
nents. In general it might be possible to observe all of these state vari­
ables directly (e.g. by including acceleration measurements etc.) but in 
traditional surveying applications, only the position coordinate part of 
the state vector is directly observed (see observability in Section 5.3.5). 
Nevertheless velocity and acceleration states can also be determined as 
the system is fully disturbable (see Section 5.5.4). An extended KF ap­
plies as the observation equations in survey applications are generally 
non-linear. The state vector contains the absolute state variables, as 
has been discussed in Section 5.3.3. 
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• Initialization of state information in zero (or pre-zero) epoch: It 
is assumed that no information on velocity and acceleration val­
ues is available, but as these are considered to be small they are 
approximated by 0. No correlations between the state variables 
are assumed. 

[
:Xo10] 

:Xo10 = ~010 = 
Xo[o 

[
:Xo10] 
~ , Poto = diag(po). (5.62) 

• Time difference between epochs, not necessarily equidistant: 

(5.63) 

• System equations for unforced, uniformly accelerated motion: 

xi[i-1 = ~(i, i - l)xi-l[i-1' (5.14) 

pi[i-1 = 

~(i, i-l)Pi-l[i-1 ~T (i, i-l)+r(i-l)Qi-lrT (i-1). 
(5.15) 

• Transition matrix for polynomial approximation of motion: 

[

I ~t ·I l~t2 ·I] 
~(i, i - 1) = 0 I 

2 
~t. I . 

0 0 I 
(5.64) 

• System noise uncertainty (matrix product), assuming a white sys­
tem noise process: 

(5.61) 

• Covariance of system noise Wi-1' assumed to be uncorrelated: 

(5.65) 
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• Update of state vector by including measurements Zi available in 
epoch i: 

(5.66) 

• Updated state covariance: 

(5.10) 

• Gain matrix: 

(5.19) 

• Linearized matrix of observation equations - (Assumption: only 
measurements for position components): 

Hi= 

[[fu 
lli 

fu I 
[l II [I II 

8xl 8x2 8xu 

~ ~ 
8xl 8x2 

0 0 
8hn ~ 
8xl 8xm 

(5.67) 

• Covariance of uncorrelated measurements: 

(5.68) 

• Vector of innovations and its covariance: 

(5.21) 

(5.22) 

I 

I. 
I 

•·· 
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5.5.2 Innovation analysis for model error detection 
and identification 

As already discussed in Section 5.3.4 and at the beginning of this section, 
the KF can be set up to adapt to new information, previously unforeseen 
in the system description, by adaptive methods. A Gauss-Markov (GM) 
model interpretation of the KF equations additionally enables not only 
to search for misspecifications in the stochastic system noise model but 
also in the stochastic measurement model. It has been briefly argued in 
Section 5.3.4 that in the application of a geodetic network the correlation 
methods applied to innovations are not suited to give reasonable results. 
This is due to the characteristics of measurement data of networks in 
changing configurations giving very small and incomplete sample sizes 
resulting in poor statistics. As a consequence the less demanding but 
also less conclusive method of stochastic stabilization is chosen to adapt 
the filter for correct identification of the stochastic models. 

It has to be ensured that the system is completely disturbable. The 
term of disturbability has been defined in Section 5.3.5 and in the fol­
lowing Section 5.5.4 it is derived for the example at hand, showing that 
this condition is satisfied after a certain initialization lag. 

Gauss-Markov (GM) model of the KF [19] and [63] interpret the 
KF as an extended GM model. The predicted state vector xili-l is 
considered to be part of the observation data. Together with the actual 
observations zi they are used to estimate the updated state vector xiii. 
The GM model in the form I + v = Ax transforms to 

(5.69) 

The residuals Vx,i and Vz,i can be derived as 

(5.70) 

[
Vx,i] 
Vz,i 

I 

~ 
I 

•·· 
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The predicted state vector xili-l and the observation data Zi for time i 
are uncorrelated, the joint covariance matrix is 

R ·-[pili-1 OJ 
xz,i - 0 Ri . (5.71) 

The covariance matrix of the residuals follows by error propagation of 
(5.69) as 

Pili-1Hf (KfHf - 1) ] 
(HiKi - I) HiPili-1Hf + Ri . 

(5.72) 

Equivalently to (5.70) the residuals can be derived as, [19]: 

· ZGM,i 
(5.73) 

The global model test also referred to as local overall model test, 
[6.~]. This test decides whether a significant difference between the sys­
tem model description and the measurement data exists. It makes use 
of the innovation property as defined in (5.33) and (5.34). Errors can be 
located in the predicted state vector and the measurements, and need 
to be identified in a following localization step. 

The innovation is considered to be a gaussian distributed variable, 
[35, p. 228]: 

(5.74) 

which represents the null hypothesis of the global model test for the KF 
process. The quadratic form dfDi1di is x2-distributed. A test term 
can be defined 

o2 dTD-ld 2 
Hd; = i i i ,...., X1-a.,f;' (5.75) 

with the probability relationship 

P{n~i ::::; xLa.,f; I Ho} = 1 - a, (5.76) 
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where fi is the degree of freedom determining di. If the null hypothesis 
Ho is rejected at a significance level of (1 - a), the observations carry 
information different from the system description. 

A rejection of the null hypothesis indicates either an incorrect func­
tional or stochastic model. The above test formulation is similar to the 
global congruency model test in classical deformation analysis which 
determines if significant coordinate differences between two observation 
epochs (i.e. deformations) have occurred, as already discussed in Chap­
ter 4.2. 

Localization To search for the misspecifications in the predicted state 
vector or measurement data indicated by the innovation analysis in the 
global model test, the individual terms are analyzed. The correspond­
ing stochastic information is adapted iteratively until the global test of 
innovations is passed. The derivation of the following test statistics is 
based on the approach by Pelzer in [49] which I extended here for the 
GM model interpretation as summarized in (5.73). 

If the null hypothesis Ho defined in (5.74) is valid, it can be refor­
mulated as 

Ho : VGM,i ,....., N(O, V GM,i)· 

The test statistic similar to (5.75) can be written as 

neaM,i = v~M,iVa1-,ivaM,i,....., XLa,h;' 

with hi= rank(V GM,i), or more generally 

neaM,i = V~M,iVbM,iVGM,i,....., XLa,h;· 

(5.77) 

(5.78) 

(5.79) 

To analyze individual components of vaM,i for a significant outlier, test 
statistics have to be defined. The components of the predicted state 
vector residuals Vx,i can be grouped as components of 3D points they 
refer to, e.g. entries for position, velocity and acceleration states for a 
point j. 

Pelzer suggested in [49] that state parameters describing a single 
point are very closely related and should be investigated together con­
cerning possible point movements. In the case of geodetic network mea­
surements a decoupling between horizontal and vertical observation in­
formation can be seen (e.g. measurements by hydrostatic levelling sys­
tem (HLS) and offset measurements (WPS), see Chapter 3.3). In this 

I 
I 
I· 
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case it is indicated to form individual groups for horizontal and vertical 
components of one point and to analyze these two groups separately. 
This also applies if point deformations are expected to be dominantly 
either in horizontal or vertical direction. As the grouping of horizon­
tal and vertical components only represents a further specialization of 
the case of the 3D point j, this notation is adhered to in the following, 
allowing for a more compact formulation. 

Omitting the time index i the components for point j (j :::; number 
of points) are: 

[

Vx,jposl 
VGM,j = E[j]VGM = Vx,jvel , 

Vx,J ace 

(5.80) 

where E[j] is a matrix of unity row vectors, with values 1 corresponding 
to indices in VGM,j referring to entries for point j. If m elements refer 
to point j, E[j] has m rows. 

The covariance matrix Va M,j for point j is obtained correspondingly: 

VaM,j = E[iJVaMEGJ = 

[

V GM,j poslj pos V GM,j posli vel 

V GM,j vellj pos V GM,j vellj vel 

V GM,jaccljpos V GM,jaccljvel 

V GM,j posli ace] 
V GM,jvelli ace · 

V GM,j accli ace 

(5.81) 

Measurement residuals v z,i are analyzed individually. Thus in the 
following they are analyzed in 'groups of l' to allow for a unified formu­
lation. For (j > number of points): 

(5.82) 

In this case the matrix E[j] is actually a single row vector. 
For each point j a test statistic similar to (5.78) is formulated: 

02 T y-1 2 
vaM,i = v GM,j GM,j VGM,j ,...., X1-a,h;' 

with hi= rank(V GM,j) and the probability relationship 

P{n~GM.:::; xLah-IHo} = 1-a, 
,3 ' 3 

(5.83) 

(5.84) 

where 1 - a is the adapted level of test significance defined later in this 
section. 

I ~ ( 
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Strict testing In (5.81) - (5.83) any correlations between different 
points are neglected. This can bias the test decision. The correct way 
described in the following is referred to as strict or rigorous testing, [19]. 

Splitting up the vector VGM (time index i again suppressed) in one 
part VGM,i of unsuspicious points' entries and a second part VGM,2 
corresponding to the point suspicious of deformation: 

VGM = [VGM,i] . 
VGM,2 

(5.85) 

The inverse of the covariance matrix V GM is split up accordingly: 

y-i = [iV GM,11 iV GM,i2] 
GM iV GM,2i iV GM,22 . 

(5.86) 

The correct test statistic equivalent to (5.83) is formulated in the fol­
lowing way: 

T y-i T FTF y-i FTF -T V -i - (5 87) VaM GMVGM = VGM i 2 GM 2 iVGM = VGM GMVGM, . 

where the transformation matrices Fi and F 2 fulfill the condition: 

Thus the transformed terms are obtained as: 

VGM = FiVGM 

V ;;it = F2 Va1Ff. 

Defining Fi as, [19, p. 139]: 

Fi= . -i . [ 
I 

1V GM,221V GM,2i 

and considering the condition (5.88) gives for F2 

F 2 = [~ -iV GM,i:iVclr,22] . 

This gives the transformed terms as: 

[
VGM,i] _ [ VGM,i ] 
VGM,2 - iVclr,22iV GM,2iVGM,i + VGM,2 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 
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V -1 _ [iV GM,11 - iV GM,12iVa1£,22iV GM,21 
GM- 0 

= r·y GM,11 0 ] 
0 iVGM,22 . 

0 ] ·v l GM,22 (5.94) 

The original test statistic as defined in (5.79) becomes 

T -
VGM,1 iV GM,llVGM,1 

n~ 
+ V~M,2iV GM,22VGM,2 

+ nh 
(5.95) 

where QR is the additional term due to the suspicious part of VGM, i.e. 
VGM,2· 

With 

VGM,2 = iVa1£,22iV GM,21VGM,l + VGM,2 (5.96) 

the rigorous test statistic becomes 

n2 -T •y - 2 
~'R = VGM,21 GM,22VGM,2 rv X1-a,h2' (5.97) 

which represents the test for the suspicious part of VGM or as before in 
( 5.83) formulated for each point j: 

with 

n2 -r ·v - 2 
VGM,j = VGM,j1 GM,jjVGM,j rv X1-a,hp 

·v-1 ·v VGM,j = l GM,jjl GM,jkVGM,k + VGM,j 

VGM 

y-1 
GM 

= [VGM,k] 
VGM,j 

_ [iVGM,kk 
- iVGM,jk 

unsuspicious part 
suspicious entries 

iV GM,kj] 
iVGM,jj . 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

I' 

I 
I 



106 ALTERNATIVE ADJUSTMENT OF DEFORMING NETWORKS 

Adapted level of test significance In (5.83) to (5.98) the term 1-a 
describes the adapted level of the test significance for a single test within 
a series of n repeated tests. This adaptation is advisable if the results 
of the individual tests should correspond to the result of the global test 
(5. 79) as these n repeated tests are strictly speaking not independent.' 

As an approximation for the error probability a serves, [44, p. 281]: 

(5.102) 

where n represents the number of single tests, i.e. in the case discussed 
above it corresponds to the number of points. Niemeier points out in [44, 
p. 281] that if the network becomes larger, and n increases, a becomes 
smaller and thus the threshold for the statistical test increases. He 
suggested to use the redundancy R (defined in Chapter 4.1) for a more 
reliable estimate of a, 

(5.103) 

a is smaller than a, thus the level of significance 1 - a is increased. 
This has the effect that an error or outlier in the test is not so easily 
suspected as with a. 

Heunecke determines in [19] the redundancy R in the KF in Gauss­
Markov formulation (5.73) as the total system redundancy: 

Rsys = trace(HGM,v) = L Tk = nz,i, (5.104) 

where nz,i refers to the number of measurements Zi in epoch i. Redun­
dancy contributions for individual observations can be obtained using 
the form 

k = 1, ... ,ni, (5.105) 

where where 77[k] is a unity vector with zeros for all elements but the 
element k, which is 1 and ni refers to the number of all 'observations', 
i.e. measurements and predicted state variables. Summarized for the 
two 'observation groups' Xili-1 and Zi the redundancy numbers for the 
predicted state vector and for the measurement data can be given 

nx,i nx,i 

Rx.ili-1 = L 1'7~]KiHi77[k] = L rx.ili-1,k (5.106) 
k=l k=l 
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nz,i nz,i 

Rz, = L 17~]RiDi 1 77[k] = L rz;,k· (5.107) 
k=l k=l 

The individual redundancy numbers r;c,1,_i.k and rz;,k describe the con­
tribution of the individual 'observation' to the overall redundancy of the 
estimation process. These individual redundancy numbers (summarized 
in the following expression as rk) can be used to adapt the test signifi­
cance level to make the statistical test more sensitive in case of poorly 
controlled observations or predicted states. 

(5.108) 

The resulting adapted level of significance of the test 1 - a does not 
necessarily correspond to the global model test. 

If the redundancy number of the corresponding predicted state or 
measurement is small, a is close to a and generally larger than a~ ~· 
Compared to the latter an outlier is more easily suspected, at the cost 
of a reduced significance of the test. As errors in poorly controlled 
observations are often projected also on other parameters, and become 
thus less easily detectable, it is reasonable to lower the threshold for the 
corresponding test statistic in these cases, thereby increasing the type I 
error probability. 

