SPS/ACC/PvdS/MANUAL 81-18

Compiled NODAL Data Module
Systems Manual

P.D.V. van der Stok

GENEVA
1981

CERN LIBRARIES, GENEVA

I A

CM-P00070598

ii

The work described here was done in close collaboration with
J. Altaber, V. Frammery, C. Gareyte and T. Stokka.

E. d’Amico, W. Kalbreier, P. Nathan, H. Verhagen and M. Tyrrell
have suggested improvements.

P. Brummer, M. Collins, F. Ghinet and L. Jirden
assured the integration into the SPS computer network.

Technical support for the ACC came from C. Guillaume and R. Rausch.

CONTENTS
INTRODUCTION
IMPLEMENTATION PRINCIPLES

THE NODAL COMPILER

3.1 Compiler operating procedure
3.2 Compiler list file format

3.3 Symbol table file

3.4 System variable file

THE DATA MODULE CONSTRUCTION ELEMENTS
4.1 Property table

4.2 The Data Module body

4.3 Protection scheme

4.4 Datatable

MODE OF OPERATION

5.1 Installation in the NORD computer

5.2 Interactive testing in the NORD computer
5.3 Installationin ACC

§.3.1 Functional description of an ACC-based Data Module
5.3.2 Software packages for Data Module support in ACC

3.3.3 Interrupt level programming
5.3.4 Hardware access from the ACC
5.3.4.1 CAMAC access
5.3.4.2 MPX access
5.3.43 CIMBUS serial access
5.4 Interactive testing of Data Modules in ACC

References
APPENDIX I
APPENDIX II

APPENDIX III

GO 00 3 W

10
12
13
14

16
16
16
17
17
17
19
20
21
21
23
23

24

25

29

41

iii

INTRODUCTION

The Super Proton Synchrotron (SPS) control system assures proper access to the accelerator
equipment through a unique software interface: the Data Module!~?,

One module accesses all equipment belonging to one family. In its simplest form the equipment is
accessed through a function call with two standard parameters as shown in the example below:

SET A = VACPMP(EQ.#PTY)
SET VACPMP(EQ#PTY)=B

The family of the equipment is defined by the name of the function (VACPMP & vacuum pump). The
first parameter ‘EQ’ defines the equipment number within the family. The second parameter ‘#PTY’ defines
the action which has to be performed. The relative position of the function call and the ‘=" sign defines the
nature of the action (Read in case 1, Write in case 2 of the example).

Until recently, Data Modules were written in the manufacturer’s assembly language (MAC) or in the
intermediate language (NPL). At system generation time, they were embedded in the operating system and
loaded into the NORD computers where they can be called from NODAL interpretive programs.

This mode of operation has been successfully applied for the construction of the SPS, and more than
90 Data Modules¥have been manufactured in this way, requiring a lot of effort for debugging and

' improving them, and for their continual maintenance. Indeed, a reduction in manpower availability, together
with the demand for new Data Modules for the pp project, made it desirable to improve the programming
environment for Data Module production and maintenance.

In addition, the recent advent of microprocessor based CAMAC modules (ACC) has made it
possible to relieve the NORD computer CPU of Data Module execution, by exporting most of the Data
Module code into the ACC?. In this context it is desirable
- to make the writing and the subsequent modification of data modules easier;

- to provide good debugging tools;
— to ensure maximum transportability.

The obvious solution to these requirements is to write the Data Module in NODAL language; the
high-level code can then be interpreted in the debugging phase, and compiled when it is put into real-time
operation.

This scheme requires the following elements:

- aNODAL interpreter
- aNODAL compiler
- aset of Data-Module-oriented NODAL functions and commands.

These elements are available on the NORD computers and on the ACC-TMS 9900; the first two
elements have been described in previous publications®~®). This manual will describe all three elements, and
refer to the other publications when the subject is outside the Data Module scope.

IMPLEMENTATION PRINCIPLES

Three phases can be discerned during the development of a Data Module:
— the writing and testing of the NODAL Data Module in an interactive way;
- the compilation and linking-loading of the NODAL Data Module;
— the execution of the compiled Data Module.
The three phases will be described with the aid of three separate diagrams.
In Fig. 1, the Data Module source code is written in NODAL and loaded into the text buffer of the
NODAL interpreter. The latter can be situated in the NORD as well as in the ACC.
The execution of the Data Module code can be started by calling the dedicated function DMSCAL

through an immediate command such as

>TYPE DMSCAL(EQ#PTY)
or > SET DMSCAL(EQ#PTY) = 1234

TTY

>TYPE DMSCAL(EQ#PTY)
S SET DMSCAL(EQ#PTY) = 1234

NODAL
HARDWARE
FUNCTIONS

NODAL
INTERPRETER

EQUIPMENT

NODAL
DATA-
MODULE
SOURCE
CODE

Fig. 1

Figure 2 shows how the source code can be compiled for the two target machines (NORD and ACC).
For the NORD computer the object code is later linked and loaded into the list of Data Modules.

T™S T™S T
OBJECT LINKER- M
CODE LOADER S

NODAL o

DATA- NODAL

MODULE COMPILER

SOURCE

CODE .
NORD 5
OBJECT R
CODE D

2 Fig. 2

For the ACC the object code is down-line loaded into the ACC memory, or better still, burned into
EPROM. For the ACC Data Module an entry is defined in the Data Module list of the NORD computer.
Figure 3 shows how the Data Module calls are routed to the Data Module code.

TTY

>SET DMS(EQ#PTY) = A _

>SET B = DMS(EQ,#PTY)

DMS!
NODAL

COMPILED
CODE

DMS2 EQUIPMENT

NODAL
COMPILED
CODE

NODAL
INTERPRETER

NODAL
APPLICATION
PROGRAM

4

N.n SET DMS(EQ#PTY) = A

DMS3

N.N SET B = DMS(EQ.#PTY) ACC pms3 |
COMMUNICATION NODAL COMPILED
PACKAGE CODE IN ACC

Fig.3

For a NODAL program no difference exists between a compiled Data Module residing in the NORD
computer or one residing in the ACC-TMS. In both cases the compiled Data Module (e.g. DMS) can be
accessed by a NODAL interpretive program in the usual way:

SET DMS(EQ#PTY) = A
SET B = DMS(EQ#PTY)

The implementation of the Data Module in an ACC raises a slight problem there.

