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ABSTRACT

Simple geometric measures (lengths of lines, areas of triangles,
etc., in an appropriate phase space) are proposed as tools in analysing
multiparticle iﬁteractions. Several applications are proposed, including
searches for maxima and minima in phase-space density, tests for reflec-
tion invariance and other symmetries, and experimental determination of
the dimensionality of phase-space distributions.




I.

INTRODUCTION

The experimental analysis of particle interactions (as observed,
for example, in a bubble chamber) has traditionally been done using
either a one-dimensional graph or histogram (such as cross section as a
function of beam momentum or number of events as a function of some in-
variant mass) or the two-dimensional scatter diagram (of which the best
examples are the Dalitz-Fabry plot and the Chew-Low plot) [1]. While these

‘tools are quite adequate for simple processes such as elastic scattering

where only four particles are involved, and while they have been remark-
ably useful in studying reactions of higher multiplicity, they are cer-
tainly in no sense adequate for a thorough analysis of the more compli-

cated reactions.

The reason for this is quite simple: for a reaction involving n
particles, neglecting the external polarizations, it requires 3n - 10
scalar invariants to completely specify an event. Thus the pertinent
phase space is a space of 3n - 10 dimensions, and only if n g L ocan this
be mapped into a one- or two-dimensional plot. (From time to time, people
have tried to construct 3-dimensional plots, but the value of these as a
real analytical tool is questionable.) Thus we are reduced to studying
various projections of the distribution of events in a multi-dimensional
space, perhaps comparing them with the projected phase-space volume. In
deference to the true complexity of the problem it has become customary
to present graphs subject to "ecuts". That is, distributions are plotted
for one or two variables but including only those events which satisfy
certain inequalities with respect to one or more other variables. (By
far the most common "cu ", of course, is the fixing of the beam momentum,
which reduces the number of dimensions in the phase space by one, if the

target is stationary.)

While these techniques are not without merit, they are certainly

" crude. This will inevitably become apparent to all on the day when, if

indeed it has not already occurred, a graduate thesis is submitted in
which the number of graphs exceeds the number of events under considera-

tion.

I present here another approach to the problem of how to achieve
human comprehension of experimental data which unfortunately is available
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in a space of many dimensions. The method is by no means a final solu-
tion; it may, however, be of some use in conjunction with traditional
techniques. In the next section the measures to be used are defined and
explained. Section III contains some proposed uses of these measures.
The algebra needed for the least-squares solution to the length of a line
appears in an Appendix.

GEOMETRIC MEASURES

It is useful to recall why 3n - 10 quantities are required to
specify an interaction of n particles of fixed masses., There are

3n  external momenta (with fixed mass, only 3 components of
the L momentum for each particle are independent).

~i  equations of energy-momentum conservation
-3 parameters of an arbitrary Lorentz transformation

-3 parameters of an arbitrary rotation

3n-10 net independent quantities.
Thus we need to work in a phase space of 3n - 10 dimensions.

Now suppose that we have experimental data for a certain reaction,
say
KP-» N7 (1)
{(for which n= 6)., That is, there is a set of m events, Tor sach o
the four vectors of each of the 6 particles are known.The four-vectors
are expressed in the standard combination [2]:

Py = (p1,p2,p3,pe) = (p, iE) (2)

‘with both the momentum p and the energy E expressed in mass units

(e.g. GeV). Then an "event" consists of a vector V of Ln = 2L components,
consisting of a string of the n particle vectors in a definite order.
Consider two events, V,, and V,; let the difference vector be

Vi =Y~ Y (3)

-
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Sinoe A and B are examples of reaction (1) their mass relations and
the four conservation equations are certainly satisfied by V, and by V..
Therefore the vectors V,, V, and V,, all exist on hypersurfaces of
3n -4 dimensions embedded in the in dimensional Cartesian space. Holding
event A fixed, consider possible rotations (i.e. space rotation and

Lorentz translations) of event B and define

17 (a,B) = minB[(YzB)z : (&)

where the symbol minB[ ] denotes a minimization with respect to all pos-
sible rotations of event B (but see a generalization of this definition
below). Note that L?(A,B) has the following properties:

1) It is the squared length of a vector in a phase space of 3n-10
dimensions (3n- ) reduced by a 6 parameter minimization).

2) It is non-negative, since it is the sum of squared lengths of
vectors which must be space like., Thus the minimum must exist;

it is in fact unique (see Appendix).