5.5.3 Stochastic stabilization 

In the previous section the test statistic (5.83) or (5.98) has been for­
mulated to analyze whether predicted state variables and observations 
are the reason for the discrepancy between the system and the mea­
surement data. A method similar to gross error detection is applied 
to decide which entries differ significantly from the expected values. 
Gross error or outlier detection is in general applied to the observation 
data, as discussed in Chapter 4.1, but with the interpretation of the 
GM model in (5.69) it can be applied also to the extended observation 
vector zaM,i· In the following the term outlier is used for a deforma­
tion in the state vector or a gross error in the observations. In case 
of a single assumed outlier in the 'observation' material, the method of 
data snooping introduced by Baarda, [4] is a widely used technique in 
geodetic applications, which defines for each observation a test statistic 
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of standardized residuals, as defined in Chapter 4.1. The observation 
with the largest value for the test statistic is rejected. This works well 
if only a single outlier is present, but as this assumption is usually not 
true, the process is iterated: in each iteration step the observation with 
the largest test statistic value is rejected and the adjustment repeated 
until no significant model mismatch is found. But Wieser stresses in [62] 
that in the case of more than one outlier the detection becomes difficult 
as the test statistics based on the standardized residuals are only to be 
understood as approximations. A more robust method of detecting out­
lying observations is obtained by an iterative re-weighted least squares 
estimator, [62], similar to the Danish method, [28]. Instead of rejecting a 
single observation based on its large test statistic, all observations with 
a significant test statistic are re-weighted (down-weighted), based on the 
ratio by which the test statistic exceeds the respective test threshold. 
Thus an observation with a large residual resulting in a large test statis­
tic gets small weights and has less influence on the next adjustment run. 
An outlying observation does get down-weighted iteratively to zero and 
does not have any influence on the estimation process. 

To achieve stochastic stabilization of the KF, I choose a similar ap­
proach as in [62]: For each group j the following ratio is derived 

n~ 
T . _ VGM,j 

J - 2 • 
X1-a,h; 

(5.109) 

The stochastic model definitions are modified based on this test term. In 
case of the measurements, the corresponding error information Ri can 
be directly modified, assuming uncorrelated observations Ri = diag(ri)· 
In the following formulations the time index i is added again: 

Ti,j > 1 

Ti,j < 1 
(5.110) 

In case of the predicted state vector which is analyzed for outliers in 
the system model, the corresponding entries in the system noise er­
ror information has to be modified in order to achieve the necessary 
stabilization. Qi-l is changed, assuming uncorrelated system noise 
Qi-1 = diag(qi-1). 

Ti,j > 1 

Ti,j < 1 

qi-1 = qi-1 · exp Ti,j 

qi-1 = qi-1· 
(5.111) 
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Figure 5.3: The adaptive Kalman Filter. 
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The estimation process is repeated. If the global model test (5.76) 
does still indicate a significant system disturbance, the stochastic sta­
bilization is repeated. This iterative process terminates, once no signif­
icant difference between the measurement data and the system can be 
identified. 

The flow of processes in the adaptive KF described here is summa­
rized in Figure 5.3 and comparison with Figure 5.2 shows the differences 
with the standard KF. 

5.5.4 KF characteristic terms 

As discussed before in Section 5.3.5 and at the beginning of this section, 
the terms of observability and disturbability contain important infor­
mation about the system's characteristics. These two terms are now 
derived for the example of the kinematic KF setup for a 3D geodetic 
network of classical survey measurements. 

Observability From (5.39), (5.64) and (5.67) and by deriving 

T l (5.112) 
+Hi ace 

the observability matrix 8 follows as 

[H~os 8 = Hovel 

Hifacc 

Hfpos I··· I 
(t1 - to)Hf pos +Hf vel I··· I 

!(ti - to) 2Hf pos +(ti - to)Hf vel +Hf accl ···I 

l · 
(5.113) 
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This expression can be simplified as in (5.67) (because of the assumption 
Hfvel = Hf ace = 0) 

As expected the observability is dependent on the measurement matri­
ces Hi. In the first epoch, rank(E) = rank(Ho) = rank(Hopos) = u-d. 
Thus in the first epoch only position states are observable. In the next 
epoch also entries for velocity and acceleration components are created 
by the transition matrix, as in (5.112). But rank(q?T(l,O) ·Hf) is still 
the same as before in the first epoch, as the different blocks for the 
position, velocity and acceleration components are linearly dependent 
on each other. Added to the 8 matrix from epoch one, however, the 
overall rank of the matrix changes, as the block of rows for position 
components and the block of velocity and acceleration components are 
now independent, if (ti - t 0 ) =f. 0. So, in the i:;econd epoch, the observ­
ability is in principle doubled (assuming that all states are observed in 
both epochs). Now also velocity states get update values =f. 0. This is 
repeated in the third epoch for the acceleration components to become 
observable and full observability can be reached, also if the individual 
measurements refer only to the state position components. 

Disturbability From (5.41), (5.55) and (5.64) and by deriving 

q?(i, 1)r(1) = 

[

(Mti - to) 3 +!(ti - to) 2(ti - ti)+ !(ti - to)(ti -ti)2
) ·I] 

C!(ti - to) 2 +(ti - to)(ti - ti))· I 
(ti - to) ·I 

(5.115) 
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the disturbability matrix w can be obtained as 

[

l(t1 - to)3 ·I I 
w = l(t1 - to)2 ·I I 

(ti-to)·I I 
I (~(t1 - to) 3 + !(t1 - to)2(t2 - t1) + !(t1 - to)(t2 - t1)2) ·I 
I (!(ti - to)2 + (t1 - to)(t2 - t1)) ·I 
I (t1-to)·I 

I 
I 
I 
I 
I 
I 

(~(ti - to)3 + !(t1 - to)2(tn - ti)+ !(t1 - to)(tn - ti)2) ·I] 
(!(t1 - to)2 +(ti - to)(tn - t1)) ·I . 

(ti-to)·I 

(5.116) 

Disturbability of a state is delayed by one epoch compared to the 
state's observability. The rank of the whole matrix w is governed largely 
by the rank of r and its propagation in time by the transition matrix, 
very similar to the situation of observability. Each single matrix q. ('i, 1) · 
r(l) has a rank of one third of its dimension, but concatenated to form 
the matrix w the rank increases with each added block, if (ti - to) # 0. 
Thus full disturbabilty can be reached. 

For the stochastic stabilization discussed in Section 5.5.3 full dis­
turbability is an essential condition. Disturbability of position states is 
reached in the second measured epoch, velocity states starting from the 
third and acceleration states starting from the fourth measured epoch. 
State entries can only take part in the stochastic stabilization process 
which is essential for the adaptive filter once they are disturbable. 

The delay or initialization lag implies that with only few epochs of 
observation data available the possibilities to correctly identify point 
velocities and especially point accelerations are limited. 

5.5.5 Gain matrix K 

The gain matrix K is an important term in the KF, as it defines the 
mean-square error minimum characteristic of the KF algorithm. It de-
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termines the relationship between the innovations and the state vector 
estimate. In this section its structure is analyzed by means of the com­
posing terms. As the detailed formulations are rather elaborate, they 
are given in Appendix B. 

The gain matrix Ki is defined in (5.19). 

Ki= Pili-1Hf(HiPili-1Hf + Ri)-1 = Pili-1HfDi1· (5.117) 

Its structure is more closely analyzed by looking at the individual terms 
it is composed of, see Appendix B. Here the final result, which is based 
on the assumption Hi vel = Hi ace = 0, for all i is given: 

I 
pili-1 poslposHfpos I 

_ 1'.'1: '_"".I':'~".'- · (H; ,,...P ilH ,,,,,1.,,Hf ,., + R;)-
1

. 

p •li-1 acclposHi pos 

(B.15) 

The size of Ki is [3u x n], each element defines the relationship be­
tween one observation and one state vector entry. Only if state vector 
entries are#- 0 this state gets update values #- 0 in Kidi and in xiii· In 
the first matrix product block in (B.15) it can be seen how entries in the 
gain matrix for states other than position are created: The off-diagonal 
blocks in the matrix Pili-1, specifically Pili-l vellpos create gain en­
tries for the velocity states and Pili-l acclpos for the acceleration states. 
Entries in these off-diagonal blocks are generated due to the structure 
of the system equation terms cI>(i, i - 1) and r(i - 1). In the matrix 
term to be inverted in (B.15), (equivalent to Di as defined in (5.22)), 
only position states are involved. Thus the error of the innovations di 
is exclusively influenced by the relationship between the position state 
components and the observations. 

Overall, most of the various components resulting in the gain matrix 
Ki are predefined from the system description or the measurement equa­
tions. The only terms that can be actively influenced are the stochastic 
information terms: The initial state covariance matrix Po1o is an ap­
proximation and is actively set at initialization stage and quickly looses 
its influence on the filter process. The two remaining terms are the 
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system noise covariance Qi-l and the measurement covariance matrix 
Ri· This property of the gain matrix structure is used in the stochas­
tic stabilization procedure as described in Section 5.5.3. By acting on 
these terms the gain matrix can be changed in such a way that the KF 
adapts to misspecifications in the stochastic system noise and measure­
ment models. 

5.5.6 Selection of system model - Multiple-model 
filter 

The KF system equations for the example of a geodetic deforming net­
work are characterized by the degree of the development describing the 
equations of motion (i.e. if velocity and/or acceleration are included in 
the state). The system model has to be representative for the real sit­
uation, otherwise under- or over-parameterization may occur. In order 
to decide which model to choose, the KF itself can give the answer. 

Multiple-model filters as discussed in e.g. [6] also provide adaptive 
filters: A discrete set for unknown parameters are introduced into a 
whole bank of KFs, working in parallel. Each filter gives a result and 
these results, weighted by the result's a posteriori probability, become 
combined into one estimate. The weights are determined from the inno­
vations. A simplified and easily implemented method is encouraged in 
[41]: Instead of combining the various results of the whole filter bank, 
the one KF result corresponding to the smallest squared sum of inno- I . t 
vations O::::: dfDidi) is the final filter output. This is justified by the ! 
KF's property to minimize the expectation of the squared innovations, 
if the system model is correct (i.e. the optimal gain is found). 

The approach presented in [41] is easily applied to the problem of 
finding the correct system model: Each point can in principle be de­
scribed by three different models: 

[xj,pos 0 or or 

[x'~"'] [xj,pos or Xj = X~,vel Xj,vel or (5.118) 
X3,acc 

[xj,pos Xj,acc] T · Xj,vel 

Even for small network sizes, all 3u combinations ( u being the num­
ber of network points) are not computable. If points which share some 
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kind of property and are expected to deform similarly can be sum­
marized in groups, it is more effective to compute only the possible 
combinations for these groups. Groups can be built based on context 
information particular to the problem. In the case of a deforming cavern 
network, for example, all cavern floor points can be summarized to form 
one group. 

Finding a suitable system model to match the real data is critical in 
each particular KF implementation. In some applications the necessary 
detail in the model description is suggested by the physical situation. In 
case of a geodetic cavern network, the point movements are considered 
to be very small and acceleration can generally be neglected. 

5.6 Including additional information in KF 

The result of a KF is a function of observation data. As much obser­
vation information as possible should be included. In many deforma­
tion applications some empirical knowledge about possible deformation 
behavior exists (e.g. points on a cavern floor are expected to move 
dominantly in vertical direction). Very often this information can not 
be quantified or modelled in a cause-response relation. Including this 
kind of additional information with a suitable stochastic model could 
support the KF estimation process, particularly in difficult observation 
configurations. An extension of the measurement model of the KF is 
presented in this section. 

5.6.1 Formulating conditions as additional informa­
tion 

Including conditions or constraints on the estimation parameters in the 
parameter adjustment is a commonly used technique in geodetic appli­
cations, see for example [44, p. 177:ff]. The conditions are formulated 
as 'virtual' observations. Linear observation equations are defined and 
added to the estimation process with an appropriate stochastic infor­
mation. 

A simple example of such a constraint is a soft datum definition, 
as already outlined in Chapter 4.1: As information serve the known 
coordinates of the datum points. 
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Applied to the KF algorithm the original measurement equation 
(5.7) is extended by the direct coordinate information (omitting the 
time index i): 

[ z ] [Hb Ha] [Xb] + [ v ] 
za = 0 la . xa Va 

(5.119) 

where the top line represents the original measurement equation. The 
state vector is spilt up into a partition defining the datum xa and a 
partition for the remaining states summarized in Xb· The second line 
contains the direct coordinate information za and their direct relation­
ship to the datum states. The stochastic model is extended to hold a 
covariance matrix for the direct coordinate information Ra, no correla­
tion is assumed with the measurement data: 

- [R 0] R= 0 Ra . (5.120) 

Applied to the kinematic model implemented in the KF, the soft datum 
condition is imposed on the position states. Similar conditions can be 
formulated for the velocity and acceleration states, e.g. Xvel = Xacc = 0. 
Conditions on velocity and acceleration states change the structure of 
the measurement matrix H, compare (5.67), a::; more matrix elements 
are assigned to values -::/= 0: 

ff. _ [ ~,obs,pos 
1 

- Hi,aaa_obs,pos 
(5.121) 

0 
Hi,aaa_obs,vel 

In deformation analysis applications additional information about the 
expected point movements can be introduced. The different types of 
information depend on the example at hand, here a few possibilities are 
listed: 

• Direction of movement imposed on velocity components: A point 
is moving in a certain direction. Only the direction is constrained 
but not the amount. Thus two additional information equations 
are defined, for the local azimuth () and zenithal angle </>. Both 
expressions are non-linear: 

Xvel,j - cos() x~el,j + Y~el,j = 0 (5.122) 

I 
I 
1. 

I 
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Zvel,j - COS cf; x;el,j + Y;el,j + z;el,j = 0 (5.123) 

• Movement along single coordinate direction imposed on velocity 
components: If point movements are assumed to be only along 
one coordinate direction, (5.122) and (5.123) can be replaced by 
constraining the other coordinate directions to 0 (e.g. movement 
expected in± z, Xvel/acc = Yvel/acc = 0 are constrained), resulting 
in linear expressions. 

• Relative constraints can model relationships between points, e.g. 
same point movements or movement in the same direction. This 
can be extended to model more complex relationships. 

In general the additional information equations are not linear and 
have to be linearized. Good approximation values are needed for the lin­
earization. If this is not the case, the possibilities of including additional 
information are very limited. 

Including additional information as outlined above in an adaptive 
KF for a geodetic network in kinematic setup can help to support the 
estimation solution, especially if the measurement configurations are 
incomplete. It can be of benefit to stabilize the estimation solutions by 
constraining the states for points missing in one or several epochs. 

Results for the application to a practical example are presented in 
Chapter 6.2. 

