| Sav7 R (RN~ & €O -
| COPY NOT T BE RENAVED—FRON-—FHE-HBRARI CJ |

LAB 11-C0/74-2 December 1, 1974
S>EQU,
& N
| ~ .
A ! EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH
~

THE NODAL SYSTEM FOR THE SPS - 1974

M.C. Crowley-Milling, J.T. Hyman and G.C. Shering

ABSTRACT

This report groups together information on the Nodal software system.

I+ contains a programming manual and gives information on how to write N
machine code modules for NODAL. In addition it gives an outl ine of the
system design which should be useful for those who are sfudy ing how to

use NODAL to control the various parts of the accelerator.

CERN LIBRARIES, GENEVA

CM-P00070646

MAIN CONTENTS

9.

10.

1.

12.

APP

Introduction « ¢ « o ¢ o ¢ ¢ ¢ o o o
Basic NODAL programming . « « « « o o &
Use of fileS o o o o ¢ o o o o s o o
Real-time facilities . . « ¢« ¢« o« & ¢ &
Interaction between computers «
writing ‘machine-code modules for NODAL

Data modules =« ¢.,¢ o o o o o o o o o o
NODAL defined functions and subroutines
String facilities « ¢ ¢« ¢ ¢ o ¢ o o o &
Miscellaneous functions « « « « « « « &
NODAL element 1isSts o+ o« « o ¢ o ¢ o o &

Organisation of the NODAL system . . .

ENDICES

Command SUMMATY .« « « « o ¢ ¢ o o o o &
Line edit commands « « « ¢ o o ¢ o o o o
Example of machine-code module . « . . .
Example data-module setup . « ¢ ¢ o o« &
NODAL error NUMDErsS .« « « o o o o o o o

NODAL entl‘y types [] L] L] L] . L] . ° L[] . .

20
24
27
29
37

41

56
59

67

76
80
81
82
83

85

DETAILED CONTENTS

1.

2.

NOODLLNDND[p DD

. L]

(620 IS IS
.
(ﬂbw(\)o—-

-an e es e e e e e -

Introduction =« ¢« o o o o o o o o o o
Basic NODAL programming « . « « o« o o

simple commands TYPE and SET . . .
numbers, variables and expressions
lines and the FOR command .« « « &
the CALL command « « « o o o o
program sSequencing .« « « « « o o o

L] L] . L]

* *

making decisions, IF and WHILE
system variable subroutines .
more about input and output . . .

L] .

EDIT Command . . L] L] L[] . L] L] L] ° .
arrays and mathematical functions

—_— VRNV D WN —

-0

Use 0f f1leS o o o o o o o o o o s o @

3.1 saving programs and data
3.2 task global variables
3.3 sub-programs on files . . « « . .
3«4 the OVERLAY facility « . .

Real"time faCilitieS [. L] . L)

4.1 the WAIT COMMANd « « « o o o o o
4, 2 program SChedUIing e o o e o s o o

Iinteraction between computers . . . « &

the IMEX command . . .
the EXECUTE command .
t+he REMIT command . .
the WAIT command . . .
an example ¢« ¢« ¢« « o

Y L]
L]
.
.
. . * L]

L]
e ® e o o
.
.
.

. L] L] L] .

Writing machine code modules for NODAL

1

2 WOorkKing space =« « o« o o o o o o o
3 parameter descriptors and types .
4 calling sequences =« « o o o o o o

Data modules ¢ ¢ e o e e & o o e o o =

1 assembly language calling sequence
.2 communication with NODAL
«3 NODAL calling sequence . « « o« o
«d4 8N eXamMPle o« ¢ ¢« ¢ o e e o o e e

parameter passing - SINTRAN standard

e o e o
L]

* .

errors, LIST and ERASE, trace facility . .

] . .

L] ° L] L] L

1]

AT NN & I E 1 \ VI \V]

il

14
lé
17

20

20
21
21
22

24

24
25

27

27
27
28
28
28

29

31
32
35
36

37
38
38
39

DETAILED CONTENTS CONTINUED

8.

10.

11.

12.

NODAL DEFINED functions and subroutines

[o e UN o Oy W0
S w -

L]
L]
.

the DEFINE command .
the OPEN command . .
the VALUE and $VALUE
utility functions .
recursion

String,facilities e e o e

O 0O \WO OO0 WYWWOOO
¢ o ¢ o o
— 0 RNOUPE WD -

L] * L4 . L]

0

$SET command, string
string functions . .
concatenations . . .
$ASK command . .« . o
$IF command .« « « o
$DO command . .« o«

some useful functions

commands,

variables

.