In the SPS context, access to the accelerator hardware is performed through the MPX control unit,
which is housed in the same CAMAC crate as the ACC. This MPX control unit can be accessed both by
the ACC and the NORD host. To avoid access conflict, the ACC-TMS or the NORD is master of this
MPX control unit. In the first case, if the NORD host has to access the UC, it has to ask the ACC to
access the MPX link. For this purpose, the description of the MPX control unit in the NORD host is
modified and the MPX request is routed transparently to the ACC, which executes the MPX functions and
sends back eventual results.

In the second case, when the NORD is master of the UC, the UC is reserved in the NORD before the
Data Module call is routed to the ACC.

Independently of the language in which the Data Module has been written, the following three elements
are discerned (see Fig. 4):
- property table
- Data Module code
— datatable

The property table specifies the entry point of the property paragraph to be executed for each
property.
The Data Module code is structured into:

— anintroduction, (initialization phase);
- aproperty paragraph, where the appropriate action is performed on the equipment;

— aconclusion, where errors can be returned.

INTRODUCTION
T T T T
Property o Property
paragraph paragraph
| |] |
Conclusion
Fig.4

The Data Module code together with its property table is called the Data Module body.
The data table contains the living parameters of the Data Module; it can be represented as a
two-dimensional array, each row representing a piece of equipment.
When the NODAL language is used for writing a Data Module, these elements will take the following
shapes: ‘
— The property table is a two-dimensional NODAL array, where the paragraph entry points are line
numbers of the NODAL Data Module code.
— The Data Module code is a normal NODAL program. Its execution is started at the NODAL line with
the lowest line number. The property paragraph starts at the line number specified in the property table and
execution finishes at an END statement.
— The data table is in the form of a NODAL array for the ACC, and of a NODAL element for the NORD.
The Data Module code uses functions which are dedicated to Data Module information flow. The three
most important ones are:
- PROBR, which performs the property branching (standard properties included) and handles the access
protection; ' ' '
— PUT, which sends data to the calling program;
' _ GET, which receives data from the calling program.

THE NODAL COMPILER

The NODAL compiler is implemented under the NORD operating system SINTRAN-IIL; it is built

up of two parts:
— the compiler;
- symbol and system variables predefinition processor.

The compiler handles a subset of the NODAL language. This subset consists of the DATA handling
facilities and mathematical operations. It does not support interactive programming facilities (a feature of
an interpreter) and does not support string handling. The compiler operates in two passes. In a first pass
the NODAL commands are converted to an intermediate code of a virtual machine. The instruction set of
this virtual machine acts on a floating-point accumulator which uses one word of 16 bits for the exponents
and two words of 16 bits for the mantissa. The first pass is common to all target machines.

The second pass of the compiler is target-machine dependent: it converts the intermediate code into
machine code for the target machine.

To guarantee identical program calculation results for all target machine, a full NORD floating-point
package is developed with each code generator.

The symbol and system variable predefinitions processor allows four operations:
~ The definition of system variables with predefined values. They will be located in a area common to all
routines compiled in one pass.

- The predefinition of symbol values. In contrast to the variables, their values cannot be changed during
the execution of a program. They represent the ASCII representation of certain numbers.

— The predefinition of routines which can be called from the compiled code and which are user dependent.

— The definition of NODAL variables and arrays with predefined values. They can later be loaded into the
NODAL buffer of the NODAL interpreter through the commands OLD and LOAD.

3.1 Compiler operating procedure

The NODAL compiler is activated by typing:

CNODCOMP-NORD

for the NORD target machine, and

CGNODCOMP-9900

for the TMS-9900 target machine.
Whenever the command processor expects the operator to enter a command it outputs a dollar sign

($). A command consists of a command name followed by parameters if necessary. Several commands,
along with all required parameters, may be written on the same line.

The command name consists of one or more parts separated by hyphens (-). Each part of the
command name may be abbreviated as long as the command can be distinguished from all other command
names.

The standard editing characters are available while typing commands.

The collection of parameters is done in a standardized way as follows:

— Parameters are separated either by a comma or by any number of spaces, or by a combination of
comma and spaces. ' ’ '

- Parameters may be null, in which case a default value is assigned.

- When a parameter is missing (as opposed to null) it is asked for, and the command processor expects
the operator to supply the required parameter plus more parameters if he so wishes.

- When a parameter syntax error is detected, an error message is printed and the parameter is asked for.

- Excess parameters are ignored.

HELP (command name)
The HELP command lists available commands on the terminal. Only those commands that have

(command name) as a subset are listed. If (command name) is null then all available commands are listed.

EXIT
The EXIT command returns control to the SINTRAN-III command processor.

LINES (lines per page)
The LINES command enables the operator to specify the number of lines per page on the listing

device.

LIST (list directive)
The LIST command is used to select various listing options. If a list directive has not been given, then

only the source program will be listed. A LIST command with an empty parameter will cause all available
list directives to be listed on the terminal.
The following are legal list directives:
- SYMBOLS enables the listing of the symbol table;
- GENERATED-CODE enables the listing of the intermediate code in symbolic form;
- DEFAULT sets the listing mode to the default list mode. In other words, listing of symbols and

generated code is disabled.

COMPILE (main program) (functions) (list file) (object file)
The COMPILE command is used to compile a NODAL program from the main program file along

with a set of defined functions from the function file. A listing will be generated on the listing file. If a listing
file is not supplied, then no listing will be generated, but error messages will be printed on the terminal.
Object output will be generated on the object file, if supplied. The default file type for the two input files is
:NOD. The default file type for the listing file is :LIST. The default file type for the object file depends upon
the individual code generator connected to the compiler.