3) 1*(A,A) = 0, Furthermore L?(A,A’) = 0, where A’ consists of event A
after any sequence of rotations and Lorentz transformations.

'4) Thus I2(A,B) = 0 only if each invariant of event A is identical to
the corresponding invariant of event B. The converse is not true;

see for exa.mple'the parity conservation test in Section III.

\J
N

Note that properties 2 through 4 hold only so long as corresponding
particles in A and B have the same mass. It is forbidden, for present
purposes, to lump, say, the a and ¥~ together and call that a "particle"
(unless, of course the "dipions" in ¢! events A and B have identical

- masses).

One further complication: the reaction (1) does not suffer from any
ambiguity problems. Consider by contrast the reaction

PP+ PP wiw o . (5)
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Here each of the particles is indistinguishable from one other particle.
Thus there are 2* = 16 possible pairings that could be used in calculating
1? (A,B). The properties derived above for I°(A,B) remain true only if we
extend the definition of min[ ] to include selecting the smallest value
with respect to possible permutations of indistinguishable particles.

In like manner for three events A, B, and C we can define the area
of a triangle in phase space

T(4,B8,C) = ming | min [/(Vip)® (Via)® - !‘;B . z;c]] ) (6)

the volume of a pyramid and so on. Note that to achieve the required
minima with a geometric construction of ¢ dimensions, the number of pair-
ing permutations required is expenential in ¢=-1. Thus the computational

problems can be severe.

Finally there is a combinatorial problem. If m events exist, then
there are CI: = [m!/t!(m~¢)!] independent ways in which to combine ¢
events to calculate a measure of dimension £~ 1. Again the computational
problems can be severe. Therefore in most of the applications only ¢ =2
will be considered.

IIT. APPLICATIONS

Most of the applications will involve a histogram of the number, N,
of pairs (or triplets, etc.) versus the phase-space measure ¥ (or T, etc),

on which it is assumed that all the Cl: combinations are plotted.

1) Detection of duplicate eveﬁts. This is a trivial but remarkably ef-
fective application. Most analysis systems are susceptible to human errors
(or chicanery) which might cause the same event to appear twice in the
final set of "good" events. On a N,L? histogram this would lead to a dis-
_tinet peak at I? = 0 (or nearby if it were different but similar measure-

ments of the same event).

2) ' Detecting peaks in matrix elements. If the squared matrix element
leading to the reaction under study is not constant throughout the phase-
space volume, then it must have maxima and minima. It may be of great
interest to know where these are. At the peaks of the squared matrix ele-
ment the events will be clustered more closely together. Therefore, with
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sufficient statistics, these peaks correspond to those events for which
small values of, e.g., I ocour. More elaborately one could calculate
Lz(Z,Ai) s 1 =1, ¢eo, m where 2 is a test event which is allowed to sweep
through phase space on a search pattern or extremum procedure to search
for a maximum (or minimum) in event density.

3) Determining dimensionality of distributions. Normally the events

would be distributed throughout the 3n- 10 (or 3m-11 if beam and target
‘momenta are fixed) dimensional phase space. There may, however, be a
clustering of events into a space of fewer dimensions, either because the
matrix element has a pole in the physical region, causing an abundance of
events with values of a certain invariant (or invariants) in the pole
region, or because of a pole outside the physical region, causing a con-
densation at the boundary of phase space. There are two ways to search
for such a situation. Most obviously, the hypervolume of the elementary
construction of dimension ¢ will be 0 if the ¢ events for which it is cal~-
culated lie in a rectangular hypervolume of dimension < ¢. Therefore it
is useful to ask whether there is a significant number of combinations of
¢t = 3n=11 (or 12) events giving a hypervolume near 0.

Alternatively the test can be made using only the two-dimensional
measure L°. Consider a N,I? histogram in which both axes are logarith-
mic. If the events were distributed uniformly in an unbounded phase space
of ¢ dimensions, then the average distribution of the nmnberojN(L)dL of
events within a distance L, of any point would be

fN(L)\dL « Lt ~ (7

Thus the log N, log I° plot would be a straight line of slope t/2-1. The
physical region of phase space is, of course, finite, and arbitrarily large
values of 1? are not possible, so the distribution must eventually curve

- back down from the straight line; nevertheless the initial slope (near
I* = 0) should be ¢/2-1, By noting the initial slope on a log N, log IL?
plot one can get a direct measure of the dimensionality of the most sig-
nificant clustering of events.
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l«-) Experimental tests of symmetry principles. The phase-~space metric
construction cen be used tec make model-independent tests of various sym-

metries, A few examples follow.