5. 7 Conclusion 

In this chapter an adaptive KF in a kinematic setup to model and ad­
just a 3D geodetic network has been presented. The application of this 
approach has been motivated for the problem of handling a network 
of geodetic measurements in changing configuration that is subject to 
deformation. The KF algorithm terms in discrete formulation as com­
monly used in literature have been derived for this case. 

The adaptive KF has been developed on the basis of stochastic sta­
bilization. The stochastic models of the system noise and measurement 
data are modified iteratively in order to react to unexpected point move­
ments and gross errors in the observation data. The structure of the 
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resulting algorithm and related variables are analyzed in more detail and 
some suggestions given to further enhance the algorithmic performance 
in the application to practical examples. 

I 

I. 
I 

.. 



6 
Application and results 

for an implementation of 
the adaptive Kalman 

Filter 

The adaptive KF algorithm presented in Chapter 5 is applied to data 
to show its capabilities, performance and possible shortcomings. Both 
simulated and real survey data are processed and the results· are pre­
sented in this chapter, which is divided in four sections: In Section 6.1 
the implementation of the algorithm is shortly described. In Section 6.2 
results for the application to simulated data for a small network example 
are given to show the potential performance of the algorithm and the 
influence of stochastic stabilization. The benefit of including additional 
information about expected point movements is demonstrated. In Sec­
tion 6.3 data for the theoretical ATLAS cavern network configuration is 
simulated and results of the KF algorithm's application presented. Con­
clusions about the major difficulties of the network layout are drawn and 
how the KF approach helps to overcome these problems. Finally in Sec-
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tion 6.4 results are given for the algorithm's application to real ATLAS 
cavern network data. Data gathered over a period of three years are 
analyzed. 

The results are presented by plots and tables of estimation results, 
point movements (deformation) and corresponding error estimates. Com­
parisons to conventional least squares solutions are used to discuss the 
superiority but also limitations of the adaptive KF algorithm. 

6.1 Implementation of the adaptive KF al­
gorithm 

The adaptive KF algorithm that models a geodetic network in a kine­
matic system as described in Chapter 5.5 is implemented in 
MATLAB©6.5. The resulting application reads survey data in the stan­
dard input format (* .inp) of CERN's least squares adjustment software 
package LGC, [31]. The implementation includes all necessary least 
squares setup processes. Due to the complex program structure of LGC 
it was not possible nor encouraged to develop and implement the adap­
tive KF filter algorithm interacting directly with the corresponding mod­
ules in LGC. 

Point and measurement declarations that are implemented in the 
MATLAB application include the following (abbreviations used refer to 
LGC nomenclature): 

Point declarations: 

CALA: 
POIN: 

Fixed datum points 
Unknown network points 

In the KF implementation CALA points are set up as static, fixed 
3D points. Point velocity and acceleration are set to 0 and point posi­
tion, velocity and acceleration coordinate components are not allowed 
to change. All other points are summarized in POIN and are set up as 
full 3D kinematic points. Further LGC point declaration options (e.g. 
VZ for points variable only in z and VXY, VXZ or VYZ accordingly) 
are interpreted as POIN. 
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Observation declarations: 

DMES: 
DHOR: 
DTHE: 

DVER: 

ANGL: 
ZENI: 
ZENH: 
ECHO: 

3D distance 
2D horizontal distance 
3D distance between theodolite and target 
(instrument height unknown) 
Vertical distance or height difference 
(geometrical levelling) 
Horizontal angle 
Vertical angle (instrument height unknown) 
Vertical angle (instrument height known) 
Horizontal offset measurements 

The implemented processing scheme follows the scheme derived for 
the adaptive KF algorithm in Chapter 5 which is summarized in Fig­
ure 5.3. Some more practical details are listed in the following: 

• Model definition: The 'degree' of polynomial for the kinematic 
model is set a priori, i.e. include point velocities and accelerations 
or only velocities in the state vector. This definition can be made 
for every single point. The decision for the right model can be 
made applying the method of multiple-model filters that has been 
shortly outlined in Chapter 5.5.6. 

• Initialization: The state vector and its variance are initialized 
according to (5.62). Approximate values for the point coordinates 
are taken from the points' first occurrence in a data input file. 
The point error information is chosen a priori, e.g. 5 mm for an 
individual point coordinate. In [6] it is suggested to use not too 
large values, as this can cause numerical problems resulting in 
filter divergence. 
The initial system noise errors are chosen relatively small (e.g. 
0.005mm/ dt3 ), as these values are iteratively adapted if necessary. 
A small initial system noise error keeps the uncertainty about the 
system description to a minimum. If the initial value would be 
chosen too large, the system description would be unnecessarily 
degraded each time it is predicted to the next measurement epoch. 
The optimum value for a certain data set (defining optimal by e.g. 
minimizing the squared sum of innovations dTD-1d) can be found 
by using the method of multiple-model filters for different system 
noise variance values. 
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• Prediction: The state estimate and its variance are projected to 
the next epoch of available measurements using the transition ma­
trix as defined in Chapter 5.5.1. If it is the first epoch after the 
initialization step the transition is applied with a time difference 
tlt = 0. 

• The measurement matrix Hi is set up according to (5.67) using 
the linearized measurement equations. The implemented types of 
measurements are limited to the group listed above. 

• The gain matrix is determined as in (5.19) including the numeri­
cally demanding inversion of the innovation variance matrix Di. 

• A preliminary update for the state vector and its variance matrix 
is derived, according to (5.66) and (5.11). 

• The global model test as defined in (5.76) decides whether a sig­
nificant misspecification is indicated by the innovations. 

• If the global model test indicates an outlier either in the system 
description or in the observation data, it is localized and the corre­
sponding stochastic information changed according to the iterative 
procedure of stochastic stabilization described in Chapter 5.5.3. 
An outlier in the system description is an unexpected change in 
the system model (e.g. unexpected point deformation). By in­
creasing the system noise variance the uncertainty in the system 
description is increased. This allows for more freedom in the sys­
tem model estimation and more weight is given to the measure­
ment data to derive coordinate estimates. In the case of an out­
lying observation the corresponding observation error is increased 
in order to reduce this observation's influence on the estimation 
result. The process of stochastic stabilization is carried out itera­
tively in each epoch of observation data which enables a fast and 
efficient reaction of the KF to new information. 

• For the global model test and the derivation of the test statistic for 
the stochastic stabilization the chosen level of significance is 953. 
The disturbability of the state vector entries (which indicate mis­
specifications in the system description) needs to be established 
beforehand, as only disturbable states are to be considered in the 
derivation of the test statistic for stochastic stabilization.. Thus 



Table 6.2: Small simulated network - Statistics of the individual data sets: Epoch number, time, number of fixed datum 
points (CALA), number of variable network points (POIN), number of measured spatial distances (DMES), 
number of measured vertical distances (DVER), number of measured horizontal angles (ANGL), number of 
vertical angles (ZENI), their respective mean redundancy numbers (Fi) and the overall mean redundancy 
number. 

Epoch Time CALA POIN DMES OVER ANGL ZENI Mean 
[] No No No Ti No Ti No Ti No Ti redund. 

0 0 2 10 84 0.80 19 0.54 84 0.96 84 0.89 0.89 
1 1 2 10 28 0.44 19 0.49 28 0.85 28 0.71 0.71 
2 2 2 10 24 0.33 19 0.49 24 0.85 24 0.67 0.67 
3 3 2 10 28 0.53 19 0.49 28 0.91 28 0.75 0.75 
4 4 2 8 28 0.49 0 - 28 0.69 28 0.71 0.71 
5 5 2 10 27 0.52 19 0.49 27 0.89 27 0.74 0.74 
6 6 2 14 55 0.62 23 0.55 55 0.87 55 0.78 0.78 
7 7 2 18 43 0.54 29 0.50 43 0.81 43 0.71 0.71 
8 8 2 16 58 0.56 0 - 58 0.70 58 0.72 0.72 
9 9 2 18 118 0.76 29 0.65 118 0.93 118 0.86 0.86 
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Figure 6.1: Small simulated network- Layout: Datum points Pl and P2, network 
points P3-P12 and object points P13-20. Deformation acting on four 
'cavern floor' points P3-P4 and P9-P10. 

Table 6.1: Small simulated network: Key 
data set parameters. 

Data source 
N° of points 

datum 
N° of moving points 

assumed 
true 

N° of measurement epochs 
3D 

Data sampling 

Simulation 
20 
2 

18 
4 

10 
all 
1 

The network is assumed 
to be deforming in the four 
'floor' points: A rise of all 
four points with a velocity of 
0.1 mm/dt and an accelera­
tion of 0.02 mm/ dt2 has been 
applied. 

See Table 6.1 and Ta­
ble 6.2 for a summary of some 
key parameters of the data 
set. The redundancy num-
bers in Table 6.2 refer to the 

individual (SE) LSQ solutions and are not the KF redundancy numbers. 

The adaptive KF implementation is applied to this data set. All 
points except the datum points are set up as kinematic points. 
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Some additional options are available in the implemented application: 

• Possibility to include additional information about e.g. expected 
point movements as described in Chapter 5.6. 

• Declaration of temporary or discontinued points by adding '#' at 
the end of the point declaration in the input data file. 

• Including deterministic information about point position changes 
in additional data input files (* .detinp). This can be useful if, 
for example, a point monument is changed, e.g. socket with­
out reference sphere is changed to standard reference socket with 
sphere (for illustration see Figure 3.4, where the vertical offset is 
44.45mm. 

• Declaration of a soft datum as described in Chapter 4.1.1. Points 
defined as CALA in the input data file are interpreted as soft 
datum definition. 

• Several plotting options are available. 

6.2 Small simulated network data 

A small network in the approximate dimensions and simplified design of 
the ATLAS cavern network is simulated, represented by twelve network 
points (Pl-P12) and eight object points (P13-P20), corresponding to 
possible detector object points. The datum definition is realized by two 
fixed network points (Pl and P2) inside the cavern, see Figure 6.1. 

Measurement data in ten epochs (Llt = 1) is simulated in different 
configurations, including horizontal and vertical angle measurements 
(<1 = 7cc ;10cc), distance measurements (<1 = 0.2 mm/0.3 mm) and 
some vertical distance measurements (<1 = 0.1 mm/0.3 mm). Differ­
ent assumed measurement precisions represent different measurement 
conditions e.g. one- or two-face measurements or different target op­
tions. The data has been simulated in a small program implemented in 
MATLAB©6.5. 
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stochastic stabilization for the system description can only start 
in the second epoch of available data. 

• State vector entries referring to one coordinate component of one 
point are grouped for the localization step (i.e. x-position, x­
velocity and - if considered - x-acceleration state entries for point 
j form one group). No grouping of horizontal coordinate com­
ponents is applied, as the point deformations are expected to be 
dominantly along the individual coordinate directions, i.e. radial 
and vertical. 

• The detection of outliers in the observation data starts in the very 
first epoch. The process from the prediction step onwards is iter­
ated with the modified stochastic information for the system noise 
and for the measurements, until the global model test passes. 

• Statistical test terms are derived based on the adapted level of 
significance, as suggested in (5.108). This enables to make the 
test more sensitive in the case of poorly controlled observations. 

• If the reliability number for an observation is zero it is excluded 
from the gross error detection. Such observations (e.g. HLS mea­
surements with no direct link to the full network) containing infor­
mation new to the system description would be completely down­
weighted in the estimation process instead of adapting the system 
description. 

• The update of the state vector and its variance is valid if the 
global model test does not find any significant innovation. The 
corresponding variables are stored in a flexible data structure. 

• For the next epoch of measurement data the process starts again 
at the prediction step. The stochastic information for the system 
noise is reset to its initial values. Points that are already known 
to the system are projected by applying the transition matrix. 
Points that are new to the system are initialized with approximate 
coordinate values and a chosen a priori variance information as in 
the initialization step at the very beginning of the filter algorithm. 

I 
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This small and clear example shows the potential performance of 
the adaptive KF algorithm in kinematic setup. Results for two points 
- one moving network point and one stationary object point - are 
presented by means of plots and tables summarizing point position 
estimates and corresponding error information. The KF results are 
compared to true positions and the results of individual, independent 
least-squares adjustments, from now on referred to as Single Epoch 
(SE) Least-SQuares (LSQ) results. The SE LSQ algorithm is also im­
plemented in MATLAB©6.5 and refers to the same basic adjustment 
functions as the KF implementation (i.e. setup of linearized observation 
equations etc.). The approximate point coordinates used to derive the 
SE LSQ solution are the true simulated point positions which are not 
available to the KF after the initial epoch. This gives an advantage to 
the SE LSQ results over the KF results. 

Two system models are set up for this example: The first system 
model (SMI) includes point position and velocity components and in 
the second (SMII) also point accelerations are estimated. Results are 
presented for both models and a multiple-model filter as outlined in 
Chapter 5.5.6 is applied to decide on the better suited system model. 

Three examples of active stochastic stabilization as presented in 
Chapter 5.5.2 show the influence of the adaptive process on the Kalman 
gain matrix. This matrix determines the influence of observations on 
the system state vector. Changes in the stochastic information for the 
measurement data and the system noise induce changes in the gain ma­
trix. The analysis of such changes give valuable insight into the adaptive 
KF process. 

Additional information on expected point movements is included as 
formulated in Chapter 5.6 and the results are presented. 

6.2.1 Network configuration and observations 

Observations for ten epochs are simulated. The configuration is different 
in all epochs. In epochs 1-6 only network points are present, from 
epoch 7 onwards also object points are measured. Object points are 
target points and never instrument stations, consequently no reciprocal 
measurements are available for this group of points. 

An example of one epoch of simulated data can be seen in Figure 6.2. 
In this epoch 9 most of the network points and all of the object points 

•·· 
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Figure 6.2: Small simulated network: Simulated observations in epoch 9. Tachy­
metric measurements from network points P5, P6 and P9-Pl2. 

are observed, with theodolite stations on network points P5, P6 and 
P9-Pl2. Measurements include horizontal and vertical angles as well 
as spatial distances. The datum points Pl and P2 are only sighted 
from one station each, thus the reference to the datum is weak, as these 
observations are poorly controlled. 

Network configurations in other epochs are similar but all network 
points are measured at least in nine epochs, object points are measured 
in three or four epochs. The datum is always included in the measure­
ments. 