DATAMOD <name> <main program> <property file> <list file> <object file>

The DATAMOD command is used to compile a NODAL Data Module with name <name> from
the main program file along with its property table from the property file.

A listing will be generated on the listing file. If a listing file is not supplied, then no listing will be
generated but error messages will be printed on the terminal. Object output will be generated on the object
file if supplied. It is possible to continue the compilation of more Data Modules to the same object file, by
specifying only <name> <main program> and <property file>. When <name> is not specified, the
end of the Data Module list is assumed. The default file types for the input files are :NOD and :SYMB
respectively. The default file types for the output files are similar to those used for the COMPILE

command.
The property file may be left out if it is desired to compile only a main program.

SYTBL <inputfile> <list file>
The SYTBL command is used to process a symbol table file, as will be described in the Symbol Table

File section.

L
~

SYSVR <inputfile> <listfile> <object file>

The SYSVR command is used to process a system variable file, as will be described in the System
Variable File section.

A list of input files can be written onto the same object and list files. Striking the cr (carriage return)
key when the input file is asked for will terminate the list.

SYSND <inputfile> <list file> <variable file>
The SYSND command is used to process a NODAL variable file, as is described in the system

variable file section. The type of object file is: NOD.

3.2 Compiler list file format

The compiler listing always contains the NODAL program lines. If the GENERATED-CODE
option has been specified, then the intermediate, or virtual, code is listed in symbolic form after each
program line. At the end of each NODAL program or defined function, a symbol table is output if the

SYMBOLS option has been specified.

PAGE HEADING
The first three lines of a page constitute the page heading. Before the heading lines are printed, the

listing device is advanced to a new page. If the listing device is the terminal, a blank line is printed instead of
advancing to the next page. The heading consists of the following fields:

- Compiler name and version number.

— Current date and time.

- Page number.
— The name of the module currently being compiled. This is MAIN for the main program and the function

name along with formal parameters for a defined function.
- Oneblank line.

VIRTUAL CODE LISTING
The listing of the intermediate code, if enabled, consists of several fields for each line:
- The octal address of the intermediate code. This address is relevant only to the implementer of a code
generator.
— The label field for a LABEL instruction. An ‘L’ character is output in front of the label index value.
— The name of the virtual instruction (see Ref. 7).
- The operands of the virtual instruction in symbolic form.

ERROR MESSAGES
If an error is detected in a line, the error message is output following the line in error. The error

message is preceded by five asterisks (*****). If no listing device has been specified, then the error
message also includes the line number and the name of the defined function or MAIN for the main program
in which the error occurred.

INTERNAL SYMBOL TABLE
If the SYMBOLS option has been supplied, then a symbol table will be listed after each main program
or defined function. This symbol table includes information about each parameter, local variable, and local

array used in the program.

3.3 Symbol table file

The NODAL éompiler provides a facility for adding function and constant definitions to the internal

symbol table SYTBL.
The SYTBL file may contain statements as described below. Statements are terminated either by end

of line or semicolon.

% comment
. The remainder of the line is taken to be a comment.

CONSTANT name=value,...
This statement defines the specified name to be synonymous with the specified value. The value may be
any constant expression. Whenever the compiler encounters this name, the associated constant value will

be substituted for it.

DEF-MATH fname(nops)=rname, ...
This statement defines the name ‘fhame’ to be a mathematical function. The number of operands ‘nops’
must be one or two. The runtime subroutine which implements the function is specified by ‘rname’.

DEF-RW fname(parameter list)=rname, ...

DEF-WO fname(parameter list)=rname, ...

DEF-RO fname(parameter list)=rname, ...

DEF-CALL fname(parameter list)=rname, ..
These statements are used to define read/write (type 8), write only (type 9), read only (type 10), or call (type
11) assembly language functions. The parameter list may contain from zero to eight of the following
parameter type names:

RVAL real value corresponds to 6VAL

IVAL integer value corresponds to 6VAL

SVAL string value not available in compiler

NREF NODAL reference not available in compiler

RREF real reference corresponds to 6VRF

IREF integer reference corresponds to 6VRF

RARR real array corresponds to 6ARF

IARR integer array corresponds to 6ARF

NAME NODAL name corresponds to 6NAM
The runtime subroutine which implements the function is specified by ‘rname’.

END
. This statement specifies the end of the symbol table file.

3.4 System variable file

The NODAL compiler provides a facility whereby the user may predefine and preset variables and
arrays which are to be used by the compiled main program and defined functions. These ‘system variables’
are written, by the code generator, to a specified object file as a standard NODAL list. This means that
other programs may easily share these system variables by simply searching the NODAL list. The
SYSVR command writes the variables onto an object file in the object code specified by the code generator
for a particular target machine. The SYSND command writes the variables in the standard NODAL
format independent of the type of target machine, such that they can be loaded into the NODAL buffer with

the aid of a LOAD or OLD command.

The system variable file may contain statements as described below. Statements are terminated either
by end of line or semicolon.

% comment
The remainder of the line is taken to be a comment.

CONSTANT name=value,...
This statement defines the specified name to be synonymous with the specified value. The value may be
any constant expression. Whenever the compiler encounters this name, the associated constant value will

be substituted for it.

REAL name,... _
The specified name is defined to be a system variable. Its value is initialized to zero.

DIM name (number of elements), ...
The specified name is defined to be a floating-point one-dimensional system array. Each element of the

array is initialized to zero.

DIM name(index1,index2), ...
The specified name is defined to be a floating-point two-dimensional system array. Each element of the

array is initialized to zero.

DIM-I name(number of elements), ...
The specified name is defined to be an integer one-dimensional system array. Each element of the array is

initialized to zero.

DIM-I name (index1,index2), ...
The specified name is defined to be an integer two-dimensional system array. Each element of the array is

initialized to zero.

SET name=value,...
The system variable is initialized to the specified value.

SET name (index)=value, ...
The specified one-dimensional system array element is set to the specified value.

SET name (index1,index2)=value, ...
The specified two-dimensional system array element is set to the specified value.