Suppose that we wish‘ to decide whether a given set of events is pro-
duced by a matrix element which is invariant under reflection of one mo-
mentum coordinate (parity conservi_n_g_z. We have merely to compare the
distributions of

Lz(Ai’Aj) and LZ(Ai,RAj) (i = 1’ esey m, j = 1, LXX XY 1-1)

where R.l\.;j is the event Aj with the sign of PZ’ for example, reversed. If
the reaction is reflection-invariant, then these two distributions should
differ only in a statistical way, because the event density at the point
Aj will be on the average the same as at the point RAJ.. But if the inter-
action does not conserve parity, then there must be a region in phase
space where the density of real events Ai is higher than the density of
reflected events RA;. Then the real pairings I? (Ai’A,j) will tend to have
more cases of small I? than the crossed pairings. Any significant shift
of the distribution to larger values of I? is thus evidence of lack of

reflection invariance.

Conversely if one wishes to assume (or even force) reflection invari-
ance, the number of events used in other phases of this analysis can be
doubled merely by using the set of 2 m events: Ai’ RAi. This remark
applies also to other symmetry tests.

Some reactions might be suitable for a test of charge conjugation

invariance. Consider the reaction

BP » PProw w° (8)
for example. Charge conjugation could be tested by comparing the distribu-
- tions

2 2
L (Ai,Aj) and L (Ai,CAj)

where CA j is the event A j after the interchanges P« P (twice) and 7 e,
The remarks in the parity discussion all apply.




The reader may be amused to devise tests for-other symmetries. I men-
tion only one more, an example of a ¥two experiment" type. Suppose there

are M events of the reaction
Kp-»Kpr'n™ (9)
and M’ events of the reaetion
| Kp-KPro . (10)
To try to separate the parts of the reaction which do and do not depend on

the strangeness quantum number it might be useful to look at all three dis-
tributions

L (Ag,45)  L*(AAL) and L7 (af,4Y)

where A, is an event of reaction (9) and A'j is one of reaction (10).

5) Tests of complete theoretical models. The ultimate goal in studying
perticle interactions is to develop a theoretical model which describes
the experimental situation. Frequently these models are only "partial
models" in the sense that they are intended to explain only some features
of a particular reaction (such as the "low-momentum transfer events", or
a particular angular distribution which occurs). These partial models
are popular not only because they sre often easier for the theorist to
construct, but also because the experiﬁentalist can more easily test the
limited model,

A possible answer to the experimental problem is to use a "two
experiment" test where ons of the experiments consists of a comple_te
theoretical model. To be specific, suppose that a theoretical model
exists for reaction (9). Then by standard Monte Carlo technigues one
cen generate a set of fake events F,, which (if the model is correct)
will be indistinguisheble from the real events Ai. Then the distributions

La(Ai’Fj) and [Lz(Ai:Aj) or La(Fi:Fj)]

should differ only statistically.
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APPENDIX

The problem is to perform the rotation (rotation and Lorentz trans-
lation) which minimizes the squared lemgth of the "difference vector"
!-A-B' - [It may be visualized by considering the "porcupine problem", which
is the non-relativistic case. Imagine two rigid porcupines, A and B

2 4

: 1 3 2
: ‘ 5

‘ 1

4
s A B

with equal numbersof labelled quills. Suppose that rubber bands (of
equilibrium length 0) connect the ends of like-numbered quills. Suppose
further that except for the rubber bands the porcupinesdo not interact

in any way; they "slide through" each other freely. Then let the system
come to equilibrium, This will be the desired solution. ]

No explicit use is made of the fact that each event satisfies con-
servation equations; indeed the analysis could be done even if they did
not. Thus any sign convention can be used for the 4 momenta, either
maintaining or suppressing the distinction between "incoming" and "outgoing"
particles, provided only that the same convention is used in both events.

The solution is an iterative least sguare process:

1) From the current values of the L vector calculate the transformation
which would minimize (V™)° if the transformation were linear.

2)  Perform the transformation (exactly, not in linear approximation) to

obtain new L4 vectors.