L] ° . . .
. . L] . .
. . . . 3

3 . . L]

$MATCH and S$PATTERN command .

patterns and pattern
pattern functions .

Mi scellaneous functions .

10.1
10.2
10.3
10.4
10.5
10.6
10.7

ODEV &« ¢ o o o o o o
ERROR ¢ ¢ & ¢ ¢ o &«
LISV ¢« ¢ ¢ o o o o
LUST « o ¢ o o o o
HELP o ¢ o o o o« &+ &
BIT o ¢ ¢ o o o o o«
ARSIZE ¢ o o o o o o

NODAL element lists . . .

11.1

NODAL element types

Organisation of the NODAL

2.1
12.2
12.3
12.4

matching

system

simple core only system . . .
console computer system . .«

the general purpose computer
experimental area computer system

.

ERROR function

system

L] L] L

L] . L]

.

.

. L] L] L] [} °

41

42
43
43
44
44

46

46
417
48
48
49
49
50
51
52
53

56

56
56
57
57
57
57
58

59
60
67
67

69
71

73

INTRODUCTION PAGE 1

Introduction

This report describes the NODAL system for the SPS as it
exists at the end of 1974. The report covers two main
areas : firstly the NODAL language, secondly the NODAL

system.

The NODAL 1language is a high level programming language
with special features for use 1in real-time control,
multi-computer applications, and interactive applica-
tions. It is based on FOCAL and SNOBOL4, with some influ-
ence from BASIC.

The NODAL system is the way in which NODAL is implemented
and used on the basic hardware and software of the SPS
computer control system. The hardware consists of 24
NORD-10 computers linked together wvia a serial l1ink
message transfer system involving another NORD-10. The
basic software consists of an extended wversion of the
NORD-10 SINTRAN Il operating system, called SYNTRON,
which incorporates a multi-computer filing scheme.

Not all the facilities described in this report will be
included 1in all computers. In particular NODAL defined
functions (chapter &) and string handling facilities
(chapter 9) will only be available in the console
computer, and the advanced pattern matching string
processing facilities (chapter %) will only be available
in the service computer.

Chapter 2 describes basic NODAL facilities which <can be
used *at any interactive terminal at any computer. The
beginner is advised to read this chapter «carefully then
go to a terminal on the TSS system and try to write a few
simple programs.

COMMANDS TYPE AND SET PAGE 2

2.2.1

Basic NODAL Programming

NODAL is an interactive interpretive system and so |{s
used Dby typing directly on-line at the control device,
either a Teletype or a VDU (cathode ray tube display plus
kKeyboard). The smallest useful element of NODAL is the

command. For example :

TYPE BCT(3)

is a command which might write on the screen the value of
the third circulating beam current reading.

SET INJPHS=12

is another command which will set the R.F. phase at
injection to 12 degrees. Commands consist of a command
Key word, TYPE and SET 1in the above, followed by the
command Dbody, whose syntax varies from command to

command.

A summary of all commands is given in Appendix 1.

Numbers, variables and expressions

The command body syntax is made up mainly of numbers and
variables, often combined into expressions.

Numbers

A number in NODAL i{s normally an unbroken séquence of
digits containing only one decimal point. Examples of

numbers are

l ol 6.25

Numbers are stored to an accuracy of about nine decimal
digits, though printouts are rounded to six digits unless
otherwvise requested.

Some other special cases of number representations are
accepted in addition to the above. Examples of these are

l1.3E-4

NUMBERS, VARIABLES AND EXPRESSIONS PAGE 3

This means 1.3 times ten raised to the power minus four.
Numbers with decimal exponents of up to + 4000 can ©be
stored, though only exponents of up to + 2400 can be
converted from character strings. '

2.2.2 0ctal Integers

Integers in the range -32768 to 32767 can be represented
by a string of octal digits (0-7) preceded by “C", for
example

(177777

represents the integer -1,

2.2.3 RADIX36 Integers

Integers in the range -32768 to 32767 <can also be
represented as a RADIX36 string of the characters 0-9
(values as normal), and A to Z (values 10 to 35). If a
string is preceded by a “#", for example