6.2.2 Analysis and comparison of adaptive KF re­
sults with single epoch LSQ results and true 
values 

The results for the adaptive KF in kinematic setup are compared to the 
SE LSQ results. The subsequent plots show the results in xy- and yz­
plane. An estimated position is indicated by'+' for the SE LSQ result 
and 'x' for the KF result. The corresponding error information is repre­
sented by the Helmert error ellipse (la) describing an area of confidence 

•·· 
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of approximately 39%, [44, p. 259]. Confidence ellipses representing a 
significance level of 95% are not plotted because these objects would be 
too large for illustration of the position results. As this is a simulated 
example, also the true positions are known and are plotted as 'D'. In 
overview plots showing the SE LSQ results separately from the KF re­
sults for all epochs, e.g. Figure 6.3, a color scheme is used to show the 
different epochs in time: Earlier epochs are plotted in lighter shades of 
grey, getting darker until black for the most recent epoch. Deformation 
vectors (i.e. velocity state estimates) are plotted for the KF results. If 
no observation is available and the KF estimate is the predicted value 
only, the corresponding error ellipse is plotted in a dashed line. More 
detailed plots give the results for individual epochs separately, giving a 
better overview of the results with respect to time. Numeric results are 
summarized in tables. 

The results for two points are presented: One moving network point 
(PlO) and one stationary object point (Pl8). Results for the System 
Model I (SMI) including only point velocities and for the System Model 
II (SMII) including point velocities and accelerations are shown. 

Movmg network pomt PlO 
Measured in 9 epochs 

30 9 epochs (time 0, 1, 2, 3, 5, 6, 7, 8, 9) 
levelling only none 

The moving network point PlO has been observed in nine out of ten 
epochs. It is only moving in the z-direction.The SE LSQ results in 
the xy-plane in Figure 6.3 show a random distribution around the true 
position, the offsets from the true value are generally not significant with 
respect to the la- error ellipses corresponding to a level of significance 
of 39%, except in one case. 

The results for the SMI in the xy-plane in the middle of Figure 6.3 
show that overall no significant point movement in x- or y-direction 
can be identified, which is correct. The movement is illustrated by 
the estimated deformation or velocity vector. To indicate a significant 
movement this vector would have to extend clearly beyond the la-error 
ellipse corresponding to the 39% level of significance. 
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Figure 6.3: Small simulated network - Moving network point PlO (movement in 
z-direction only): Comparison of SE LSQ results (top), KF results 
for system model including point velocities (SM/) (middle) and KF 
results for system model including point velocities and accelerations 
(SM/I) (bottom) in the xy-plane. 
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Figure 6.4: Small simulated network - Moving network point PlO: Comparison 
SE LSQ results (left), KF results for system model including point 
velocities (SM/) (middle) and KF results for system model including 
point velocities and accelerations (SMll)(right) in the yz-plane. 

In case of the KF, generally the error estimations decrease in later 
epochs as more and more data is available to derive the point and error 
estimates. In epoch 2 the point is not so well determined in x-direction 
as it is only observed in 3D from station P3 and P4, which are also mov­
ing network points. Its vertical position is determined by geometrical 
levelling. The SE LSQ result is more affected by this bad configuration 
than the KF result as in this case only data from this very measure­
ment epoch can be used, the estimate is approximately 0.63 mm off in 
x-direction and 0.19 mm in y-direction, see also Table 6.3. 

Comparing the results for the SMI including only point positions 
and velocities to the results for the SMII including additionally point 
accelerations it is seen that in both cases no significant horizontal point 
movement can be identified. The KF with the SMI estimates zero ve­
locity values after some epochs but the KF with the SMII derives de­
formation vectors in changing directions also in later epochs. It is more 
difficult for the higher parameter model to identify zero movement. 



.... 
Table 6.3: Small simulated network - Moving network point PlO: True simulated coordinates and results for SE LSQ ~ 

(top) and KF {SM/) {bottom): Differences to true starting position in epoch 0. 

Epoch True positions [mm] SE LSQ results [mm] 
x y z x ± rms y ± rms z ± rms 

0 0.00 0.00 0.00 -0.12 0.10 0.01 0.11 -0.07 0.06 
1 0.00 0.00 0.13 -0.15 0.23 0.07 0.23 0.05 0.07 
2 0.00 0.00 0.28 0.63 0.27 0.19 0.29 0.31 0.08 
3 0.00 0.00 0.45 0.04 0.17 0.11 0.19 0.54 0.07 
4 0.00 0.00 0.65 - - - - - -
5 0.00 0.00 0.88 0.07 0.17 0.02 0.16 1.00 0.07 
6 0.00 0.00 1.13 -0.39 0.22 0.04 0.18 1.14 0.07 
7 0.00 0.00 1.40 0.05 0.17 0.17 0.20 1.44 0.08 
8 0.00 0.00 1.70 -0.29 0.27 -0.18 0.25 1.95 0.34 
9 0.00 0.00 2.03 -0.07 0.12 0.11 0.13 2.06 0.07 

Epoch KF positions [mm] KF velocities [mm/dt] 
x ± rms y ± rms z ± rms vx ± rms vy ± rms vz ± rms 

0 -0.12 0.10 0.01 0.11 -0.07 0.06 0.00 0.50 0.00 0.50 0.00 0.50 
1 -0.15 0.21 0.10 0.21 0.04 0.07 -0.02 0.22 0.11 0.22 0.10 0.09 
2 0.33 0.21 0.15 0.21 0.28 0.06 0.24 0.12 0.07 0.12 0.18 0.05 
3 0.17 0.15 0.14 0.16 0.52 0.06 0.10 0.06 0.04 0.07 0.21 0.03 
4 0.20 0.19 0.22 0.19 0.72 0.08 0.08 0.06 0.05 0.06 0.20 0.03 
5 0.16 0.12 0.10 0.12 0.98 0.06 0.05 0.03 0.01 0.03 0.22 0.02 
6 0.01 0.12 0.08 0.11 1.16 0.05 0.01 0.03 0.01 0.03 0.21 0.01 
7 0.04 0.10 0.09 0.10 1.40 0.05 0.01 0.02 0.01 0.02 0.21 0.01 
8 -0.07 0.10 -0.02 0.10 1.62 0.05 0.00 0.02 -0.01 0.02 0.22 0.01 
9 -0.04 0.08 0.02 0.08 2.00 0.06 0.00 0.02 0.00 0.02 0.41 0.13 
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The results for the yz-plane in Figure 6.4 show that the vertical 
point movement is easily identified by both the SE LSQ and the KF 
solutions. In case of the KF position estimates are obtained even though 
no observations are available (as in epoch 4). The corresponding error 
ellipses are slightly inflated which is reasonable, as the corresponding 
position estimates are only predictions and the system descriptions are 
subject to uncertainty. 

In epoch 8, the network configuration is degraded, as the connection 
to the datum points is only very weak (see Figure 6.2). The redun­
dancy numbers for the corresponding observations are very small (e.g. 
ri < 0.02 for the spatial distance measurements). The SE LSQ result 
differs notably from the true position while the KF is generally only 
slightly affected. The KF at this stage can rely on a good system de­
scription to compensate for poorly controlled observations while the SE 
LSQ estimate is affected by any errors in these uncontrolled observa­
tions decreasing the overall network reliability. The clear acceleration 
in the movement should be better followed with the SMII model. The 
improvement is in fact small as can be seen in the plot, however the er­
ror estimation for the position is larger due to the increased number of 
unknowns. Also the estimation is more affected by missing observations 
or bad measurement configuration. 

Using the indicator min (2.:: dfDidi) as used in the multiple-model 
filter outlined in Chapter 5.5.6 to decide on the better suited system 
model, the decision is by a marginal difference in favor for the SMII (with 
a value for I: dfDidi =:' 1597.6 against the SMI with I: dfDidi = 
1673.4. 

Overall the improvement due to the higher-parameterized system 
model including point accelerations is small although the acceleration 
in this example is clearly identifiable in the data. For this reason the 
results in the following are only shown for the application of the SMI. 
Numerical details for the SE LSQ results and the KF (SMI) results 
can be found in Table 6.3. The root mean square (rms) errors of each 
estimated value are given. 

In a more sophisticated solution the multiple-model filter would be 
set up for all combinations of system models considering point and co­
ordinate components individually. This demands for considerable com­
puting power even for a small example and becomes impracticable for 
larger networks. 
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Figure 6.5: Small simulated network - Moving network point PlO (movement in 
z direction only), Epoch 0 - Epoch 3: SE LSQ results (left column) 
and KF (SM/) results (right column) in the xy-plane for each epoch. 
Estimates from previous epoch plotted in grey lines. 
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Figure 6.6: Small simulated network - Moving network point PlO (movement in 
z direction only), Epoch 4 - Epoch 7: SE LSQ results (left column) 
and KF (SM/) results (right column) in the xy-p/ane for each epoch. 
Estimates from previous epoch plotted in grey lines. 
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Figure 6.7: Small simulated network - Moving network point PlO (movement in 
z direction only), Epoch 8 - Epoch 9: SE LSQ results (left column) 
and KF (SM/) results (right column) in the xy-plane for each epoch. 
Estimates from previous epoch plotted in grey lines. 
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Figure 6.8: Small simulated network - Moving network point PlO (movement 
in z direction only), Epoch 0 - Epoch 4: SE LSQ results (top row) 
and KF (SM/) results (bottom row) in the yz-plane for each epoch. 
Estimates from previous epoch plotted in grey lines. 

•·· 



138 APPLICATION AND RESULTS OF ADAPTIVE KALMAN FILTER 

2.2 ~pqch 

2 

1.8 

1.6 

1.4 ' 
'E .s 
N 

0.4 

0.2 

0 

-0.2 

2.2 

2 

1.8 

1.6 

1.4 .. 

'E 1.2 .s 1 N 

-
0

·
2
-0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4 

y [mm] y [mm] y [mm] y [mm] y [mm] 

Figure 6.9: Small simulated network - Moving network point PlO (movement 
in z direction only), Epoch 5 - Epoch 9: SE LSQ results (top row) 
and KF (SM/) results (bottom row) in the yz-plane for each epoch. 
Estimates from previous epoch plotted in grey lines. 
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For a better visualization of the position results with respect to time 
may serve Figure 6.5 - Figure 6.9 illustrating the SE LSQ and KF SMI 
results as in Figure 6.3 and Figure 6.4 but epoch-by-epoch: The SE 
LSQ ( '+ ') and KF (' x ') results for each epoch are plotted separately 
and arranged next to each other for better comparison. The estimates 
from the previous epoch are plotted in grey lines. 

Stationary object point P18 
Measured in 4 epochs 

3D 3 epochs (time 6, 8, 9) 
levelling only 1 epoch (time 7) 

The object point P18 has been measured in the last four epochs, in 
epoch 7 only by geometrical levelling. The illustrations of the results 
in the xy-plane in Figure 6.10 and for the yz-plane in Figure 6.11 show 
that the KF correctly identifies this point as being stationary. 
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Figure 6.10: Small simulated network - Stationary object point P18: Comparison 
of SE LSQ results (left) and KF (SM/) results (right) in the xy-p/ane. 

The KF results are for the simpler system model SMI. Detected 
point movements are not significant for a level higher than the 39% 
(lo") confidence ellipse. 

The results in epoch 7 in Figure 6.10 show a largely inflated error 
ellipse. This is understandable as in this epoch no horizontal measure­
ment information is available and the estimate is derived from only one 
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Table 6.4: Small simulated network - Stationary object point PlB: True simulated coordinates and results for SE LSQ 
(top) and KF (SMl)(bottom): Differences to true starting position. 

Epoch 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Epoch 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

x ± rms 

True positions [mm] 
x y z 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 

KF positions [mm] 
y ± rms 

SE LSQ results [mm] 
x ± rms y ± rms z ± rms 
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

-0.20 0.12 -0.01 0.14 -0.20 0.14 
- - - - -0.18 0.08 

-0.05 0.29 -0.07 0.21 0.23 0.28 
-0.14 0.11 -0.09 0.11 0.08 0.11 

KF velocities [mm/month] 
z ± rms vx ± rms vy ± rms vz ± rms 
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Figure 6.11: Small simulated network - Stationary object point P18: Comparison 
of SE LSQ results (left) and KF (SM/) results (right) in the yz-plane. 

previously measured epoch. In Figure 6.11 the SE LSQ estimate for this 
epoch 7 is the levelling result only, the error information is represented 
by an error bar. The corresponding error figure for the KF result is 
an ellipse plotted in a full line, as the z-position is derived as a state 
update using observation but the y-component of the position is only a 
prediction. See Figure 6.12 and Figure 6.13 for the visualization of the 
results with respect to individual epochs. 

Table 6.4 lists the nu-
Table 6.5: Small simulated network - Overall merical results for this 
mean redundancy numbers for SE LSQ and KF 

point. (SM/) solutions. 
In Table 6.2 the over-

all mean redundancy num­
bers have been given for 
all individual measure­
ment epochs. For the 
same data also mean val­
ues of the KF observa­
tion redundancy numbers 
as defined in (5.107) can 
be derived. 

The comparison of these 
numbers gives a measure 

Epoch 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Mean redundancy 
SE LSQ KF 

0.89 0.89 
0.71 0.74 
0.67 0.75 
0.75 0.82 
0.71 0.87 
0.74 0.84 
0.78 0.85 
0.71 0.83 
0.72 0.83 
0.86 0.90 

Reliability 
gain in % 
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Figure 6.12: Small simulated network - Stationary object point PlB: Comparison 
of SE LSQ results (left column) and KF {SM/) results (right column) 
in the xy-p/ane for each epoch. Estimates from previous epoch 
plotted in grey lines. 
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Figure 6.13: Small simulated network - Stationary object point PlB: Comparison 
of SE LSQ results (left column) and KF (SM/) results (right column) 
in the yz-plane for each epoch. Estimates from previous epoch 
plotted in grey lines. 
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for the increase in network reliability if the KF is applied, see Table 6.5. 
The gain compared to the SE LSQ results is larger (between 13-18%) if 
the individual epoch measurement configurations are bad, see for exam­
ple epoch 4, 7 or 8. If the individual measurements are well controlled 
(as in epoch 9) the gain is smaller (5%). 

6.2.3 Analysis of the influence of stochastic stabi­
lization on the KF gain matrix 

In this section the effect of the stochastic stabilization (see Chapter 5.5.3) 
on the gain matrix K is discussed. In Appendix B the structure of the 
gain matrix is discussed in analytical detail. To better understand how 
it is influenced in the adaptive filter due to the stochastic stabilization 
process, some details in the context of this small application example 
are illustrated. 