3) If convergence is complete, calculate (¥ )*, otherwise repeat from

step 1.
Consider the steps in detail:

1. Pind a transformation. The least squaresprocedure for minimizing a
vector starts by trying to make it be 0. The linearized (Newton's method)
equationsfor this are " '

- 3V
A +'3'ij=2 (11)
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which are 4n equations to be solved for the 6 parameters, X 3 specify-
ing the transformation. {Summetion on repeated indices is assumed
throughout.) Proceed by multiplying Eq. (11) by the transpose of the
coefficient matrix to get a 6 x 6 linear system

A v (12)
————— o P 59 = e e o v .
axi axj J aXi -

To caloculate the quantities in Eq. (12), we must define the transformation
parameters. Since at this stage linearity is assumed an infinitesmal
transformation will suffice. Let a particle in event A have four momentum
P, and in event B, q,. Although the actual rotation will be carried out
keeping Pu fixed, at this stage assume equal and opposite transformations
p, = I(X) »,
(13)

= 1,(x) q,

where I(X) is the infinitesimal transformation. The symmetric treatment
has two desired consequences: succeeding equations are manifestly invari-
ant to interchange of the events, and the (unknown) finite transformation
sought is only half as big, thus making more realistic the linearity assump-
tion.

A useful way to write the infinitesimal rotation is

S e v e\
1 -Xs Xz -iks

Xs 1 =Xy -i¥s
X Xy 1 =iXe
iXe iXs iXe 1

I(X) =1+ gixi = R 1™ (x) = I(-X) = E(X) . (14)

The g; are the 6 generators of the transformation group. In the limit
|x] » 0, I(X) is a pure rotation in 3 space of angle # = VX¢ + X + X3,
plus a pure Lorentz translation of § = (X, X5, Xs).

The right side of Eq. (12) becomes

ov

- - ' +
6 == Vu 3%, = Vule)yy Vy = QxRoFE - EQ) (15)
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where }f is the sum vector analogous to the difference vector !-, and
E and F are the energies associated with P and Q respectively. Likewise
the matrix on the left of Eq. (12) is

v av.
+ o+
M = ﬁs_"a'ia = (gi)pp(gj)u:p vy, - (16)

e

Write M in terms of its 3 x 3 corners
M= (%) (17)
LL

(UL)y5 = (@ + B 855 - (@ + P)(Q;+ P))

Then

(1R), 5 = (E + F) 5y - (Q; + Py)(Qy + Pj)

°

6 ~(F+E)@ +Ps) (P E)G + Pe)
TR = (P + E)(G + Ps3) 0 ~(F + E)(Q + P1) (18)

-(F + E){(Q + P2) (F+E)Q + Py) 0

and, by the over-all symmetry of M, LL is the transpose of UR. aij is the
Kronecker delta (8 Th 1 only if i = j, otherwise 0). In Egs. (15) and
(18) each component is to be summed over the n particle pairs.

- R |

Finally Eq. (12) can be solved for the unknown vector X by standard
techniquesof linear algebra, thus completing the task of this section.
2. Perform the transformation. Now we have the 6 parameters X defining the
desired tramsformation of the type (14); however the vector X was calcu-
lated assuming equal and opposite transformations on the two porcupines.
In fact only the second of Egs. (13) will be used; therefore X must be
doubled. However, if the rotation angle ¢ = m exceeds a
quarter revolution the linear approximation of step 1 camnot have been very
sensible. It is useful to scale down the vector X in this case rather than
doubling it. In the rest of this section the symbol X denotesthe solution

of Eg, (12) after doubling or scaling as appropriate.
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Since in general X is not amall, the problem is to find a finite trans-
formation T(X) which is the extension of I(X)

2(X) = 1in [: ():] lim [1 +-:| (19)

where Z = I(X)=1 = 8;%; .

(In fact, since the least square procedure is basically tolerant, it
is possible to use an approximation to T(X), so long as the approximation
is an exact (i.e. mass preserving) transformation and reduces to T(X) when
|XI is small. An example of a useful approximation is

T (X) = XK, X, X%)J (X, %y %) (20)
whereaf is a pure Lorentz transformation and R is a pure rotation. Of

course, reversing the order in Eq. (20) would also work.]