#ABC #Al #123

it 1is taken as a RADIX36 integer in NODAL. Each place in
the character string is worth 36 times the place to the
right, 1instead of 10 times as in decimal and eight as in
octal. The algorithm used provides a positive {nteger,
modulo 2 to the power 16, which is then taken as a signed
integer by NODAL. :

2.2.4 Variables

A variable name consists of a string of up - to six
characters (no spaces allowed). The character set is A-Z,
1-9, plus the colon (:) and period (.). A name must begin
with a letter. Example of names are

A ABC PS.5 VB:INJ

Two types of variables are distinguished by their names;
program variables and system variables. Program variables
can be created automatically by the SET and ASK commands.
For example the command

SET A=1

NUMBERS, VARIABLES AND EXPRESSIONS PAGE 4

would create a program variable A if it did not already
exist. Program variables can only contain more than two
characters if they contain a period.

System variables must contain at least three characters.
They can contain a colon for mnemonic purposes. Thus

A Bl I .MAX SIGN.I
are program variables, whereas
ABC PlAa INJ: VB PS:1

are system variable names and so can never be created by
the SET or ASK commands.

2.2.5 EXxpressions

These are combinations of numbers, variables and
mathematical operators which can Dbe evaluated by the
interpreter to give a numerical result, €.9. the
expression _

104 3 % 3/10 + 21 - 2

can be evaluated to give the number 319. Arithmetic
operations are performed from left to right except that
exponentiation ¢}) is done first, then multipli-
cation (%), then division (/), then substraction (-),
then addition (+)., Thus 6+6%2 1is evaluated as 18 as
multiplication is done before addition. Brackets c¢an Dbe
used to alter the order of operatons, e.g. (6+6)%2 will
give 24. Expressions can contain numbers, progranm
variables and system variables, e.q.

TYPE 2#K#*BCT(3)
or SET INJPHS = A+2%B

A difference from FORTRAN 1{s worth noting here.
Multiplication has a higher priority than division 1in
NODAL, not the same priority as in FORTRAN. Thus

l/2%PIE*] = 1/ (2%PIE%*]I)
and
A/B*C = A/(B*C) not (A/B)*C

NUMBERS, VARIABLES AND EXPRESSIONS PAGE 5

2.3.1

Lines and the FOR command

The most important subdivision of a NODAL program is the
line of text. No action 1is taken by NODAL until the
carriage return Key <CR> is pressed on the kKeyboard. The
line is only then read in and action taken. A line can
contain several commands separated by semi-colons, e.g.

SET A=1j; SET B=2; SET INJPHS = 2%¥A+5%B
&
The FOR command

The FOR command uses the end of the line to definie its
field of action, e.g.

FOR 1=10,203 SET VACVLV(I)=1

will open the vacuum valves 10 to 20 inclusive. System
variables can also be used as FOR variables, e.g.

FOR INJPHS=6,183; TYPE INJPHS, BCT(3) !

will cause a table of injection RF phase and circulating
beam current to be typed. The ! causes a new line to be
taken. The FOR command in general takes three expressions
say A, B, C and has the form

FOR I = AyByCjess
where I initially takes the value of A, incrementing by B

through C. If B is not present it is assumed to be unity.
A, B and C can be fractional or negative if desired.

The CALL command

This command is used for calling subroutines and has the
syntax

CALL NAME(PARA 1,...PARA N)

where the parameters can be of types numeric value,
string value, or reference. E.9g. the command

CALL TTI10ST(C10)

CALL COMMANDE PAGE 6

might set the beam 1line TTI0 to 10 Gev. Normally
subroutines will be used to take values from, or return
values to the main program. E.g.

CALL COACQ(PLANE, TIMING, TABLE)

The first two parameters could Dbe value parameters
defining the plane and timing of a <closed orbit
acquisition, TABLE <could Dbe a reference parameter
defining the array into which the results are to be put.

Subroutines can be written in NODAL (chapter 8) and in
assembly language (chapters 6 and 7). In the console
computers most process subroutines will be written in
NODAL whereas in the local computers most will be written
in assembly language.

Use of the keyword CALL is optional. Thus one can say

NAME(PARAl, ... PARAN)
TTI10STC10)
COACQ(PLANE, TIMING, TABLE)

Program sequencing

Uup to this point only commands which are executed
immediately by NODAL have been discussed. As the NODAL
system is interpretive, these commands are understood and
obeyed immediately without any compilation process. 1If
the 1line of commands is prefixed by a line number,
however, the line is not eXxecuted 1immediately Dbut 1is
stored for later execution, usually as part of a sequence
of commands.