SET name=(valuel,...,valuen),...
The specified array is initialized, starting from the first element, to the set of specified values. For

two-dimensional arrays the first index increases most rapidly.

END
This statement specifies the end of the system variable file.
If the symbol table option is enabled while the system variable file is being processed, then a symbol

table of the defined constants, variables, and arrays will be output to the listing file.

THE DATA MODULE CONSTRUCTION ELEMENTS

4.1 Property table

The purpose of the property table is to drive the branching to the appropriate NODAL line according
to the property which has been invoked in the Data Module call. The property table is specified as a
two-dimensional integer NODAL array declared through the DIMENSION-INTEGER NODAL

statement.

For single property, the property tableis a4 X N array, N being the number of properties:

DIM-I PTY(4,N)
NAME 1 WRITE ENTRY READ ENTRY PROPERTY 1
(RAD 36) PROP 1 PROP 1 STATUS
NAME 2 WRITE ENTRY READ ENTRY PROPERTY 2
(RAD 36) PROP 2 PROP 2 STATUS
NAME N WRITE ENTRY READ ENTRY PROPERTY N
RAD 36 PROP N PROP N STATUS
For multiproperty?, the property tableis a 5 X N array:
DIM-1 PTY(5,N)
FIRST LAST WRITE ENTRY READ ENTRY PROPERTY 1
NAME 1 NAME 1 PROP 1 PROP 1 STATUS
FIRST LAST WRITE ENTRY READ ENTRY PROPERTY 2
NAME 2 NAME 2 PROP 2 PROP 2 STATUS
N
FIRST LAST WRITE ENTRY READ ENTRY PROPERTY N
NAME N NAME N PROP N PROP N STATUS

The contents of the property table are set up through the SET command as shown below:

— Single property

DIM-1

SET

10

PTY(4,2)

PTY = (#CON, ¢ 10.10, G 10.20, 0O,

#REF, C20.10, C20.20, 0)

defines the single properties CON and REF with the Write entry points, the NODAL lines 10.10 and 20.10
respectively, and with the Read entry points 10.20 and 20.20.

— Multiproperty
DIM-I PTY(5,2)
SET PTY = (#CON,#CON, @10.10, @10.20, O,
#RF1, #RF9, (20.10, (20.20, 0)

The multiproperty RF1, RF2, ..., RF9 replaces the single-property REF while keeping the same entry

points.

The property branch is performed in the entry section of the Data-Module body by calling the function
PROBR. When the routine PROBR is called in the Data Module, the first entry is branched in case of a
Write access and the second entry in the case of a Read access. When the entry is zero, the error message:
‘NO SUCH PROPERTY’is returned when one tries to access it.

The last column of the property table is a status word. Its layout is shown below:

15 9 8 7 6 5 4 312 1 0

P = protection code
D = displacement
A = array handling bit
S = property specific section.
The meaning of each separate item is explained below:
- D is the number which will be returned by the function DISP in the case of single property. In the
multiproperty case, the function DISP returns the difference between the first entry name and the wanted
property plus the number D.
For example,

#CON, #CON, entry W, entry R, [20
#ADO, #AD9, entry W, entry R, [30

(the sign [means: octal number). v
When the property #CON is called, the function DISP will return the value two.
When the property ADO is required, DISP will return the value three.
When the property AD6 is wanted, DISP will return the value AD6—ADOQ+3=9.

—A is bit 8; it should be set when calls to the Data Module with this property allow array transfer. When bit

8 (A)is zero, only

SET DMS(EQ, #PTY) =X
or SET X = DMS(EQ,#PTY)

is allowed. However, when bit 8 is set to one, this specific property coding allows the transfer of arrays
through

DMS(ARR, ‘W’, EQ, #PTY)
and DMS(ARR, ‘R’, EQ, #PTY)

— The protection code P and the meaning of property specific section S will be discussed in Section 3.3.
The global section number and the capability word are set by the command PROT.

11

. PROT(N k)

means that the global section is N, global capability is k. The default value for both is zero.
For the NORD computers the data table width is specified in the property table file with the symbol

DTW. For example:
DTW.=9

will set the data table width to 9.
The documentation of the Data Module should be written into the property table, such that the user

" documentation can be extracted with the aid of the SCAN program.

The user documentation consists of two parts:
— The system information, where the name of the author and all consecutive modifications of the Data

Module are described. This information is preceded by three percent signs: %%%.
— The functional description of the Data Module, which describes the installation locations, the Data
Module names and the generic name, plus the number of entries into each data table. The information is

preceded by two percent signs: %%.

4.2 The Data Module body

The Data Module code is a normal NODAL program which has two variables implicitly defined: the
equipment number and the property. These variables are set at the calling stage. Their value can be
obtained in the Data Module program through the functions EQNO and PTY.

All arguments to and from the Data Module are passed through the commands PUT and GET.

PUT writes an array or variable to the calling program.

Example 1
Calling program:

>DIM-1 A(10)
> CALL DMSCAL(A,‘R’, EQ,#PTY)

Data Module:

DIM-I CC(10)
1020 PUT CC; END

writes the contents of the integer array CC into the array A of the calling program.

Example 2
Calling program:

>TYPE DMSCAL(EQ, #PTY)

Data Module:

1020 SET C=10; PUT C; END
will result in the typing of the number 10 by the calling program.

GET reads an array or variable from the calling program into the Data Module.

12

Example 1
Calling program:

>SET DMSCAL(EQ,#PTY)= 10

Data Module:

1020 GET A; END

will store the value 10 into the variable A.

Example 2
Calling program:

>DIM-I A(22)
>CALL DMSCAL(A,‘W’, EQ, #PTY)

Data Module:
DIM-I BB(22)

This array can be defined in the SYSVR file
1020 GET BB; END

will store the 22 values of the array A of the calling program into the array BB of the Data Module.
All errors which occur during the execution of the Data Module are returned as normal NODAL error

messages to the calling program.
Typical errors are:

divisions by zero,

- array dimension error,

- working area full,

argument list error,

resources exhausted,
the last error being returned when a wrong call to the PUT and GET commands is made.