The adaptive KF identifies discrepancies between the system model 
and the current measurements by means of innovation analysis. Dis­
crepancies can be caused by misspecifications in the system model or 
gross errors in the observation data. In the example of a kinematic 
network, misspecifications in the system model can be caused by unex­
pectedly large deformations. The system model is adapted by iteratively 
increasing the system noise error until the system description and the 
measurement data agree. Gross errors in the observation data also cause 
discrepancies between the system model and the measurement data. It 
has been shown in Chapter 5.5.3 that the system noise stochastic model 
can be adapted in parallel to the stochastic model for the observations 
in order to decrease the influence of outlying observations. 

Changes in the stochastic models of the system noise and the mea­
surement data influence the gain matrix. Using the example of the 
simple data set discussed in this section and selecting three particular 
cases of stochastic stabilization, the effects on the gain matrix are illus­
trated. The three cases include two deliberately added gross errors in 
one poorly and one well controlled observation. The effect of adapting 
the system description by increasing the system noise error is demon­
strated for one state parameter. This example uses the original data set 
analyzed in this section. 
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The gain matrix K describes the influence of individual observations 
on individual state vector entries. It has a dimension of [u x n] where 
u describes the number of unknowns (in the case of the SMI u is 6 x 
the number of points) and n describes the number of observations. 

Gross error detection 

In each of the following examples one single gross error is added delib­
erately to the original data set. The two examples are not connected, 
i.e. only one gross error is present in the data set each time. 

The gain matrix is initially not affected by the deliberate introduc­
tion of a gross error, as it is by definition not dependent on the observa­
tion data. The immediate effect of a gross error is on the innovation d 
and thus the predicted state vector residuals Vx,i and the measurement 
residuals Vz,i, as defined in (5.70). 

The gain matrix is affected by changes to the stochastic models, as 
discussed in Chapter 5.5.5. In the case of a gross error the measurement 
error model is adapted by the algorithm in order to reduce the effect of 
the outlying observation. 

Misspecifications indicated by the global model test are localized and 
the corresponding error information, i.e. meaRurement errors, increased. 
Changes to the stochastic model affect the gain matrix entries in the 
following iteration adjustment step. The iteration is continued until the 
global model test passes. Only then can the data processing go ahead 
to include the next epoch of measurement data. 

Figure 6.14 illustrates how the effect of the change in the measure­
ment error on the gain matrix can be visualized. The entries in the 
gain matrix K corresponding to one observation k are summarized in 
the column vector k of K. The change in the entries of this vector due 
to the increase in the error of observation k in the iteration process is 
obtained by subtracting the vector after the error modification from the 
vector before that. Negative difference values indicate that the influ­
ence of the observation k on a particular state vector entry j is reduced, 
while a positive difference would indicate an increase of influence. If no 
change in the gain matrix elements is found, the change in the error for 
observation k has no effect on the state vector. This scheme of compar­
ing the effects of changes in the measurement error model on the gain 
matrix is adopted in the following. 

""'. 
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Gain matrix K 
Gain matrix K in iteration step i -1 
in iteration step i n 

1 n .. _ Difference in K entries for column k iteration i 

1 
I 

.J-L.J-L -'-
,-

0 I I I I I 
.. _ 

,-r,-r ,- I 

.J-L .J-L 
.. _ ,-

I I I I I 
.. _ 

,-,..,-,.. ,- I 

.J-L .J-L 
.. _ 

-'-I I I I I 

\ 
No change of influence of 
observation k on other states ,-,.. ,-,.. 

.J-L .J-L. 
.. _ ,-

I I I I I 
_._ ,-,.. ,-,.. ,- I 

.J-L..1-L _._ ,-
I I I I I 

.. _ 
,-,..,-r ,- I 

.J-L .J-L 
.. _ 

Reduced influence 
/of observation k on state j 

u I I I I I 

t t u 

Observation k State vector entry j 

Figure 6.14: Changes in gain matrix caused by increased measurement variance 
in one iteration step. 

Both examples presented in the following refer to the moving net­
work point PlO in epoch 2. In this epoch PlO is measured from the 
two stations P3 and P4 with one spatial distance measurement, one 
horizontal and one vertical angle measurement each. The point is badly 
determined in this epoch 2 as has already been seen in Figure 6.3 and 
Figure 6.5. 

Gross error in poorly controlled observation DMES P3-P10 
A gross error of 1.5 mm is deliberately introduced to the poorly con­
trolled spatial distance observation between P3 and PlO in epoch 2. 

In the process of stochastic stabilization the gross error should be 
identified and its influence on the parameter estimation reduced. The 
method described in Chapter 5.5.3 analyzes the observation residuals. 
As the gross error has been added to a poorly controlled observation 
(redundancy number is 0.39), the error is likely to affect also other ob­
servation residuals. The localization step for the gross error detection 
analyzes the squared residuals which are tested against the correspond­
ing quantile of the x2-distribution. For the example at hand up to four 
possibly outlying observations can be identified. Not only the truly erro­
neous spatial distance observation P3-P10, but also the spatial distance 
P4-P10 and both horizontal angle measurements P3-P10 and P4-P10. 
The number of suspected erroneous observations depends on the choice 
on how to adapt the level of significance in the derivation of the statis-

• 
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Table 6.6: Small simulated network - Moving network point PlO - epoch 2: 
Gross error in observation 5 DMES P3-P10. Statistical test terms and 
redundancy numbers for observation 5 {DMES P3-P10), 9 (DMES 
P4-P10), 48 (ANGL P3-P10) and 52 (ANGL P4-P10). 

xi-a,h; with 
Observation n~GM. rz,i,k a=a a= _g_ a=r a=a· 

,J n; z,• 

(1 - rz,i,k) 
5 17.06 0.39 3.84 13.40 11.41 4.67 
9 9.64 0.28 3.84 13.40 11.41 4.39 
48 10.81 0.92 3.84 13.40 11.41 8.29 
52 13.59 0.78 3.84 13.40 11.41 6.49 

tical terms. As discussed in the previous Chapter 5.5.2 it is advisable 
to adapt the level of significance in a process applying repeated individ­
ual tests. The statistical test terms derived in the localization step are 
used to inflate the variance values of suspected erroneous observations 
(and system noise errors), i.e. in the stochastic stabilization process 
as defined in (5.109), (5.110) and (5.111). The variance inflation fac­
tor Tj is derived from the ratio of the squared residual term and the 
corresponding x2-quantile. A sensible c:hoice for the adaptation of the 
level of significance for the statistical tests is vital to the adaptive KF 
employing stochastic stabilization. 

The effect of the discussed choices to adapt the level of significance 
in the statistical tests can be seen for the example at hand in Table 6.6. 

• a = o:: If the level of significance 1 - o: is not adapted at all, 
the x2 - test thresholds are smallest. All four observations would 
be suspected to contain a gross error and large correction factors 

n2 
Ti = ;aM,; would apply. 

X1-o,hj 

• a = ~ and a = Ra . : As ni and Rz i are generally large num-
n,,, Z,1. ' 

hers the values for a become very small and the test thresholds 
increase. Applied to the example two observations would be con­
sidered to contain a gross error but the variance correction factors 
would be very similar and no differentiation would be made be­
tween the truly erroneous observation and the wrongly suspected 
observation. 
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Table 6.7: Small simulated network - Moving network point PlO - epoch 2: 
Gross error in observation 5 DMES P3-P10. Statistical test terms and 
changes in observation error information due to stochastic stabilization 
for observation 5 (DMES P3-P10), 9 (DMES P4-P10), 48 (ANGL 
P3-P10) and 52 (ANGL P4-P10). 

Observation Q~GM xi'-a,h· Ti Tk old Tk new 
5 17.06 4.67 3.65 0.2mm 7.7mm 
9 9.64 4.39 2.19 0.2mm l.8mm 

48 10.81 8.29 1.31 7cc 26cc 

52 13.59 6.49 2.10 7cc 57cc 

• a = a· (1 - rz,i,k): If the a is scaled with the factor (1 - rz,i,k) 
as suggested in (5.108) the effect on other observations can be 
reduced. As the redundancy number is smaller for the poorly 
controlled observation, the corresponding value for a is larger than 
for better controlled observations. This causes the test to be more 
sensitive in the case of poorly controlled observations. 

The resulting test terms based on the adapted level of significance 
1-a= 1- a· (1- rz,i,k) are given in Table 6.7. The test terms Ti are 
used to inflate the measurement variances as defined in (5.110). The 
effect from this change in the stochastic information of the observation 
containing the gross error on the gain matrix entries is illustrated as out­
lined before, in Figure 6.15. In this illustration in can be seen that the 
effect is most significant for the entries in the state vector corresponding 
to PIO, namely the position and velocity entries for the x-coordinate. 
The influence of the observation on these state vector components has 
been reduced. After the gross error detection and the stochastic stabi­
lization process the redundancy number of the erroneous observation is 
0.99 which implies that the observation has no influence in the estima­
tion process. 

Gross error in ANGL P3-P10 In a second small example an error 
of 6occ is deliberately introduced to the horizontal angle measurement 
P3-P10. This observation is much better controlled than the observa­
tion in the example before. In the gross error detection only this single 
observation is suspected as containing a gross error. Due to the good 
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10 20 30 40 50 60 70 
State vector entries 

Figure 6.15: Small simulated network - Moving network point PlO - epoch 2: 
Changes in gain matrix caused by increased measurement variance -
one iteration. Illustration of column of gain matrix corresponding to 
observation dMES P3 - PlO. The state vector entries corresponding 
to the position and velocity parameters respectively for PlO are 
indicated by the grey areas. 

Table 6.8: Small simulated network - Moving network point PlO - epoch 2: 
Gross error in observation 48 ANGL P3-P10. Statistical test terms 
and changes in error information due to stochastic stabilization for 
observation 5 (DMES P3-P10), 9 (DMES P4-P10), 48 (ANGL P3-
P10) and 52 (ANGL P4-P10). 

Observation fi~GM xf-a,h; Ti rk old rk new 

5 0.87 4.67 0.19 0.2mm 0.2mm 
9 1.67 4.39 0.38 0.2mm 0.2mm 

48 26.58 8.29 3.21 7cc 173cc 
52 5.17 6.49 0.80 7cc 7cc 

control in this observation the error is clearly detected and does not 
affect other observation residuals as can be seen in Table 6.8 listing the 
results for the statistical terms using the adapted level of significance 
1 - a = 1 - a· (1 - r · k)· z,i, 

Stochastic stabilization is achieved by changing the single observa­
tion error. The effect of this change on the gain matrix is visualized 
in Figure 6.16. The entries corresponding to the position and velocity 
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states of the x- and y-coordinate of PIO are most affected by the change 
of the measurement error. 

The redundancy number of the erroneous observation is 1.0 after the 
stochastic stabilization process. 

10 20 30 40 50 60 70 
State vector entries 

Figure 6.16: Small simulated network - Moving network point PlO - epoch 2: 
Changes in gain matrix caused by increased measurement variance -
one iteration. Jllustration of column of gain matrix corresponding to 
observation ANGL P3 - PlO. The state vector entries corresponding 
to the position and velocity parameters respectively for PlO are 
indicated by the grey areas. 

These two examples have shown the effect of gross errors in the 
observation data on the KF gain matrix if stochastic stabilization is 
carried out. The influence of such errors on the KF estimation result is 
decreased. 

System noise error adaptation 

Adapting the system noise error in the stochastic stabilization process 
affects the gain matrix K as seen in Chapter 5.5.5. Using the example 
of the moving network point PIO in the original (i.e. unchanged) data 
set, this effect is illustrated in the following. The movement of PIO in 
z-direction in the last measurement epoch 9 is larger than expected by 
the system description which could already be seen in Figure 6.4 and 



SMALL SIMULATED NETWORK DATA 151 

Figure 6.9. The same applies to the other moving network points P3, 
P4 and P9. The system description for all four points has to adapt to 
the unexpected change. 

Discrepancies are detected by the global model test which can be lo­
calized in the predicted state vector residuals Vx,i of the z-coordinates of 
all four moving network points P3, P4, P9 and PlO. In several iteration 
steps the corresponding system noise variances are inflated. After each 
change the KF adjustment for this data epoch is repeated, affecting also 
the gain matrix. If the global model test still indicates a discrepancy 
between the system description and the measurement data the stochas­
tic stabilization is repeated. This process is iterated until the global 
model test is passed. 

Gain matrix K 
Gain matrix K in iteration step i ·1 
in iteration step i n 

1 n~ Difference in K entries for row j iteration 1 

1 ... ,~_ .......... , _~.~, ~-.~,,....,_ ;- ~ ~ -

State vector,_.~ -~~~~@j-~11~1· -1~,~-1:~~~s===--', .. ~~~ entry j ~ ..1 .. L..1 .. &...1 .. L..1 .. ~-~~- -

.....,_ Increased influence 
of observation k on state j 

I I I I I I I J .. L .J .. 
, .. ,. "1""1"' "1""r" , .. I I I 
.J .. L.J .. L.J .. L.J .. 1""r"'1"" 
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t 
Observation k 

u 

Figure 6.17: Changes in gain matrix caused by increased measurement variance 
in one iteration step. 

For PlO five iteration steps are necessary to adapt the system de­
scription sufficiently. The derivation of the statistical test terms is based 
on the adapted level of significance 1 - a = 1 - a· (1 - rx,1,_i,k)· The 
redundancy numbers for the predicted state vector elements rx,1,_ 1 ,k are 
defined in (5.106). A small predicted state redundancy number indicates 
an already well known system description. By scaling a by (1-rx,1,_ 1 ,k), 
a is larger for well known system states than for other states which are 
not so well known yet. The corresponding test threshold is smaller for 
well known system states which makes the test decision in these cases 
more sensitive, i.e. these system states are more likely suspected to be 
the cause of a misspecification in the system description than others. 

t 
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This can avoid the effect that the KF learns the system description 
too fast too well which is a common problem in many KF applications, 
[15, 35). 

In Table 6.9 the statistical terms are given for the five necessary 
iteration steps to adapt the system description for the z-coordinate of 
PIO. 

Table 6.9: Small simulated network - Moving network point P10 - epoch 2: 
System noise variance adaptation z-coordinate of P10. Statistical test 
terms and changes in observation error information. 