Line numbers must be in the range from 1.0l to 99.99 .
The numbers (.00, 2.00, etc., are illegal line numbers as
they are used to identify the entire group. The number to
the left of the point is called the group number.

1.10 SET A=l
1.30 SET B=2
1.50 TYPE A+B

The stored program can be executed by typing RUN. Once it
has been debugged it can be saved on a file and executed
using the RUN command, or at the occurrence of an inter-
rupt, or at given time, or at regular intervals of time.

PROGRAM SEQUENCING PAGE 7

2.5.1

2.5.2

RUN command

This command starts program execution. RUN on 1its own
starts execution of a program just typed in, starting at
the lowest numbered line.

RUN [2.7]
howvever, starts execution at line 2.7 . (Note 2.7 = 2.,70)
RUN FILENAME

causes the program stored in FILENAME to be loaded and
executed.

RUN [X] FILENAME

causes the program stored in FILENAME to be loaded and
execution to start at the line number given by the value
of expression X.

DO command

The DO command is used to transfer control to a specitied
line, or group, and then return automatically to the com-
mand following the DO command. For example the program :

SET A=1; SET B=2
TYPE "“STARTING =
DO 3.2

— e
® e e
WN -

el TYPE "FINISHED = ~

SET A=3j SET B=4
TYPE A+B

ww n
N e

gives on typing RUN

STARTING = 3 FINISHED = 7

The group structure of NODAL is useful for dividing a
progfam into logical sub-units or sub-routines. Each such
sub-unit can be given a different group number then
executed using the DO command. The DO command would
normally be given in a program sequence, e.9.

1.1 FOR INJPHS = 5,153 DO 2
1.2 END

PROGRAM SEQUENCING PAGE 8

2.1 TYPE INJPHS
2.2 TYPE BCT(3)

The DO command can also be given directly Dby the
kKey-board so that parts of a program c¢an be tested
individually. This is useful as many programs consist of
an acquisiton part, a calculation part, then a control
part.

The line number field in the DO command can be any valid
expression. For example

DO BUTTON+1

might cause group 4 to be done if button 3 is touched.
This feature gives a powerfull computed “CASE™ type

facility.

2.5.3 RETURN command

The RETURN command is used to exit from a DO subroutine.
when a RETURN command is encountered during execution of
a DO subroutine, the program exits from 1its subroutine
status and returns to the command following the DO
command that initiated the subroutine status.

2.5.4 GOTO command

The GOTO command causes NODAL to transfer control to a
specific 1line in a running program. After executing the
specified line, NODAL continues to the next higher line.
The GOTO causes a program branch; i.e. a Jjump to a
previous or subsequent line, e.qg.

GOTO 1.3

The line number may be replaced by any wvalid NODAL
expression. This gives a computed GOTO, e.g.

GOTO 4-2.7
gives the same result as GOTO 1.3 .

It is not possible to jump out of a DO group using the
GOTO command. Any such attempt will be treated as a
RETURN command. Thus <care should be exercised if the
target of a GOTO is outside the current group. This 1is
only allowable if the groups are part of the main program
and never called as DO subroutines.

IF AND WHILE PAGE 9

2.5.5

2.5.6

2.6.1

The END and QUIT commands

A program normally ends when it has reached the end of
the highest numbered line. Earlier ending can be provoked
using the END command. In the on-line mode END causes
control to be returned to the on-line terminal., In
interrupt programs END causes a return to monitor and the
program disappears. QUIT always causes a return to
monitor and NODAL is disconnected.

% command

Beginning a command string with the symbol 2 will cause
the remainder of that line to be ignored so that comments
may be inserted into the program. Such 1lines will Dbe
skipped over when the program is executed. but will be
typed out by a LIST command.

Making decisions, IF and WHILE

The ability to make decisions is one of the most
important features of a computer program. In NODAL this
is done by using the IF or WHILE commands.

The arithmetic IF

This allows program jumps to be controlled by the sign of
an arithmetic expression. For example :

IF (A-10)3.23 DO 2

If the wvalue of the bracketed expression is negative,
here if A is less than 10, then control is transferred to
line 3.2 . Otherwise the next command, here DO 2, is
executed.