User-defined errors can be returned with the aid of the function FLAG. For example,

SET FLAG =38; END

will result in the error message: NOT IMPLEMENTED

As mentioned previously, the branching to the correct property paragraph will be done through the
routine PROBR. When this routine is executed it will look through the property table to see if the property
specified in the Data Module call exists. In that case it will resume execution at the line specified in the

property table.
The routine PROBR supports 7 default properties: #STA, #CON, #PWS, #SBT, #LCK, #CAP, and

SEC. Their meaning is explained in Section 4.4.

4.3 Protection scheme

The same protection scheme as the one already in use for the assembly language Data Modules is
used for the Data Modules written in NODAL. The ingredients are:

13

the protection code in the property table;

data table password contained in the data table;

the global section and capability stored in the property table;

the routine PROBR, which performs all the checks required.
The working of the protection coding is as follows:

PROBR looks at the word DAT.(1, EQNO), which should contain the data table status word (see Section
4.4). Checks are then made on the bits PWS and SBT:

when PWS is zero, no protection is wanted;
when PWS is one and SBT is one, the section of the calling program should be equal to the global section
defined in the property table; '
when PWS is one and SBT is zero, the protection is dependent on the protection code P defined in the
property table status word (see Section 4.1). o
= 0: no checkis done;
: the capability of the calling program should be equal to the global capability;
: the section of the calling program should be equal to the global section;
: notused;
: the capability bit which is defined by the data table password should be one;
: the section of the calling program should be equal to the section defined in the data table

la~Rile - Bila v B - B - L o
I
DN R W N =

password;

P = 6: lor$;

P = 7: the section of the calling program should be equal to the section defined in the property status
word.

4.4 Datatable

The data table is a two-dimensional array, which is not directly accessible from the Data Module

residing in the NORD-10 or NORD-100. However, when the Data Module resides in a microprocessor,
the data table should be explicitly defined in the SYSVR file.

The layout is as shown below and is defined by

DIM-I DAT.(N,M)

resulting in a data table of N entries for M pieces of equipment.

For the NORD, the number of entries N is specified in the property table file (see Section 4.1).

ENTRY 1 2 N
7/~

EQ, 1 DATA TABLE |DATA TABLE ’

' 'STATUS PASSWORD
; /

EQ, 2

7/
\ w\ \ \J
A h i N r

%

EQ,M

Of'the N entries, the first two are used for back-up and protection coding. Their layouts are:

14

- word 1 contains
bit 15 : CON software connect,
bit 14 : SBT out-of-service switch,
bit 13 : PWS password switch,
bit 12, 11: LCK lock-up status;
the rest of word 1 will be used for back-up purposes;
- word 2 contains the data password, and is only used when unit protection is wanted.

15 9 4 0

SECTION 0 0 0 0 | CAPABILITY BIT No.

Bits 9-15 contain the unit specific section number;
Bits 0-4 contain the unit specific capability bit.

The contents of the data table status and password are manipulated by the standard properties:
#STA R will return the data table status word
#CON R/W will Read/Write the CON bit in the data table status word
#PWS R/W will Read/Write the PWS bit in the data table status word
#SBT R/W will Read/Write the SBT bit in the data table status word
#LCK R/W will Read/Write the lock-up status in the data table status word
#CAP R/W will Read/Write the capability bit number in the data table password
#SEC R/W will Read/Write the section in the data table password.

For example, the statement

SET DMSQ2,#PWS)=1

will set bit 13 in Entry 1 of EQ,2 to one.
The protection of the standard properties will be such that when PWS = 1 and SBT = 0 and no unit
protection is used:
#CON s executed only when the global capability defined in the property file is the same as the global
capability of the calling program.
The other default properties will be executed only when the global section is equal to the global section of

the calling program.
However, when PWS = 1 and SBT = 0 and unit protection is used for any one of the non-standard
properties, then
#CON s executed only when the section of the calling program is equal to the section defined in the data
table password.

The other default properties will be executed only when the capability bit defined in the data table
password is set in the capability word of the calling program.

15

MODE OF OPERATION
5.1 Installation in the NORD computer

The compiled Data Module consists of two parts.

i) The Data-Module body, which contains the Data-Module code together with the property table. The
body is created from two separate files by the NODAL compiler, as explained in Section 3. The body is
loaded into the NORD computer as a NODAL element by the function LDBRF. This NODAL element
has the type number 28: ‘BRF CODE’.

ii) The data tables are created with the required number of entries/equipment using the functions CREDT
or CREDTS. CREDTS allows the creation of a generic name and the equipment names, while CREDT
allows the creation of only one Data-Module header per Data-Module body.

The Data Modules thus installed support the default properties (#STA, #CON, #PWS, #SBT, #LCK, #CAP

and #SEC, described in Sections 4.3 and 4.4). The data table width (i.e. the number of data table

entries/equipment) is defined in the property file through the command DTW.

It should be noted that when the Data-Module programmer wants to specify the code for the standard
properties himself, the protection scheme used in the PROBR function will no longer work. In that case the
Data-Module programmer should do the branching to the desired property himself with the aid of the
function PTY.

Since the dynamic creation of data tables leaves the data tables empty (i.e. data tables are filled with
zeros), the data table contents should be initialized. For this purpose the function DTWRT and DZWRT
are available in the NORD.

The arrays needed for DZWRT or DTWRT can be created with the aid of the SYSND facility
available under the NODAL compiler. The users are strongly advised to prepare NODAL programs to set
up their data tables and initialize the Data Modules.

When the Data Module includes a driver part, which is activated by an interrupt, variables should be
accessible from both the compiled Data Module and the driver code, which is usually written in MAC or
NPL. For this purpose the SYSVR command available from the NODAL compiler can be used. The
command processes a QED file, in which the shared arrays are specified. The created object file contains
BRF code which can be loaded into the computer with the aid of the LDBRF function. By first loading the
system variables into the computer, these are automatically linked to all Data Modules which reference

these system variables.