Iteration Q~GM,j XI-Ci,hj Tj qi-1,j old qi-1,j new 
[mm/dt3

] [mm/dt3
] 

0 10.33 6.58 1.57 0.005 0.011 
1 9.96 6.59 1.51 0.011 0.023 
2 9.58 6.60 1.45 0.023 0.048 
3 8.98 6.64 1.35 0.048 0.095 
4 8.10 6.76 1.20 0.095 0.172 
5 7.01 6.97 1.01 0.172 0.285 

In the first localization (iteration 0) the quadratic term for the pre-
dicted state vector residual n;GM P 0 exceeds x 2

1_.,. h and the ratio 
, 1 z ....... , PlOz 

test term TPio, is larger than one. The increase in the system noise 
variance is derived as in (5.111), resulting in an increase from 0.0052 

to 0.0112 and eventually, after five iterations to 0.2852 when the global 
model test passes. In the next epoch of measurement data the sys­
tem noise error is reset to its initial value. If the global model test for 
this new measurement epoch indicates any discrepancies the iteration 
to achieve stochastic stabilization starts again from these initial system 
noise error values. 

Figure 6.17 illustrates how the effect of the change in the system 
noise error on the gain matrix can be visualized, similar to Figure 6.14. 
The entries in the gain matrix K corresponding to the state parameter 
j are summarized in the row vector j of K. The change in the entries 
of this vector due to the increase of the system noise error for state j 
is obtained by subtracting the vector after the error modification from 
the vector before. 

If the system noise error is increased, the uncertainty in the system 
description increases and more influence is given to the observations. 
Positive difference values indicate that the influence of an observation 
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k on the state vector entry j is increased. If there is no change in the 
gain matrix elements, the observations maintain the same influence as 
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Figure 6.18: Small simulated network - Moving network point PlO - epoch 9: 
Changes in gain matrix caused by increased system noise variance 
- five iteration steps. Illustration of gain matrix row vector cor­
responding to z-coordinate of point PlO. The height difference 
observations are indicated by the grey area. 

Figure 6.18 shows the differences in the row vector elements corre­
sponding to the position state of the z-coordinate of PIO for all five 
iteration steps. The effect of the gain matrix entries in the first itera­
tion steps is small. The change of the system description induced by the 
inflation of the system noise variance is insufficient to overcome the dis­
crepancy between the system description and the measurements. With 
continued iteration the system noise variance is increased, provoking a 
larger influence on the gain matrix entries until the system description 
has sufficiently adapted and the global model test passes. 

The most significant differences considering the observations can be 
seen in the range of the height difference observations, indicated by a 
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grey area in Figure 6.18. Especially three individual observations (index 
123, 124 and 135) stand out: These observations can be identified as the 
three height difference measurements connecting PIO to other network 
points. As expected it can be concluded that due to the increase in 
the uncertainty in the system description of the z-coordinate of PIO, 
more weight is given in the KF to observations which determine this 
unknown. 

In the three examples given here the effect of stochastic stabilization 
on the Kalman gain matrix in the adaptive KF implementation have 
been illustrated. Changes in the stochastic models of the measurements 
and the system noise affect the gain matrix. By adapting the level of 
significance in the related statistical tests employing the redundancy 
numbers of the observations and the predicted system states, possibly 
negative effects on the KF performance of poorly controlled observations 
and too well known system state parameters can be reduced. 

6.2.4 Including additional information in the adap­
tive KF 

As discussed in Chapter 5.6 additional information can be included in 
the KF adjustment. This information can be used to include empirical 
knowledge about the expected point deformations. In this example the 
four moving floor points are expected to move exclusively in vertical 
direction. The results for network point PIO are compared to the results 
of the adaptive KF without this additional information. The KF results 
again consider only the simpler system model SMI. 

In Figure 6.19 and Figure 6.20 individual coordinate components are 
compared to the true point positions over all ten measurement epochs. 
The corresponding 1 O' error information is plotted by dashed lines. In 
Figure 6.19 the results for the case of no additional information can 
be seen. They are equivalent to the KF results for the SMI presented 
in Figure 6.3, Figure 6.4 and Table 6.3. Again it can be seen that in 
epoch 2 the point is badly determined in x-dlrection. 

In Figure 6.20 the additional information that the floor points are 
expected to move only in vertical direction is included in the KF ad­
justment. The differences to the true values are smaller which is also 
reflected in the smaller corresponding errors. The effect of bad configu­
ration in epoch 2 is reduced. 
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Figure 6.19: Small simulated network: Comparison of KF results (SM/) to true 
positions - no additional information: Network point PlO, individ­
ual coordinate differences and corresponding 1 a error information 
(dashed lines). 
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Figure 6.20: Small simulated network: Comparison of KF results (SM/) to true 
positions - additional information included: Movement only in ver­
tical direction. Network point PlO, individual coordinate differences 
and corresponding la error information (dashed lines). 
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The solution of the KF can be supported by including additional in­
formation which is especially effective in situations of bad measurement 
configuration or when no measurement information is available (here in 
epoch 4). 

6.2.5 Conclusion for the small simulated network 

The results for the very simple example presented in this section show 
the performance of the adaptive KF implementation for survey data 
analysis in a deforming network. Changing network measurement con­
figurations are easily handled in the KF implementation and point de­
formations can be derived as they are part of the system description of 
each point. 

The comparison of KF and individual epoch standard least squares 
(SE LSQ) results with respect to true positions shows that the KF re­
sults are more accurate and precise. KF estimates are less affected by 
bad network configurations, poorly controlled or uncontrolled observa­
tions and missing observations. KF estimates are available for points 
that are included in the system description also if no measurements are 
available in an epoch, by means of the predicted values. The corre­
sponding, predicted error estimation gives useful information about the 
point's accuracy for the planning of survey measurements. 

The reliability in the network observations is increased on average 
by 10% for the application of the KF compared to the SE LSQ results. 
Bad measurement configurations reduce generally the reliability of a 
network and its observations. Any gross errors in these observations 
would be difficult to detect. By applying the adaptive KF in kinematic 
setup this situation can be considerably improved by maintaining the 
reliability once a good system model description is established. · 

The effect of stochastic stabilization in the adaptive KF has been 
discussed by illustrating its effect on the KF gain matrix. It has been 
shown that the adaptation of the level of significance in statistical tests 
using the redundancy numbers of the observations and the predicted 
system states helps to reduce negative effects of poorly controlled ob­
servations and too well known system state parameters. The stochastic 
stabilization process is the key property of the adaptive KF introduced 
in this thesis avoiding possible filter divergence and ensuring correct 
identification of the kinematic system model representing a deforming 
geodetic network. 

··-
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It has been shown that the results of the adaptive KF can be further 
improved in terms of accuracy and precision if additional information 
about the point movements is included. 

6.3 Simulated ATLAS cavern network data 

A simulation of the ATLAS cavern network is carried out and the data 
are analyzed to test the adaptive KF algorithm on a more complex and 
larger data set, similar to the expected real situation in the ATLAS 
cavern. The design layout of the metrological ATLAS cavern network, 
information about expected cavern and access structure deformation 
and the projected installation schedule are used for the simulation of 
survey data over a period of 30 months. This time period corresponds 
to the originally envisaged installation time for the ATLAS detector in 
the cavern. 

15 epochs of data are simulated each in different network and mea­
surement configurations depending on the assumed installation sched­
ule and the simulated network deformation. Deformations of network 
points are derived from a simplified deformation model described in the 
following section. The deformations are translated to changing network 
point coordinates which are thereafter used for the simulation of cor­
responding survey data. It is emphasized here that the simulation of 
deformations is dedicated to the purpose of generating survey data rep­
resenting possible scenarios. It is not to be understood as a simulation 
of the real structural cavern deformation. 

The simulated survey data is analyzed to identify critical network 
parts and properties. Subsequently the data is processed with the adap­
tive KF algorithm implementation. Results are presented for selected 
features mainly by plots. 

6.3.1 Network data simulation 

Several tools to simulate the ATLAS cavern network configuration are 
developed in MATLAB©6.5. These applications are based on infor­
mation about the design network, the detector installation process and 
expected deformation of the cavern and access structures. Data input 
files defining the changing network and measurement configurations are 
created in the standard LGC [31] format. The network deformation 
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is represented by changing network point coordinates. The input files 
are used to actually simulate survey data for the given configuration 
in the LGC software under the option SIMU. The simulated data is 
subsequently adjusted and analyzed in the adaptive KF MATLAB ap­
plication described in Section 6.1. 

Network configuration 

The design of the metrological ATLAS cavern network as described in 
Chapter 2.4, the installation schedule summarized in Chapter 2.3 and 
approximate envelope descriptions of obstacles are used to determine 
different network configurations over the planned installation period. 
Obstacles for sightings between points include cavern and other under­
ground structure walls, access structure gangways and detector parts. 
Limitations on the sightings are determined by spatial intersection with 
these possibly obstructing objects. 

An example of simulated sighting limitations is shown in Figure 6.21, 
which illustrates possible observations for epoch 6 (time 12 - correspond­
ing to installation phase 7, see also Figure 2.14). 

Network deformation 

The deformation of the network points is simulated by establishing a 
simplified, combined model of cavern and access structure deformation. 
The derived deformation vectors are translated to changing coordinates 
for the network points. 

Cavern deformation A simple deformation model for the cavern 
structure is derived from information discussed in Chapter 2. Although 
the civil engineering calculation results and designs of the final cavern 
linings stated that no deformations would affect the cavern lining itself, 
small deformations of the lateral cavern walls are expected and con­
sidered in the simulation with an empirical value observed in former 
LEP experiments (cavern shrinkage by 1 mm/year, [29]). Additionally 
a sagging of the cavern floor by 3.6 mm/year for the first 24 months 
of installation is expected. The simplified cavern floor deformation is 
modelled by a quadratic surface, with its maximum at the center of the 
cavern, decreasing towards the cavern walls. After the first 24 months 
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It has been measured twice in horizontal position in early epochs 
and then has not been measured for almost two years. In Figure 6.44 it 
can be seen that a small movement in the x-and y-direction in epoch 3 
(time 14) causes the KF to project this movement over the long time 
period without measurement data. The KF update with measurements 
in epoch 42 (time 37.8) corrects this wrongly identified deformation but 
the error estimates remain at a high level especially in the y-direction 
caused by the large predicted uncertainty for the missing data epochs. 
This situation is similar to the previous case but more extreme here 
as the point movement estimation is based on only two measurement 
epochs and the data gap is even longer. 
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Figure 6.44: Real ATLAS cavern network data: Comparison of SE LSQ results 
(le~) and KF results (right) for the cavern floor point All+5 in the 
xy-plane. 

In the vertical positions presented in Figure 6.45 the SE LSQ results 
indicate a movement in z-direction, first positive in z-direction and then 
reversing its direction to resume approximately the same height level 
( +0.3 mm). The +z movement of approximately 1 mm is observed by 
geometrical levelling measurements and the KF follows this positive 
trend only very slowly. In epoch 19 the SE LSQ result is similarly off 
as in the previous case of point C22-15, caused by wrong approximate 
coordinates for the freely adjusted levelling network. 
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Figure 6.45: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for the cavern floor point A11+5 in the 
yz-plane. 

The last estimate of the KF indicates a +z movement for this point 
of 0.8 mm. The KF only slightly adapts the estimate from the last 
predicted value of 1 mm. This point has been determined in this last 
epoch from two temporary stations and one network point by angle 
and spatial distance measurements (no levelling). The measurements 
are not sufficiently redundant to force the KF result to the presumably 
correct position indicated by the SE LSQ result. The KF estimates up 
to epoch 19 correspond to results seen in a detailed independent analysis 
of the levelling data of the ATLAS cavern, [14]. 

The KF redundancy numbers for the position state estimates plot­
ted in Figure 6.46 are similar to the case of the point C22-15 before. 
As here only three epochs of horizontal information are available, the 
redundancy numbers for the horizontal states always resume a value 
close to one when new measurements are available. No trust is given to 
the system description for the point's horizontal position. Also here the 
vertical position is better determined due to the extra levelling mea­
surements, resulting in an increasingly reliable vertical point position 
dscription. 
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Figure 6.46: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the cavern floor point A11+5. 

HO access structure pomt HOC06 
Measured in 5 epochs 

30 5 epochs (time 7, 14, 21, 28 and 37.8) 
levelling only none 

This point is mounted on the access structure facing the end side C. Its 
horizontal positions are illustrated in Figure 6.47. A significant motion 
in +y-direction can be seen which is identified by the KF, but also could 
have been derived from SE LSQ results. 

A significant motion in -z-direction is visible in Figure 6.48 which 
is estimated in epoch 10. The large movement propagates into the 
subsequent epochs 11 and 12 with no measurement data available. The 
estimation is corrected by the next KF update in epoch 13 when new 
measurement data is available. 

Considering the position state KF redundancy numbers shown in 
Figure 6.49 it can be seen that as this point is always observed in 3D, 
no large differences exist between the redundancy numbers for indi­
vidual coordinate components. In the very last epoch the redundancy 
number for the x-position remains on a very low level indicating that the 
KF does not consider the measurement information for this coordinate 
component very reliable (i.e. the observation is down-weighted in the 
iterative gross-error detection) and puts more weight on the system pre­
diction for this value. This also explains a slightly inflated error ellipse 

( 
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Figure 6.47: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KFresults (right) for access structure point HOC06 in 
the xy-plane. 

in Figure 6.47 for this positions as well as the difference in x-direction 
between the SE LSQ and KF estimates. 

Access structure points show generally very large movements, not 
always in such a systematic way as for point HOC06. More random 
movements can be observed which are often caused by unexpected forces 
acting on these metal structures due to the very active installation work 
in close vicinity of these structures. If the point movements are more 
random and no systematic long term movement is present, it is more 
difficult for the KF to estimate movements, as will be seen in the next 
example. 

Coordinates of points on access structures in general have to be 
considered of inferior quality compared to cavern wall points, as point 
movements are not easily predicted. Using these points as reference 
points for survey measurements in the cavern should always be veri­
fied and controlled by making the connection to more reliable network 
information. 

Concerning the effect of fixing and constraining the access structures 
to the cavern walls, no conclusion can be drawn from the results for these 
point. The point movements are too erratic to derive any systematic 
deformation of these structures. 



REAL ATLAS CAVERN NETWORK DATA 197 

-1 

'E-1.5 
.s 
N -2 

-2.5 

-3 

-3.5 

:g_5 0 0.5 1 1.5 
y[mm] 

-2.5 . 