IF (X>3.2,3.3; DO 2
In this example, if X is negative, control is passed to
3.2, 1If X is zero, <control is passed to 3.3, if X is
positive, the next command, here DO 2, is executed.

IF (X)3.1,3.2,3.3

In this example a branch is always made, to 3.1, 3.2 or
3.3 according to whether X is negative, zero or positive.

IF AND WHILE PAGE 10

IF commands can be coupled together to get complex
conditions, e.gq.

2.1 IF (AY3.13 IF (10-A>3.1,3.1; DO 4

In this example group 4 is executed if 0<A<10, otherwise
control is transferred to line 3.1.

The expression in brackets is taken to be zero if its
magnitude is in the range + 10E-6.

2.6.2 The logical IF

This allowé the execution of the remainder of a line of
commands to be conditioned on the validity of a 1logical
expression, e.g.

IF A<132; TYPE "LESS THAN"; DO 4

If +the condition is true, here A less than 132, the rest
of the line is executed. Otherwise the rest of the line
is 1ignored. The logical expression takes the form of two
arithmetic expressions separated by the logical operators

> 4greater than
< less than
= equal to

>= greater than or equal to
= less than or equal to

<> not equal to

The first arithmetic expression must not be enclosed 1in
brackets to avoid confusion with the arithmetic IF above.
The two expressions are considered equal if the
difference Dbetween them 1is less than +5E-8 relative to

the first.

2.6.3 The WHILE command

This is similar to the logical IF above except that the
rest of the 1line 1is executed in a loop until the
condition is no longer true. For example :

WHILE CAMAC(0,1,0,0>=0; SET CAMAC(0,2,0,16)=1

causes 1 to be written repeatedly into module 2 until
module 1 returns 1.

SYSTEM VARIABLE SUBROUTINE PAGE 11

System variable subroutines

NODAL is 1linked to the hardware of the accelerator via
machine-code subroutines. These subroutines can take two
forms ¢ system variables, and CALL subroutines.

Systép wuvariables are at the heart of the NODAL on-line
features. They allow machine parameters to be handled
with the same power and flexibility as ordinary program
variables. Control or acquisition goes through a wuser-
written subroutine, however, instead of simply to
computer memory. To avoid filling the computer memory
with many similar routines one will make use of
parameters. For example one system variable could do all
the work for all the sputter ion pumps, say

VPS(N,P)

where N is the pump number, P is the property of the pump
under consideraton. So

TYPE VPS40, #CUR)
might access the current in pump 40
SET VPS(40,#SWI) = 1

might switch pump 40 on. System variables may work in two

ways: firstly they may access the hardware directly,
secondly they may merely access tables which are used or
filled by an autonomous task. It is even possible to
combine both, for instance

TYPE VPS(40,#CUR)
could access the true pump current, whereas
TYPE VPS(40,#CUS)

might access the last scan value.

CALL subroutines provide a more general link between the
NODAL program and the hardware. They are called as

CALL NAME (PARAMETER 1, +..)

The parameters or arguments of the above CALL or system
variable routines can be of three types ¢ numerical
value, string wvalue, or reference. Numerical value

parameters are used to pass a number to a subroutine. In

INPUT AND OUTPUT PAGE 12

2.8.1

the <calling sequence the parameters are used to pass a
character string to the subroutine, and take the form of
a string expression. Reference parameters are used to
pass the address of NODAL data elements (e.g. arrays) to
the subroutine. 1In the calling sequence a NODAL name is

used. For example, with
CALL NAME(3, "YES", ABC)

the subroutine NAME gets the number 3, the string YES,
and the address of the array ABC.

More about Input and Output

TYPE command

This command was introduced in section 2.1 and has been
further illustrated in several of the examples.

The general form of the command is
TYPE typelist

where “typelist”™ is a series of primary elements. Primary
e lements are expressions for which the value is printed,
strings e.g. "THIS IS" for which the text between the
quotes 1is printed out, and control sequences such as !

for a new line. For instance :

TYPE "VALUES ARE" A B ! "END"

could result in the type-out

VALUES ARE 2.5362 4.1234
END

Control sequences cause NODAL to take special action. The
control sequences are as follows, where X represents any

legal expression

! Take new line (carriage return plus line feed)

%X Change format

%y Use E format

\X Type ASCII equivalent of X
&X Type X spaces

1X Type out X in octal

?X Type out X in binary

Normal fixed point for numeric values is 6 digits before
the decimal point and four digits after, i.e. a total