5.2 Interactive testing in the NORD computer

Create the property file under QED as described in Section 4.1. Do not use the PROT and DTW.

commands.
Enter the NODAL compiler and use the SYSND command to transform the property file into a

NODAL array.
Enter (DMDEV)DM-NODAL,; use the LOAD command to load the NODAL file which contains the

property table.
Create a data table by typing

DIM-I DATA(DTW,N)

N = number of units
DTW = data table width.
Note: the name DATA is compulsory.
— Now load or write the Data Module NODAL code.
- The NODAL program is activated with the function CALDMS by typing

16

>SET CALDMS(N#PTY)=X
>SET X =CALDMS(N#PTY)

Several things should be kept in mind when using this facility:
i) The ERASE command should not be used.
ii) The first time, CALDMS should be called with equipment No. 1.
iii) The support functions LISDM, DTWRT, DTREA, DTSIZE, DXREA, DXWRT, DZREA,
DZWRT will not work.
iv) The function LISPTY will list the property file to ODEV. The format is the same as that needed for the

compiler.
v) LINEC allows the modification of a line entry in the property table.

Example: To set the Write entry for the third entry in the property table to 11.22, the following
command must be typed:

>SET PTY(2,3) = LINEC(11.22)

For multiple properties this is:

>SET PTY(3,3) = LINEC(11.22)

5.3 Installationin ACC

5.3.1 Functional description of an ACC-based Data Module

The Data Module in an ACC consists of the Data-Module body created by the NODAL compiler,
and a data table located in the system-variable area (see Section 3.4). The name of the NODAL array
serving the data table purpose must be declared as a parameter in the call to PROBR.

Several facilities have been built around a Data Module in an ACC. It is possible to connect NODAL
code to the four external interrupts as described in Section 5.3.3. An ACC can control an MPX-UC, as
described in Section 5.3.4.

To survey the correct functioning of the ACC, a link between the Data Module and the NORD host is
made through the functions STATUS in the ACC and the function ACFASP in the NORD computer.

The 16-bit word written by the STATUS function is read by the ACFASP function. The most
significant bit of this word is the status bit for the FASP surveillance.

When RUN ERRORS occur in the ACC, an RT program is activated in the NORD, which reads the
contents of the RUN ERROR buffer in the ACC and stores them into the RUN ERROR buffer of the
NORD.

The Data Module together with its system variables are linked to the ACC run-time software with the
aid of a MODE file running on a NORD SINTRAN-III computer. The object file is later loaded into the
ACC with the function TMLOAD. The latter function permits the linking of several files, such that one
ACC object file with a hardware definition file can serve different ACCs with a different hardware
environment.

EPROMs are created by copying the contents of the ACC memory. Before copying, the ACC should
have been reset and started once, such that the interrupt pointers in the interrupt table can be updated to

decrease the interrupt switching time.

5.3.2 Software packages for Data Module support in ACC
The ACC has a 32K byte memory for program and data storage (hexadecimal address 0-7FFF).
Below we give a table of all separate packages which are available for the Data-Module support, followed by

an explanation of the purpose of each package:

17

- Interrupt table

- Communication package

- Hardware access package

- Compiled code executor

— Mathematical functions

— Floating-point arithmetic package

- Functions

- Compiled code containing interrupt routines, Data Module, and Background
- SYSVR variables

— Data Module stack from SWORK to EWORK
- Interrupt + Background stacks

— Error and communication buffers

- Stack space for service modules

— Interrupt-table layout
The table is analogous to the one defined in the TMS-9900 Manual. In the ACC, four external

interrupts are available, and three internal interrupts for error recovery. The latter are only used by the
system software, while the action to be performed after one of the four external ones can be defined in a

NODAL program.

— Communication package
The communication package can be seen as an extension of the SYNTRON package residing in the

NORD host computer. It passes the Data Module calls to the wanted Data Module, performs LISDM,
RUN ERROR handling, DATA-TABLE HANDLING, and SYSVR variable retrieval.

— Hardware access package
The hardware access package assures uniform access to the hardware controlled by the ACC.

Modules are available to access an MPX-UC, a CIMBUS module, or a CAMAC module. The software
performs error checking and signals illegal access through the RUN ERROR mechanism.

— Compiled code executor
The package executes the threaded code generated by the NODAL compiler. The compiled code

consists of references to the modules residing in this package.

— Mathematical functions
The mathematical functions — SQR, AT2, SIN, COS, EXP, LOG — are contained in this package.

— Floating-point arithmetic package

The NODAL compiled code uses a three-word floating-point format which is exactly identical to the
one residing in the NORD machines. Thus the results produced by the NODAL compiled code are exactly
identical to the ones produced by the NODAL interpreter running on the NORD machines.

— Functions package
This package contains all the functions required for the Data Module execution, and several functions

also frequently used in the NODAL interpreter, e.g. BIT, IOR, etc.

— Compiled code
Here the user-defined NODAL compiled programs are loaded. They may contain interrupt and

background routines, as well as several Data Modules together with their property table.

18

-~ SYSVR variables
In this package all user-defined variables created by the SYSVR command are located. These

variables’ permit the sharing of data between the interrupt routines and the Data Modules. Also all
variables which should not be reset to zero before the execution of the Data Module (data tables) should be
located here.

N.B. Up to (but not including) the SYSVR variables, all code can be loaded into EPROM. The rest of

the memory should be RAM.

- Data Module stack
This is the working area for the Data Modules. All Data Module code is re-entrant, and recursive

programming is possible. For this purpose the Data Module stack contains the data local to the Data
Module packages mentioned above.

- Interrupt and background stacks
These stacks serve the same purpose for the interrupt and background programs as the Data Module
stack. They permit the concurrent execution of the four interrupt routines, the background routine, and the

Data Module.

— Error and communication buffers
These buffers contain the errors created by the RUN ERROR mechanism, and the information which

is passed between the microprocessor and the host computer.

- Stack space for service routines
This stack space is used by the internal hardware routines, the communication routines, and the

interrupt routines. They permit the mutual exclusion of shared resources through the BLWP and LIMI
instructions.