-3 

-3.5 .. 

:g_5 0 0.5 1 1.5 
y[mm] 

Figure 6.48: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for access structure point HOC06 in 
the yz-plane. 
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Figure 6.49: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the access structure point HOC06. 
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HO access structure pomt HOA16 
Measured in 6 epochs 

30 5 epochs (time 7, 14, 21, 28 and 37.8) 
levelling only 1 epochs {time 14) 

In Figure 6.50 and Figure 6.52 a more random point movement in the 
horizontal and vertical directions for point HOA16 can be observed. The 
SE LSQ results indicate a significant movement in -x-direction which is 
only slowly followed by the KF. In this point's first measurement epoch 
in epoch 3 (time 7) it is sighted only from stations on the other far end 
of the cavern resulting in small angles of intersecting rays and thus low 
precision in the y-direction of the position estimates. At this stage the 
HO structures had already been installed but gangways for access of the 
lateral cavern walls or HS structures were not yet in place prohibiting the 
installation of any network points in these areas. The point movement 
in the following epochs in the horizontal position are not easy to identify 
for the KF which is also due to the poor estimation accuracy in the first 
epoch. 
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Figure 6.50: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results {right) for access structure point HOA16 in 
the xy-plane. 

The situation is similar in the determination of the vertical positions 
shown in Figure 6.52. The point movement in the -z-direction is very 
erratic and cannot be followed very well by the KF which results in 
a large difference between the SE LSQ and the KF result in the last 
epoch. 
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Figure 6.51 illustrates the KF redundancy numbers for the position 
state entries for this point which follow a similar pattern as as for point 
HOC06. 
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Figure 6.51: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the access structure point HOA16. 

Survey gallery point POTTUNUPSC 
Measured in 10 epochs 

30 5 epochs (time 6, 7, 14, 21 and 37.8) 
levelling only 5 epochs (time 14, 16, 25, 30, 32) 

This point is located at the far end of the survey gallery on side C. It is 
poorly determined in the horizontal positions in epoch 2 (time 7), as can 
be seen in Figure 6.53. In this case the point is only sighted from one 
station in the cavern. No connection to LHC tunnel reference points is 
available in this epoch. The KF result is only slightly affected, as the 
KF includes information for this point from one previous epoch when 
this point has been well determined. For this epoch the result is more 
accurate and precise compared to the SE LSQ result. 

A small horizontal movement in the +x-direction is identified for 
this point which is estimated first too large by the KF, causing the 
predicted positions in the subsequent epochs to drift off. The situation 
is corrected in the update in epochs 10 (time 21) and 42 (time 37.8) 
when measurement data is available for this point. 
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Figure 6.52: Real ATLAS cavern network data: Comparison of SE LSQ results 
{left) and KF results (right) for access structure point HOA16 in 
the yz-plane. 

Similarly to the horizontal positions the vertical positions show in 
Figure 6.54 that the point is also determined poorly in the vertical 
direction in epoch 2. Overall no significant vertical movement can be 
identified for this point. 

Figure 6.55 shows an effect of the bad measurement configuration 
in epoch 2 (time 7) on this point's position state KF redundancy num­
bers. The redundancy is already reduced in the second epoch which 
reflects little confidence in the measurements. In the subsequent epochs 
of available measurement data the reliability in the state estimates is 
increased as the redundancy numbers decrease. The long break between 
epoch 10 (time 21) and epoch 42 (time 37.8) reduces the reliability in 
the system description for the horizontal positions as seen above for the 
position results. 
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Figure 6.53: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for survey gallery point POTTUNUPSC 
in the xy-plane. 
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Figure 6.54: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for survey gallery point POTTUNUPSC 
in the yz-plane. 
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Figure 6.55: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the survey gallery point POTTUNUPSC. 

USA lateral wall pomts at beam level: MA±xx-00 

This group of points is mounted on the lateral cavern wall on side 
USA, arranged in one line and approximately at the same height. The 
point names indicate their position in x- and z-direction with respect 
to the IP (origin of the local coordinate system), e.g. MA+21-00 is 
approximately 21m from the IP in x-direction and at approximately the 
same height as the IP. 

The results for this group of points are interesting as they show the 
deformation of the cavern wall. Results for two individual points are 
presented in detail. 

Lateral wall pomt MA+21-00 
Measured in 10 epochs 

3D 5 epochs (time 14, 15.5, 21, 28, 37.8) 
levelling only 5 epochs (time 14, 16, 25, 30, 32) 

A large movement in +x-direction is estimated in epoch 7 and 10 for 
the cavern wall point MA+21-00 as can be seen in Figure 6.56. This 
movement is propagated to the following epochs and is not sufficiently 
corrected in epoch 14, but in epoch 42 (time 37.8). The resulting de-
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formation vector for this last epoch is very small in reaction to the 
necessary correction. The corresponding KF redundancy numbers for 
the state estimates in Figure 6.58 show that the reliability in the x­
position is smaller (represented by large redundancy numbers in the 
measurement update epochs) than for the other position components. 
This reflects the adaptation of the KF to the large deformation in x­
direction by increasing the corresponding system noise error. 
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Figure 6.56: Real ATLAS cavern network data: Comparison of SE LSQ results 
(top) and KF results (bottom) for cavern wall point MA+21-00 in 
the xy-plane. 
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A significant vertical movement in the -z-direction can be seen in 
both the SE LSQ and the KF results in Figure 6.57. 

A large uncertainty in the position for this point arises from a mea­
surement in a small survey measurement (i.e. not part of a dedicated 
network measurement campaign) in epoch 6 (time 15.5). 
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Figure 6.57: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for cavern wall point MA+21-00 in the 
yz-plane. 
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Figure 6.58: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the cavern wall point MA+21-00. 
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Lateral wall point MA+06-00 
Measured in 8 epochs 

3D 4 epochs (time 14, 15.5, 21, 37.8) 
levelling only 4 epochs (time 14, 16, 25, 32) 

In the horizontal positions depicted in Figure 6.59 a large movement in 
+y-direction is visible. It is distinctively identified in epoch 10 (time 21). 
The KF propagates this movement to the subsequent epochs until the 
next update is available in epoch 42 (time 37.8). In this epoch the 
estimate is corrected and the resulting velocity vector estimate is small 
due to the previously predicted large point movement. 
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Figure 6.59: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for cavern wall point MA+06-00 in the 
xy-plane. 

A small but significant vertical movement in the -z-direction can be 
seen in Figure 6.60 in both the SE LSQ and the KF results. 

The KF state redundancy numbers illustrated in Figure 6.61 for this 
point reflect the position results. The movement in y-direction and the 
corresponding elevated system noise component for this coordinate re-
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Figure 6.60: Real ATLAS cavern network data: Comparison of SE LSQ results 
(left) and KF results (right) for cavern wall point MA+06-00 in the 
yz-plane. 

duce the reliability of the y-position. The reliability in the z-position is 
better, as more measurements for this coordinate component are avail­
able. 

The total group of points along the USA side cavern wall shows a 
distinctive +y- and small -z-movement, as can be seen in Figure 6.62 
showing the estimated point movements between epoch 4 and epoch 42 
over a period of approximately 2 years. 

The deformation vectors indicate a lateral deformation of the cavern 
wall, towards the center of the cavern, with its maximum at the center 
of the wall and smaller values close to the end walls. 

The deformation vector for point MA+21-00 does not correspond 
very well with the overall deformation behavior both by direction and 
amount. The movement is dominantly in +x-direction and its amount 
is larger than the deformation of neighboring or symmetric points. It 
has to be considered that the platform for visitors to the ATLAS cav-
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Figure 6.61: Real ATLAS cavern network data: KF redundancy numbers of po­
sition state entries for the cavern wall point MA+06-00. 

em is accessed from an entry between network point MA+21-00 and 
MA+18-00. The visitors' way to the platform passes directly by the 
foldable bracket for point MA+21-00. It can be assumed that the de­
formation of this point is mainly caused by the visitors passing even 
though the point is reasonably well protected and is not caused by cav­
ern wall deformations. 

Increase in reliability measured by comparison of observa­
tion redundancy numbers The overall mean observation redun­
dancy numbers for the SE LSQ and the adaptive KF results can also 
be derived for the real ATLAS cavern data set. They are given in 
Table 6.17. In epochs with zero redundancy (all HLS measurements 
starting from epoch 20) for the SE LSQ solution the increase is in any 
case 100%. As the HLS measurement epochs only include the HLS 
measurements, the increase of the KF redundancy numbers over time 
represents the improvement of the system description in the HLS points 
which are only sparsely linked to the full network. 

For the remaining epochs the increase is also largest for epochs with 
poorly controlled observations, e.g. small surveys in the cavern. This 
is not surprising as these observations are generally less precise and 
the configuration is worse than in dedicated network measurements. A 
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Figure 6.62: Real ATLAS cavern network data: 30 point movements of lateral wall points MA±xx-00 estimated between 
epoch 4 (April 2004) and epoch 42 (March 2006). 
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good system description in the adaptive KF augments the redundancy 
in these individual measurements and thus the reliability in the po-
sitions determined from these measurements. This shows the benefit 
of implementing the adaptive KF in kinematic setup for the deform-
ing ATLAS cavern network. The reliability gains in dedicated network 
measurement campaigns are around 10% but for the small everyday 
measurements gains of at least 20% can be achieved. 

Table 6.17: Real ATLAS cavern network: Overall mean observation redundancy 
numbers for SE LSQ and KF solutions. 

Epoch Mean redundancy Reliability Epoch Mean redundancy Reliability 
SE LSQ KF gain in% SE LSQ KF gain in% 

0 0.86 0.86 0 22 0.00 0.60 100 
1 0.72 0.72 0 23 0.00 0.70 100 
2 0.77 0.80 4 24 0.00 0.76 100 
3 0.85 0.85 0 25 0.00 0.80 100 
4 0.44 0.50 11 26 0.00 0.83 100 
5 0.43 0.54 21 27 0.00 0.84 100 
6 0.37 0.42 11 28 0.00 0.86 100 
7 0.45 0.46 4 29 0.00 0.87 100 
8 0.50 0.51 2 30 0.00 0.88 100 
9 0.54 0.59 9 31 0.00 0.88 100 

10 0.81 0.84 4 32 0.00 0.89 100 
11 0.51 0.53 4 33 0.43 0.94 54 
12 0.42 0.43 2 34 0.30 0.49 39 
13 0.66 0.71 8 35 0.00 0.24 100 
14 0.31 0.49 36 36 0.54 0.63 14 
15 0.54 0.55 3 37 0.00 0.01 100 
16 0.53 0.56 5 38 0.00 0.11 100 
17 0.87 0.91 4 39 0.00 0.28 100 
18 0.42 0.48 13 40 0.00 0.25 100 
19 0.48 0.55 13 41 0.00 0.33 100 
20 0.00 0.04 100 42 0.74 0.79 6 
21 0.00 0.34 100 

6.4.4 Conclusion for the real ATLAS cavern net­
work 

In this section the performance of the adaptive KF algorithm applied 
to real ATLAS cavern network data has been shown. It could be seen 
that the KF point position estimates are in general more accurate and 

~~ 
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more precise than conventional SE LSQ solutions if sufficient data is 
available. 

• In difficult measurement configurations the KF estimation is less 
affected than SE LSQ solutions as more information than just 
data of the single epoch is used to derive position estimates. In­
formation from previous measurement epochs is represented in the 
system description that is propagated to following epochs. 

• If no datum definition is included in the measurements the KF ,~ 
refers back to its system state description to relate the data to the 
datum definition. In SE LSQ a datum has to be defined in each 
epoch. In case the datum definition is done by choosing arbitrar- I 
ily some network points, any error in these points' coordinates is I 
directly propagated on the newly estimated point coordinates. 

• Random and unsystematic point movements can be difficult to 
estimate for the KF especially if the measurement information 
provided to the update step is of poor quality. 

• Low data sampling rates cause the KF estimations (predictions) 
to drift off. However, the error estimations represent the increased 
uncertainty in the position and point movement estimates. 

The quality of this data set of approximately three years of survey mea­
surements gathered in the environment of the ATLAS experimental cav­
ern is much poorer than optimal, especially considering the horizontal 
positions. Still the KF gives good deformation estimations also in cases 
of few available data epochs. In very difficult situations, when factors 
like bad initial point determination, difficult measurement configura­
tions and very low data sampling combine, the KF reacts slowly to 
unexpected movement changes. This can result in wrong position esti­
mates. In these cases the SE LSQ results are more accurate. 

It has been shown that also for this very complex and heterogenous 
data set a gain in reliability of approximately 10% can be achieved by 
applying the adaptive KF in kinematic setup. For epochs with less 
precise measurements in bad configurations this gain can be more than 
20%. 

. .. 
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6. 5 Conclusions for the application and re­
sults of the adaptive KF 

The application of the adaptive KF in kinematic setup to three differ­
ent data sets has been presented in this chapter. The simulated data 
examples proved an enhanced performance of the adaptive KF imple­
mentation compared to individual epoch least-squares adjustment. The 
KF is not only more accurate and precise in estimating point positions, 
degrading or rank deficient network configurations have little effect on 
the point estimates. The reliability of the network expressed by redun­
dancy numbers can be maintained in these difficult situations. It has 
been shown that the reliability gain for using the adaptive KF compared 
to SE LSQ is on average 103 and more if the measurement configura­
tions are poor. 

Deformation vectors for individual points are included in the system 
description and no additional analysis step is necessary to derive them. 
In epochs with no observation data available for a particular point, the 
prediction of the state vector and the corresponding error estimation 
give a powerful tool for the planning of network measurements and also 
for the quality management of the network. 

The application of the adaptive KF to real ATLAS cavern network 
data for a period of more than three years showed that the algorithm 
can also be used on extremely difficult data sets. The benefits seen in 
the applications on the simulated data could also be observed in the real 
world situation. Real point movements that are not as systematic and 
clearly identifiable as simulated point movements could be detected and 
modelled. Nevertheless, low data rates in most of the network points 
compared to the simulated examples render the analysis of the data less 
conclusive and expressive. The added uncertainty introduced by the 
system noise error affects the KF results. 

Deformation results for a selected group of points could be compared 
to expected deformation behavior which agreed in some cases but also 
gave information about unexpected deformation situations. 