INPUT AND OUTPUT PAGE 13

field of 1l1. This format c¢an be changed using the g
control character. Including the control sequence %8.03
in the TYPE list changes the format to 3 digits after the
point in a field 8 characters 1long. %, specifies E
format, e.g9. TYPE %Z, | gives the type-out 1.00000000E0.
Note that this wuse of % occurs only in a TYPE list, so
does not cause confusion with the %2 command (comment). If
the number is too large to fit into the specified format
then E format is used automatically. Integer format is
obtained if % is followed by an integer. For example

TYPE %25 A+B

will type out the wvalue of A+B as an integer right
Justified in a feld of 5.

Commas can be used to separate elements of a TYPE 1list.
For instance

TYPE A B
is the same as

TYPE A,B
but

TYPE A -B

is not the same as
TYPE A, -B

2.8.2 ASK command

The ASK command is normally used in indirect commands to
allow the user to input data at specific points during
the execution of his program. The ASK command is written
in the form

11.99 ASK X Y Z

When line 11.99 is encountered by NODAL a <colon (:) is
typed. The user can then type an expression, whose value
will be given to the variable X. If only an asterisk (%)
is typed the value of X is unchanged. The expression or
asterisk is followed by carriage return, when the
evaluation takes place. If more than one variable is
asked for, e.9. X Y Z in the example above, all +three
values can be typed on the one line separated by commas.

Text can be included in the ASK command. For example :
11.99 ASK "VALUE OF X" X "VALUE OF Y" Y "VALUE OF 2" 2

When NODAL execute line 11.99 first of all is typed

ERRORS, LIST AND ERASE, TRACE FACILITY PAGE 14

2.9.1

VALUE OF X:

The user c¢an reply with, say, 2<carriage return>then 3
<carriage return>then 4<carriage return»>, which would

look like

VALUE OF X : 2
VALUE OF Y : 3
VALUE OF Z : 4

The wvariables X, Y and Z now have the values 2, 3 and 4
respectively. If the user knows that Y and Z will Dbe
asked for directly after X he can type all three values
at once, separated by commas, €.g.

VALUE OF X ¢ 2, 3, 4

thus suppressing unnecessary printout.

Errors, LIST and ERASE, trace facility

- e En D S E D P R D D D ED EE R D S R W Eh e - e = e

One of the features of NODAL is its detection of program
errors at run-time, together with advanced facilities for
error tracing and subsequent program editing.

Error detection

When an error occurs during execution of a command an
error message is printed, for example

NONEXISTENT NAME AT LINE 2.2

NODAL then stops and enters command mode so that the
faulty line can be corrected. As an example consider the
following sequence of operations

>l.1 SET A=2; TYPE "A" A !
>1.2 SET B=4; TYPE "B" B !
>1.3 TYPE AB+B

>RUN
A 2
B 4

NONEXISTENT NAME AT LINE 1.30

(Note the > is +typed by NODAL to indicate that it is
expecting a line or immediate command to be typed).

In long lines the user can get a Dbetter indication of
where the error occurred by typing CTRL/B (holding down

ERRORS, LIST AND ERASE, TRACE FACILITY PAGE 15

the CTRL Key, then hitting the B). NODAL then prints out
the offending 1line with an arrow indicating where the
error occurred, e.g. in the above example CTRL/B would

give

1.30 TYPE A?+B

NODAL 1is now automatically in EDIT mode ready to change
line 1.3.

2.9.2 LIST command

The command LIST on its own causes NODAL to 1list the
entire program on the terminal. LIST 1.1 or LIST 2,
however, will cause only 1line 1.1 or group 2 to be
listed. LIST 1.1 2 3 causes line 1.l and groups two and
three to be listed.

2.9.3 ERASE command

Lines, dgroups, and variables may be erased from the user
list by means of the ERASE command, for example :

ERASE 1.1 2 A B

will erase line 1.1, group 2 and the data elements A and
B. The command

ERASE ALL

L
clears user store and should be used before typing a
second program after typing a first so as to avoid a
mixup between the two.

2.9.4 The Trace feature

Giving the command ?0N will cause each line of a progranm
to Dbe typed Dbefore it is executed so that the user can
follow the progress of his program. ?0FF disables this
facility.

EDIT COMMAND , PAGE 16

2.10 EDIT command

The simplest way of editing a line is to retype it. In
this case NODAL inserts the new line in place of the old
line with the same number, i.e. performs an automatic

ERASE.