5.3.3 Interrupt level programming
The additional facilitiecs of interrupt coding and background processors exist on the

microprocessor-based software. The interrupt coding is activated by the four front-panel interrupts. The
code which should be executed immediately after an interrupt should be preceded by the command

WAIT-I N

withl1 SN <4.

The NODAL lines following these commands are executed every time interrupt N is passed to the
microprocessor. The execution is stopped when an END or other WAIT-I command is met.

The background program is preceded by the command BACKG.

All lines following this command are permanently executed, but can be interrupted by the Data
Module or interrupt handler. When an END or WAIT-I command is met, the execution is stopped; it will
be resumed within 16 ms.

All communication between the interrupt-driven code, the Data Module code, or the background code,
passes between the variables defined in the SYSVR file:

Example
SYSVR file
DIM-1I A@4)
REAL BC

19

NODAL program

1.1 WAIT-I1; SET A(l)=A(1)+1
12 WAIT-12; SET AQ2)=A(QQ)+1

1.3 WAIT-13; SET AQ3)=AQ)+1

1.4 WAIT-14; SET A(4)=A@)+1

1.5 BACKG; SET BC =BC+1; END

In the above example, four counters are incremented every time one of the four front-panel interrupts
has arrived. In the meantime the counter BC is updated every 16 ms by the background processor. It is
completely feasible to return the array A(4) or the counter BC to the NORD computers with the aid of the
Data Module.

To create a link with the FASP program running in the host NORD computer, the function STATUS
has been made. When bit 15 of STATUS is set to one, FASP will activate a scheduled program to further

investigate the error.

Example
1.5 BACKG
1.55 IF CAMAC(CNAJF)=1; SET STATUS=-1
1.60 IF CAMAC(CN,AF)=0; SET STATUS=0

Shown above is the very simple case where the background processor looks at a module N. Depending
on the status of this module, STATUS is set to zero or minus one. In this latter case, FASP will initiate the

error procedure that is asked for.
The priorities of the programs are shown below in descending order:

Interrupt 1
Interrupt 2
Interrupt 3
Interrupt 4
Data Module
Background

The interrupt layout in the ACC should be as shown below (see drawing CERN-SPS 7-2420-01-007-3,
ACC repérage des points):

ITO - INTR25 LEVEL 15
IT1T - 4 14
IT2 - 3 13
Im3 - 2 12
T4 - 1 : 11
ITS - QXERI 10
IT6 - INTTY 9
IT7 - 5(TOCAMACQC) 8

5.3.4 Hardware access fromthe ACC
Three modes of hardware access are possible from a Data Module: CAMAC, MPX, and CIMBUS

serial.
When the Data Module resides in an ACC, access is only possible to modules linked to the same

CAMAC crate as the ACC.

20

5.34.1 CAMAC access
Access to these modules is done through the function CAMAC or SCAM.
Inthe ACC the additional commands CAMAC and CADRIV are available (cf. Appendix III-2).

5.3.4.2 MPX access
The MPX modules in the MPX stations that are linked through an MPX control unit accessible from

the Data Module can be accessed with the functions:

MPXI, CMPX, GPMPX, MPX andthe command MPDRIV:
(cf. Appendix ITI-2).
- MPXI, to initialize the MPX link;
- CMPX, GPMPX, MPX, and MPDRIYV to access an MPX module.
The coding, being re-entrant, may be accessed from different program levels. However, the analog
acquisition should only be accessed from one of the interrupt, Data Module, or background levels. (If
interference happens, the analog acquisition continues at the Data Module level and an error message is

returned at the driver or background level.)
There are two different cases of MPX link control, defined by DEFACC and controlled by the

function GIVACC depending on the presence of real-time access from the ACC to MPX.

1) Noreal-time access to the MPX link
In this case the MPX link can be accessed from the Data Module resident in the ACC and also directly
from the NORD. So any ACC Data Module request from the NORD must be preceded by a
reservation of the MPX link in the NORD.

2) Real-time access to the MPX link
In this case the MPX link is controlled by the ACC, any access to this MPX link should be done from

this ACC. The MPX multifunction access is forbidden.

An ACC can control only one MPX link. When this particular MPX link is accessed from the NORD
host computer, the latter passes a request to the ACC to access the MPX link. In this case there is no
longer a reservation of the MPX link in the host computer but a reservation of the ACC.

The time-out, alarm, and EOAA (End of Analog Acquisition) interrupts are no longer handled by the

NORD coding but by the ACC.
The connection from the MPX UC to the ACC front panel should be done as follows:

TIME-OUT - interrupt1
EOAA - interrupt 2
Alarm - interrupt 3 (not used for the moment).

Consequently, only NODAL coding attached to interrupt 4 will be activated.
To disconnect the MPX link from the ACC, the function TAKACC must be used. Then the NORD will

take over the control of this MPX link.

The function ACCSTA tells the user which MPX links are allocated to which ACCs.
The operating systems in the ACCs controlling different MPX links differ from each other by the

definitions of NOMPX, ADCD, and ALDCD.

a) N9MPX defines the position of the MPX control unit in the CAMAC crate:

15 14 13 98 0

0 0 N 0

21

Example

N9MPX EQU > 2400 for the 4™ UC in the crate. .

b) ADCD is the address of the ADC flag:

ADCflag=0 whenno ADC is present,
1 whenan ADC is present.

Example
ADCD DATA 0 means: no ADC present.

