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1. INTRODUCTION

The problem of solving Helmholtz's equation

-Au + cu = f ,

where ¢ is a real constant, and the corresponding eigenvalue problem

Au + Au =0,

are of considerable interest and arise in a variety of spplications,

see Courant.and Hilbert [9} and Garabedian [11].

Since the first implementation of the Fast Fourier Transform in 1965,
see Cooley and Tukey [8], several fast methods have been developed
for solving fihite difference analogues of the Helmtoltz's equation,
see Hockney. [12], ‘Buneman [5] and aléo Buzbee, Golub and Nielson [7].
All these methods can be regarded as eff1c1ent computer implementa-
tions of the separatlon of variables method. That methéd can only be
':used for regxons whlch, after a possible change of 1ndependent vari-

~ ables, are rectangular and for dlfferentlal operators of special form,
see Widlund [16] For a square region with n° mesh points only

n (1 + 6(1/n)) storage locations are needed, while the operation
count is c1n21032n(1 + 0(1)), where ¢, is a constant less than 10.
Similarily, fast solvers exist for infinite parallel strips, see [1]
and Fischer, Golub, Hald, Leiva and Widlund [10], and the whole plane,
see'Hbckney [12].

In this thesis we consider a problem on an arbitrary bounded plane
region Q. The region Q is 1mbedded in a rectangle, an infinite parallel
strip or the whole plane. A unif'orm mesh is imposed on the enlarged
region. An expanded linear system of algebraic équations is derived which
hes a reﬁucible»ﬁatfix. This new matrix contains thélmatrix of our
original problem as an irreducible component. The résulting matrix is
‘a rank p modification of a separable problem which allows for the use
of & fast solver. Here p is the number of irregular mesh points, i.e,
those mesh pbints which do not have all its next neighbors in the open
set of Q. For two -dimensional problems we thus have a value of p of the
order n. The problem can be solved with the aid of the Woodbury formula
or one of its variants, see Buzbee, Dorr, George and Golub [6] and’

Hbckney [13). The operation count for their algorlthms is
2
c,pa“log,n(1 + o(1)).



2. SUMMARY OF THE PAPERS

In [1] we consider the sclution of the interior Direchlet. and Neumann
-prdblémé for Heimholtz's equation on’ an arbitrary bounded plane region.
This work grew out of an observation by Widlund [16] of a formal analogy
between the Woodbury formula and a clasical solution formula for fﬁe
Neumann problem for Laplace's equation; see Courant and Hilbert [9]
or Garabedian [11]. In this potential theoretical approach an Ansatz
is made in terms of a éingle'layer potential. The charge density is
then found by solving a Fredhclm integral, equation of the second kind.
This suggests that iterative methods‘might compete‘sucéeSSfully with
Gaussian elimination *for solv1ng the capacltance matrix equatlon which
corresponds to this integral -equation. We have found the conjugate
gradient method qulte effectlve,_ thls method results 1n
considerable savings compared to previous implementations of the
capacitance matrix method in cases where the’ number of variables is
large and only ene or a few problems are solved for a given region Q.
The proper Aidsatz for the continuous Direchlet problem is a layer of
dipoles: Changing our Ansatz to a finite difference analog of a dipole
layer, the capacitance matiiceé'are also well-conditioned and the con-
Jugate gradient method performs very satisfactorily. We note that our
Ansatz falls out51de the algebraic framework of Buzbee, Dorr, George
and Golub [6]. Our treatment also differs from theirs in that we allow

the capacitance matrix to become singular.

Another main improvement is the fast generation of the capacitance
matrix. The basic idea is the use of translation invariance whlch can
be achleved by imposing e periodicity condition as a boundary condl—
tion fqr the problem for which ‘the fast Helmholtz's solver is applled.
The matrlx representing the discrete fundamental. solutlon is then sa
circulant and therefore by knowing one of its columns we know the

entire matrix.

Taken together these improvements result in an operation count of
3n 1ogen(1 +0(1)), i.e. a solution to our problem can be obtained
at an expense which grows no faster than that for a fast solver on a

rectangle when the mesh size is refined.

This paper also contains a discussion of previous work on capacltance

matrix methods.



.

A FORTRAN program which implements the above method is givenAin [2].

,Thé’method for the Dlrechlet problem which is presented in [1] is of
second order. Methods of solving the interior Direchlet problem for
Lap}ace s equation with higher accuracy are developed in [3]. These .
methods were suggested by H.-O. Kreiss. Here, the approximation at

the irregular meshfpoints'is chosen se»fhat several terms of an
esymptotic error expansion «xist. This expansion justifies the use

of deferred correction methods, see Pereyra [14]. A convergence result
for these ‘methods is. establlshed and confirmed by numerlcal experiments.
The deferred correctlon method does not require mesh refinement and
therefore the capac1tance matrlx, once generated and factored, can

be used inexpensively to genefate the corrections. For problems with
‘sufficientlysmno%h,éolutions the gain in _accuracy of several orders
of magnltude is observed while the ‘increase of computatlonal expense

is moderate.

The prob‘em of finding several elgenfunctlons and eigenvalues of the
interior D1rechlet problem for the reduced wave equation is considered
in [¥]. We combine two fast algorithms, the iterative Block Lanczos
method to compute eigenvalues and eigenvectors of a given matrix, see
Underwood [15], and our capacitance matrix method. The capacitance
metrix is generated and factored only.once for a given problem. Iﬁ
each iteration of-the Block Lanczos method the discrete Helmholtz's .
equatlon is solved at a cost of c3n2log2n operations. The cost of

this step is only about twice that of the fast solver on the rectangleé

in which our region is imbedded.
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