The EDIT command, however, provides powerful facilities
for editing lines, both old lines already in the computer
and also new lines as they are being typed in. This
facility is identical to the line edit facility in QED,
the NORD-10 editing program.

The EDIT command has the following format
EDIT NN.NN ,L

NN.NN is the line number of the line to be edited. The L
denotes a required listing of the line before edit mode
is entered and is optional. The EDIT command works by
mapping the old line, NN.NN, onto the new line which is
being created. Special characters are used to control
this mapping process. These are the control characters,
designated as for example, CTRL/C which 1is control C.
These characters are obtained by holding down the CTRL
key then typing the required character.

The most obvious mapping commands are the copy commands,
for example CTRL/C copies one character from the old line
onto the new line. CTRL/O Character, where (Character 1is
any single character, copies all characters up to but not
including Character. EDIT is normally in the replace mode
so any character other than a CTRL character is entered
in the old line. For example to edit the line.

l.1 LET A=1

which should be
l.1 SET A=l

one can type EDIT 1.1 then CTRL/O L which copies up to
but not including L, then type S which replaces L, then
CTRL/D which <copies the rest of the o0ld 1line and
terminates the EDIT.

It 1s also possible to insert characters at any point by
typing CTRL/E. NODAL types < then inserts all characters
typed until another CTRL/E is typed which id echoed as >.
For example suppose we type EDIT l.l, L which gives

1.1 SET A=l
and we want

ARRAYS PAGE 17

1.1 SET Al23=1

we can type CTRL/Z A which copies the old line up to and
including A, then CTRL/E to insert, then 123, then CTRL/E
again to end the insert. CTRL/D copies the rest of the
old line to finish the edit. It is also possible to skip
over unwanted characters in the old 1line, e.g. CTRL/S
skips one character in the old line. CTRL/X C skips up to
and including the character C. When editing long lines
one can forget what has been done previously. CTRL/Y
copies in the rest of the old line and restarts the edit.
If one wants to see what is there, one can type CTRL/H
which copies and types out up to the end of the line.
Typing CTRL/Y again restarts the edit on this clearly
typed out line.

When typing a new line or editing an old line mistakes
can be made. Typing CTRL/A deletes the last character on
the new line and echoes 4. CTRL/W deletes the last word
and echoes \. CTRL/Q deletes the whole new line, echoes
back arrow, then gives a carriage return 1line feed so
that one can start again. This latter need not be much
used, however, as typing carriage return ends the edit
and 1inserts the new line however faulty. This line then
automatically becomes the old line and so can be edited
and corrected provided the line number is not changed.

Other control characters are available for other editing
functions, a complete list being given in appendix II.

2.11 Arrays and Mathematical Functions

2.11.1 Arrays

Arrays are created by means of the DIMENSION command, for
example :

DIM A(36)

will create an array of three word floating point numbers
which can be accessed as A(l) .. A(36). Array elements
are 1initialised to zero when dimensioned. Integer arrays
can also be created, for example :

DIM-INT A(X)

would create an integer array X words long. Two
dimensional arrays of both types can be created, e.qg.

ARRAYS PAGE 18

DIM B(10,2)
DI-I J(4,5)

Strings arrays are created using the DIMENSION-STRING

command €e.g.
DIM-S STR

Arrays are stored, as in NORD FORTRAN 1V, in ascending
order of storage location. Two dimensional arrays are
stored by column, i.e. the first subscript varies most
rapidly. For instance the array A(3,2) is stored as

ACl,1)
AC2,1)
A(3,1)
ACl,2)
A(2,2)
A(3,2)

A two dimensional array can be accessed as a single
dimensional array in a program, in the above example AC4)
= A(l,2). A check is made on array boundares to prevent
writing outside the array by programming error.