¢) ALDCD is the address of a pointer to a table (BMLD) containing the necessary information for access

to ALD MPX modules.
When this pointer is zero, it means that no ALD modules are present. The table has the following

structure:

ALDI1
ST11
< ST12
ALD No. 1
-1
ALD2
ST21
) ST22
ALD No.2
-1
ALDN
STNI1
d STN2 ‘
ALD No.N
-1
End of table -1
STNM = M" station concerned with ALD No. N. ~
ALDN has the structure .
15 12 11 76 32 0
0 ALD No.N ALD No.N 0
Station number Peripheral number

22

Example

ALDCD DATA BMLD
BMLD DATA ALDI1, STI11 STi12, -1

DATA -1
ALDI EQU > 470 ST=8; PN=14
ST11 EQU 8
ST12 EQU 7

5.3.4.3 CIMBUS serial access
The functions CBSI and GPCBS are made to access CIMBUS modules situated in a CIMBUS serial

crate. The link between the CAMAC crate containing the ACC and the CIMBUS serial crate should be
made through the two CAMAC modules ‘3151 (serial link)’ and the CIMBUS module ‘CAMAC serial I/O
interface’.
The purposes of the functions are:
CBSI - (initialize the CIMBUS serial link
GPCBS - access CIMBUS module in CIMBUS serial crate
(cf. Appendix I1I-2).
The code being re-entrant, it can be called from all levels.
These functions do not exist in the NORD SYNTRON system; thus no routines for the reservation

of the serial link have been implemented.

5.4 Interactive testing of Data Modulesin ACC

- Create the property table under QED as described in Section 4.1. Do not use the PROT and DTW.

commands.
- Enter in NODAL compiler and use the SYSVR command to transform the property file to a Texas

object file.

- Link the property file to the NODAL interpreter with the mode file LOAD-NODAL as shown in
Appendix II. The object file is written to the file DUMP:TEX. This latter file should be loaded into the
ACC with the function TMLOAD.

- When the ACC is activated with the CAMAC function AQ F28 (reset) and A0 F25 (start), the NODAL
interpreter is ready. Strike the cr (carriage return) key on the TTY connected to the ACC; then the
message NODAL, etc., will appear.

- The data table is then created by the command DIM-I DAT.(DTW,N):

N = number of units
DTW = data table width.
Note: the data table name should be the same as the name specified as a parameter in the PROBR call.

- Load or write the Data Module code.
- The NODAL program is activated as a Data Module with the aid of the function CALDMS:

SET CALDMS(N#PTY)=X
SET CALDMS(N,#PTY)

In short, the Data Module is written in an interactive way with the aid of the NODAL interpreter. The
layout of the property table should be known beforehand. With the SYSVR command, the table is compiled
for a TMS-9900 object file. With the aid of the mode file LOAD-NODAL (available from the SPS/ACC
group section SOFT) the property file together with the wanted NODAL interpreter modules is written onto
the file DUMP:TEX. The latter is copied to a SYNTRON-compatible floppy disk for late loading into the

ACC.
23

Example
@NODCOMP-9900
TMS-9900 NODAL COMPILER
*SYSVR PROPER, L-P, PROPER
SYSVR FILE: |
NO ERRORS DETECTED
*EXIT

@MODE LOAD-NODAL L-P
GNODAL

NODAL

> RESFLO(O)

> FLCOPY(DUMP:TEX’,'<510> OBJEC.")
>QUIT

References

1) M.C. Crowley-Milling, The data-module, the missing link in high-level control languages, presented at
the 3rd Int. Cpnf. on Trends in on-Line Computer Systems, Sheffield, 1979.

2) J. Altaber and F. Beck, The distributed data-base for the CERN SPS control system, presented at the
European Workshop on Industrial Computing Systems (PURDUE, Europe), Vienna, 1980.

3) G.J.Jennings, Data module Systems Handbook, CERN SPS/ACC/GJ/Comp. Note 79-34 (1979).
4) G.J.Jennings, SPS NODAL Functions and Data Modules, CERN SPS/ACC/GJ/79-12.

5) P.D.V. van der Stok, Transparent access to microprocessors, Presented at the 1980 NOCUS Meeting,
Helsinggr, 1980.

6) M.C. Crowley-Milling and G. Shering, The NODAL system for the SPS, CERI\i 78-07(1978).
7) NITTEDATA, NODAL cross-compiler. Reference manual.

8). NITTEDATA, NODAL code generator for TMS-9900.

9) NITTEDATA, TMS-9900 NODAL interpreter. Reference manual.

24

APPENDIX 1

SUPPORT FUNCTIONS FOR DATA MODULES IN THE NORD
This section describes the functions available for installing Data Modules in the NORD computer.

25

FUNCTION NAME: LDBRF - load BRF object file

FUNCTION TYPE: 11 - call assembly language function
CALLING SEQUENCE: LDBRF (AREA,N,“FILE”)
Purpose

This function loads the BRF file FILE into the SYNTRON area AREA with number N.

AREA can be:
RES - forloading in the resident list,
PROG - forloading in the program area,
DATA - forloadinginthe DATA area.

N is the area number; it should be zero for loading in the resident list. Under the SINTRAN run-time
system, only loading into RES is authorized.

26

FUNCTION NAME: CREDT - create data table with Data Module header

FUNCTION TYPE: 11 - call assembly language function
CALLING SEQUENCE: CREDT(N,NAME,DMS,NU)
Purpose

This function creates a data table for Data Module body NAME with the Data Module name
DMS. The data table will be located in the SYNTRON run-time system area: DATA with number N.

When N = 0 the data table will be located in the same area as the Data Module body. N should be zero
when used under the SINTRAN run-time system.

The number of equipment numbers available to DMS is defined by NU.

When NU = — 1, this is an equipment function.

27

FUNCTION NAME: CREDTS - create datatables with a generic name header
and several Data Module name headers

FUNCTION TYPE: ‘ 11 - call assembly language function
CALLING SEQUENCE: CREDTS(N,NAME,DMSAR,UAR,FLAR)
Purpose

This function creates a set of data tables on data area N for the Data Module body NAME.
When N is zero, the data table will be located in the same area as the Data Module body NAME. Under the
SINTRAN-III run-time system, N should be equal to zero. DMSAR is a string array which contains the
names of the Data Modules. The integer array UAR contains the number of equipment numbers available
to this Data Module.

The integer array FLAR specifies the first equipment number. When the use of a generic name is
needed, the first name of the string array DMSAR contains the generic name, and the first entry of FLAR
should be zero. The dimensions of FLAR, DMSAR, and UAR should be equal.

For example, consider the creation of a gene<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>