The formula for T(X) does not seem to be given in many of the stan-
dard references, and is included here for completeness [3]. First define
the building blocks:

0 =X Xz -i%q

Xs ~iXa
-X2 X4 -iXs
iX iX iX, ixz iXs 0

X =Xe -2 XeXe+ XeXs XyXs+ XeXe i(¥sXs =XeXs)
= 242 XE-Xi-X XoXs+XsXe i(XyXe ~XsXs)

2
= 2oy = Zes  X-X-X i(XeXe-XiXs) (21)
= 244 = Zza = Z3a B+X+X
2
S = T_I‘EZ- - x‘a + XSZ + X62 - (xiz + xzz + XJZ) = "ﬁz_ 792"
D = ZY = X'L + X|X5 + xJXS = "ﬁ'ﬂ"

Now since z° = Sz + DY, the series expansion for eZ =1+ 2+ -3-2 + eee
can contain only the above matrices and functionsof S and D, Therefore
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T(2) = e + £2° + g2 + hY (22)

where £, g, h, and e are functions only of S and D. With a modest amount
of algebra it ocam be shown that

e_ba cosh a + a° ces b b = cosh . a - cos b
= b2+ @a° =~ b2 + g2
. asinh a+ b sinb _bsinh_a-asinbd
&= b + a? h = b? + &2 (23)
where V
,/82+I+D2+S /52 + 4D2 - 8
a= 2 . b= 2

The positive roots are to be taken in all cases.

3. Terminal Consideratiéns. The result of steps 1 and 2 is a transformed
version of the second porcupine which is a linearized solution to the least
squares problem. The problem is non-linear, so it will frequently be neces-
sary to return to step 1, using the approximate solution as the new starting
point. The iterative procedure will grind to a halt when the right side of
Eq. (12) becomes 0. Therefore it is wise to declare "convergence" and termi-

nate the process when this vector becomes small.

So the process has converged, but is it a solution, namely the state
with minimum (!-)’z ? Consider the three requirements for a minimum:

i) a‘Y-IZ =0 This is obviously satisfied, sinee C is the gradient

axi in question.
2 d ¥
ii) gx &+~ 2 0, i.e. this matrix should have no negative eigenvalue,
E

The second derivative matrix in question is just

(¥ )? - m(X) -

ook, - Migt %L Fxar, L o (24)
1773 J

While ni:j is a normal least square matrix and can have no negative

eigenvalue, the complete second derivative matrix (24) certainly can

have negative eigenvalues. [Since (_1{_")2 must be periodic for pure
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rotation about any axis there must be maxima as well as minima. )
While the linesrized least squares process can be in equilibrium

" at a non-minimum, it camnnot be in stable equilibrium. Therefore
only states where condition 2 is satisfied will normally arise.

In any case the eigenvalues of Eq. (24) can be checked; if any are
negative it is a simple matter to move away from the false solution
and resume the iteration. With this (almost always superfluous)
addition the process is guaranteed to produce at least a local mini-

mm of (V )°.

iii) Minimum of all minime, Finally it must be shown that the minimum

found is the absolute minimum rather than just one of many local
minima., This is true, because there is only one local minimum.

Proof: Suppose that p and g are the vectors corresponding to a

local minimum., Then

)
G, 4) 5 = (- gaz=o (o 1) (25)

where, for simplicity the derivatives are calculated assuming p
fixed. Suppose another minimum exists with vector p? and ¢’

There always exists a transformation TY such that T ¢ = g, so this
second minimum also occurs at p’ = T¥ p” and q. Assume that p’ 7D,
and let T be the transformation such that T p = p’. Then

(Tp - q) g;q=0  (for all i). (26)

Combining Eqs. (25) and (26)
(Tp - p) 859=0 . (27)

Now consider

(T°p - q) siq=l:(T2p - Tp) + (Tp - q)] 8,4 = T(Tp~p)g;a= 0 + (28)

Therefore, if the derivative vector is 0 at two distinet points, it
has zeros at an infinite set of equally spaced points in X space.

Hyperbolic functions do not have periodically spaced zeros; there=~
fore +the transformation T connecting the two presumed minima must

be a pure rotation.




Rotation, of course, will iead to pariodic zeros in the derivative:
a rotation through 2r about any axis reproduces the initial state. So
the only remaining possibility is that two local minima are related to

each other by a rotation of angle < 2r, A brief look at the rotation
matrix shows that this cannot -happen.
Therefore any local minimum found is also the absolute minimum,

o
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