The vital importance of the link of the datum definition in the LHC 
tunnel to network points in the cavern has been identified in the dis-
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cussion of the simulation example of the ATLAS cavern network. This 
link is foreseen to be realized by high precision measurement systems 
as described in Chapter 3. These systems have not been available dur­
ing most of or possibly all of the detector installation period. The lack 
of these systems puts high demands on measurements passing through 
the survey galleries which are themselves poorly controlled due to bad 
geometry. Regular remeasurements of this network sections are rec­
ommended for verification until the datum definition link systems are 
available. 



7 
Conclusions 

The surveying work in a project like the Large Hadron Collider (LHC) 
and related experiments at CERN is a crucial contribution to the project 
to be successful and the range of demands on surveying are diverse and 
challenging. Positioning and alignment of large physics detectors with 
respect to a particle beam line are very special applications in the field 
of engineering surveying in terms of accuracy requirements and working 
conditions. 

In this thesis the problems of experimental cavern networks aligning 
and positioning various objects in the cavern with respect to the refer­
ence defined by the accelerator geometry have been discussed. Taking 
the ATLAS detector cavern as example, it could be seen that the two 
major problems of the network are cavern deformations and degrading 
network configurations. Deformations of the cavern walls and floors and 
of access structures inside the cavern are propagated onto the network 
geometry as the network points are directly linked to these. 

The degradation of the network configuration is caused by the progress 
of the detector installation, increasingly limiting sightings between net­
work points and disabling several network points. 

It has been argued that classical deformation analysis methods based 
on congruency comparison between two epochs are not suited to ade­
quately handle these problems, especially as the network configurations 
are very heterogenous in different epochs. 
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In Chapter 5 a kinematic model setup to represent the deforming 
network has been developed in the formalism of the Kalman Filter 
(KF). The kinematic interpretation of a geodetic network is a mod­
ern approach very well suited for high precision networks where the 
basic assumption of network point stability over long time periods is 
not appropriate. This interpretation has been newly introduced in the 
context of metrological networks for the alignment of accelerator and 
experimental detectors. 

By handling a geodetic network in kinematic interpretation in a KF, 
it is very easy to accommodate changing network configurations, which 
are incomplete or even rank deficient in terms of insufficient datum def­
inition. Improving the system description with additional data enables 
to profit in later epochs from better controlled and more reliable in­
formation of previous epochs. By implementing this idea, new in the 
context of the KF, the reliability in the network and measurements in 
this network can be ensured even if sections of the network cannot be 
accessed or points become unavailable. 

An important property of the developed KF is its adaptive character. 
Adaptive filter methods usually can exploit large quantities of data sets 
to identify insufficiently or wrongly defined stochastic information in the 
filter process. In the case of surveying data in a geodetic network the 
number of data epochs is very small. The method of stochastic stabiliza­
tion presented in Chapter 5.5 uses the KF system description derived 
from pervious data epochs and measurement data from a current epoch 
to iteratively identify correct stochastic information for the system noise 
as well as measurements. Thus changes in the system description (i.e. 
unexpected deformations) and gross errors in the observation data are 
identified by the adaptive KF in a parallel process which is iterated in 
each epoch of new measurement data. The combined application of this 
method to the processing of classical surveying data in a KF is newly 
introduced in this thesis. The implementation of the adaptive KF en­
sures that the common problem of filter divergence is avoided and that 
the kinematic system model representing a deforming geodetic network 
is correctly identified. 

Three different data sets have been analyzed with an implementation 
of the presented algorithm: 

A very simple simulation example has been used to show the gen­
eral properties of the adaptive KF to handle a network in changing 

( 
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configurations. It has been demonstrated that position and deforma­
tion estimates can be derived more efficiently and more accurately from 
the survey data compared to results of single epoch least-squares ad­
justment (SE LSQ) results and to the true simulated point coordinates. 
It could be seen that the KF estimates are less affected by bad net­
work configurations, poorly controlled or uncontrolled observations and 
missing observations. KF estimates are also available for points which 
have not been measured in a certain epoch by means of the predicted 
values based on the system description. The corresponding, predicted 
error estimates give useful information about point accuracies for the 
planning of survey measurements. The effect of stochastic stabilization 
on the Kalman gain matrix has been illustrated using the example of 
deliberately introduced gross errors to the measurement data set and 
unexpected large point movements. It has been shown that the results 
of the adaptive KF can be improved in terms of accuracy and precision 
if additional information about point movements is included. 

A simulation of the ATLAS design network has been used to analyze 
the network by means of reliability measures. A focus on the link of the 
datum definition to the remaining network identified these sections as 
critical to the whole network layout. The reliability in terms of mea­
surement redundancy and precision of measurements providing this link 
is vital to accurate positioning. It has been shown that the reliability 
in the network observations is increased by the application of the KF 
compared to the SE LSQ method especially if the network configuration 
degrades or is rank deficient due to missing datum information. 

The application of the adaptive KF method to real ATLAS cavern 
network data gathered over a period of three years has shown that the 
method can handle also very heterogenous and difficult data. Although 
the measurement information for the full 3D network is very sparse and 
the point movements not systematic the KF results compare favorably 
to the SE LSQ results for the majority of cases. 

The implementation presented in this thesis will be continued to be 
used in the future for the analysis of network data from the ATLAS 
cavern as well as other LHC experiment zones at CERN. This includes 
the analysis of data gathered in the period until the start-up of LHC 
but also the shut-down periods during LHC operation. As these peri­
ods are very limited in terms of time, manpower and access possibilities, 
the planning of the network measurements to be carried out will be a 
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crucial task. The adaptive KF implementation can provide very use­
ful information for this. The focus during shut-down periods will be 
on verifying and reproducing detector part positions within the cavern 
network. Time and resources for dedicated network measurements will 
be very limited. The application of the adaptive KF to the available 
data will give reliable position estimates for the survey tasks but also 
improve the system description of point deformations. It is expected 
that once installation activities cease in the cavern, network point de­
formations, especially of the access structures, will reduce and adopt a 
more systematic behavior than observed so far. 

The method presented in this thesis is intended to be implemented 
as part of a geodetic least-squares adjustment software, like the soft­
ware LGC developed and used by the CERN survey group, providing 
necessary corrections for the shape of the earth and to include more 
observation types than the implementation described here. 

Implemented in such a way it can be used as a very powerful tool 
for many applications ranging from structural monitoring in engineering 
surveying (e.g. landslides, monitoring of dams or bridges, etc.), to other 
experimental metrology applications or high precision accelerators like 
the LHC or future machines. The kinematic interpretation of a network 
improves the knowledge of any network, which has to be maintained 
over a longer period of time and where deformations reaching the mea­
surement precision over this time cannot be neglected. The adaptive 
KF as I have presented it in this thesis is the perfect tool to adjust mea­
surements in such a network and to gain efficiently from all available 
information. 
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Appendix A 
S-Transformation 

In this section the method of S-transformation will be explained in more 
detail. The main reference is [44]. 

In a general datum definition i condition equations are part of the 
adjustment problem: 

Bf xi= 0 

thus the functional adjustment model is extended to 

=l+v 

=0. 

(A.1) 

(A.2) 

In order to eliminate the rank deficiency of d in the adjustment model 
with u unknowns, Bi has to fulfill the following condition 

(A.3) 

For the extended model (A.2) the system of normal equations becomes 

(A.4) 

The solution is obtained as 

X; = Qu,i n with 

Qxx,i = Qu,i =Qi. 
(A.5) 
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Xi and Qi represent a special solution of N and depend on the conditions 
defined in Bi. Qu,i is obtained by inversion of the extended system of 
normal equations (A.4). It is shown in [44, p. 244] that 

( r)-1 ( T )-1 ( T )-1 T Qu,i = N + BiBi - G Bi G G Bi G , (A.6) 

where G is the matrix of orthonormal eigenvectors corresponding to the 
d eigenvalues Ai = 0 of the original adjustment model N. 

The relationship of a datum defined by the condition matrix Bi to 
another datum based on conditions Bk can be obtained by using the 
properties of Qu,i = Qi. 

( 
T )-1 T NQi = I - Bi G Bi G . 

By transposing this expression the matrix Si can be defined 

( 
T )-1 T Si = QiN = I - G Bi G Bi . 

(A.7) 

(A.8) 

Multiplication of a cofactor matrix Qk that has been derived based on 
a datum definition Bk by Si from the left and Sf from the right gives 

SiQksr = QiNQkNQi = Qi. (A.9) 

As Qk is a generalized inverse of N and GT is orthogonal to N it follows 
that NQkN = N and QiNQi =Qi. Thus 

(A.10) 

which accomplishes the transfer from a datum defined by Bk to a datum 
defined by Bi as long as it is assured that the type of datum definition 
is the same. 

Similarly for the solution vector x we can derive 

Nxk = n, 

multiplication by Qi gives 

QiNxk = Qin 

Sixk = xi. 

(A.11) 

(A.12) 

Thus the S-transformation can be summarized as transforming a solu­
tion based on datum k to a datum definition i by the following equations: 

Xi= Sixk 

Qi= SiQkSf. 
(A.13) 



Appendix B 
Structure of the gain 

matrix K 

Gain matrix K, [3u x n] as defined in (5.19). 

Splitting up the individual elements Pili-l' Hi and Ri into partitions 
for position, velocity and acceleration states: 

Covariance matrix of predicted state Pili-1' [3u x 3u]: 

[

pili-1 posipos 

pili-1 = ~l==-~v~p_"._s 

p ili-1 acclpos 

p ili-1 poslvel 

pili-1 vellvel 

p ili-1 acclvel 

Measurement matrix Hi, [n x 3u]: 

Hi= [Hi pos \ Hi vel \ Hi ace] · 

p ili-1 poslaccl 

~l==-~v~a~c · 

pili-1 acclacc 

(B.l) 

(B.2) 
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Covariance matrix of measurements Ri, [n x n]: 

(B.3) 

Similarly the combined elements HiPili-1H[ and Pili-1H[ are split 
up: 

HiP ili-1Hf =Hi posP ili-1 poslposHf pos 

+Hi accPili-1 acclposHfpos 

+Hi velPili-1 vellvetHfvel 

+Hi velP ili-1 vellvetHf pos 

+Hi posP ili-1 poslvetHf vel 

+Hi accPili-1 accivetHfvel 

+Hi posPili-1 posiaccHf acc +Hi velPili-1 veliaccHf acc 

+Hi accPili-1 acciaccHfacc 

P ili-1 posiposHyos + 
p ili-1 poslvelHi vel+ 

pili-1 posiaccHf acc 

(B.4) 

(B.5) 

The predicted state covariance matrix Pili-l> [3u x 3u] is an important 
element. It is defined as 

I 

I 
I 
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and is composed of Pi-lli-l' ~(i,i-1), r(i -1) and Qi-1: 

Pi-lli-1, [3u x 3u] which is the covariance matrix of the preceding 
state update and is composed as follows: 

I
p i-lli-1 posipos 

Pi-lli-1 = P:~~ :z~os 

pi-lli-1 accipos 

p i-lli-1 posivel 

p i-lli-1 velivel 

pi-lli-1 accivel 

Pi-lli-1 posiaccl 

P:1_!:~ :z~cc , 

pi-lli-1 acciacc 

(B.7) 

the transition matrix ~' [3u x 3u] as defined in (5.51) or (5.52): 

il>(i,i-1)~ [~ flt·l 
I 
0 

!flt
2 ·I] 

flt· l ' 
I 

as well as r(i - 1), [3u x u] as defined in (5.55) 

[

.!flt
3 

. I] 
r(i-1)= lflt2 ·I , 

flt·l 

(B.8) 

(B.9) 

and the covariance matrix Qi-1, [u x u] of the system noise Wi-1, as 
defined before in (5.65): 

(B.10) 



222 STRUCTURE OF THE GAIN MATRIX K 

The product q>( i, i - 1 )P i-lli-l q>( i, i - l)T, [3u x 3u] thus follows as: 

Pi-lJi-1 posJpos+ 

2AtPi-1Ji-1 posJvel+ 

At
2
Pi-1Ji-1 posJacc+ 

At
2
Pi-1Ji-1 velJvel+ 

At
3
Pi-1Ji-1 velJacc+ 

1 4 
4At Pi-lJi-1 accJacc 

Pi-lJi-1 posJvel+ 

AtPi-lJi-1 posJacc+ 

AtPi-lJi-1 velJvel+ 
3 2 
~At3 Pi-lJi-1 velJacc+ 

2At Pi-lJi-1 accJacc 

Pi-lJi-1 posJacc+ 

AtPi-lJi-1 velJacc+ 
1 2 
2At Pi-lJi-1 accJacc 

Pi-lJi-1 posJvel+ 

AtPi-lJi-1 posJacc+ 

AtPi-lJi-1 velJvet+ 
3 2 
~At 

3 

Pi-lJi-1 velJacc+ 

2At Pi-lJi-1 accJacc 

Pi-lli-1 velJvet+ 

2AtPi-1Ji-1 velJacc+ 

At
2
Pi-1Ji-1 accJacc 

Pi-lli-1 velJacc+ 

AtPi-lJi-1 accJacc 

Pi-lJi-1 posJacc+ 

AtPi-lJi-1 velJacc+ 
1 2 
2At Pi-lJi-1 accJacc 

Pi-lJi-1 velJacc+ 

AtPi-lJi-1 accJacc 

Pi-lJi-1 accJacc 

(B.11) 

and the product r(i - l)Qi_1rr(i -1), [3u x 3u] as: 

r(i - l)Qi-1rT(i-1) = 
-ftti.t6 

• diag(Qi-1) ·I I 
-----

f2At5 · diag( Qi-1) ·I I 

~At4 
· diag(Qi-1) ·I 

f2ti.t5 · diag(Qi-1) ·I 

~At3 
· diag(Qi-1) ·I 

~At4 
· diag(Qi-1) ·I 

~At3 
· diag(Qi-1) ·I 

At2 
• diag(Qi-1) ·I 

(B.12) 

In the special case of Hi vel = Hi ace = 0, for all i simplifications arise: 

(B.13) 



I 
pili-1 posiposHfpos I 

pi1i-1Hf = _ ~l~~v~l~s~~~-
p ili-1 acciposHi pos 

Summarizing, the result for the gain matrix Ki is: 

Ki =Pili-1Hf (HiPili-1Hf + Ri)-1 = 

[
_1::1~~:\~s~~~-

= Pi\i-1 vel\posHfpos 
- - - - - - - - --

p ili-1 acciposHf pos 
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(B.14) 

(B.15) 
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