MATHEMATICAL FUNCTIONS PAGE 19

2.11.2 Mathematical functions
These have the usual meaning and are really Just system
variables of a mathematical rather than accelerator type.
For nstance
SET Y = SIN(X)

has an obvious meaning. The functions available are

Function_name Value returned

SINCX) Sine of X, X in radians

Cos¢xX) | Cosine of X, X in radians

AT2(X,Y) Arctangent of Y/X in range 0 - 2 PIE
SQR(X) Square root of X

EXP(X) Exponential of X

LOG (XD Natural logarithm of X (LOGe(X))
ABS(X) Absolute value of X

INT(X) The integer part of X

FPT(X) The fractional part of X

(same sign as X so that
INT(X) + FPT(X) = X)

SGN(X) +1 according to sign of X

MOD(X,Y) X modulo Y

USE OF FILES A PAGE 20

USE OF FILES

One of the features of NODAL is that programs and data
are essentially relocatable and computer independent.
This allows the full flexibility of a general purpose
file system to be used for program storage, overlays,
etc. In the following "FILENAME"™ represents the name of
an arbitrary file on the file system in use. This could
range from a number e.g. 100 in a basic SINTRAN system,
through a NODAL name as in the temporary system described
in LAB-CO/INT/Comp.Notes74~-2 to a full TSS file name. On
other types of computer it would be the appropriate file
specifier, e.g. DTI:FRED on the PDP-11 DOS.

Saving programs and data

Programs and data can be stored for later reference using
the SAVE command, €e.g.

SAVE FILENAME

will save the current program on the file FILENAME. Data
can also be saved, e.9g. '

SAVE FILENAME ABC

will save the array ABC on the file FILENAME. Programs
and data can be saved together, e.g.

SAVE FILENAME 2 ABC

will save group 2 of the current program, plus the array
ABC on the file FILENAME.

Material which has been saved can be retrieved using the
LOAD command, e.g.

LOAD FILENAME

The contents of FILENAME are loaded and incorporated into
the current program. If FILENAME contains lines of
program or data elements of the same name as those
already existing in the program, the already existing
entries are deleted and the new ones inserted.

The OLD <command is an effective ERASE ALL followed by a
LOAD, e.g.

OLD FILENAME

USE OF FILES PAGE 21

clears the current contents of the user area then loads
the contents of FILENAME.

The RUN command described in section 2.4 above is an
effective OLD followed by RUN.

Task global variables

In small computer configurations the NODAL buffer may be
too small to hold the complete program. One way to get
around this problem is program chaining. The program is
divided 1into several sequential parts each stored on a
separate file, e.g. FILEl, FILE2, FILE3. Then to start
the program one types "RUN FILEl"™ which causes the first
part of the program to be executed. This part ends in the
command “RUN FILE2" which causes the second part to be
loaded and executed, and so on.

It is usually necessary to exchange data between the
separate parts however. If a lot of data, e.g. an array
ABC, is to be exchanged then another file must be used.
The penultimate command in FILEl might then be "“SAVE
FILE4 ABC" which would put the array ABC onto FILE4. Then
the first command in FILE 2 could be "LOAD FILE4" so that
the array ABC would then be loaded exactly as it was.

Often, however, only a few values need to be communicated
between programs. For this purpose 16 Task Globals called

ARG(l)..s ARG(16) have been provided. These retain their
values as long as the particular NODAL task is active,
ie. are not affected by ERASE ALL, OLD, SAVE, LOAD etc.
They are set or read as

SET ARG(5) = X
SET X = ARG(5)

This allows sequences of chained "RUN FILE" programs to
be easily set up, the main interchange parameters being
held in ARG(l)... ARG(l6).

Sub-programs on files

Several levels of sub-program structure are provided in
NODAL. Separate named subroutines are, of course,
provided and these are discussed elsewhere. However lines
ands/or groups in NODAL can be used as subroutines, e.g.

USE OF FILES PAGE 22

1.1 DO 2.13 DO 3; DO X3 QUIT

is a line which makes three subroutine calls, to line
2.1, group 3, then the line or group corresponding to the

value of X.

It is often convenient to be able to write and store
sub-programs separately. This can be done using the SAVE
and LOAD commands discussed in the previous section, as a
line, or group, can be saved on a file, then loaded and
executed with a DO command. This is more a dynamic
re-configuration of the main program, however, rather
than the call of an independent sub-program.,

A typical sequence for this use might be

1.1 % MAIN PROGRAM TO LOAD AND EXECUTE GROUPS FROM FILES
1.2 LOAD FILEl ;3 DO 10 ;3 SET A=3 ; DO Il
1.3 ERASE 10 11 12 3 LOAD FILE2 ; DO 30 ; END

This sequence loads groups from files then executes them
with DO statements. The LOAD command is normally meant
for loading data elements but can also be used, as above,
for loading program material into the buffer and mixing
it with what is already there. The 1lines loaded during
execution of a program must, however, b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>