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1. Motivation:

For digital computation of trajectories in a Mark V FFAG accelerator, it may
prove convenient to work with fields or potentials stored on a net. It is believed
that use of a net is particularly appropriate if complicated fields are to be employed
or if speed of computation is to be emphasized.

With limited storage it may prove expedient to store, on a two-dimensional
net, the magnetostatic potential and to obtain the three field-components therefrom.
It is expected that the potential will approximately satisfy the two dimensional
Cartesian Form of Laplace's equation
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It is the purpose of the present notes to indicate an interpolation formula of
possible utility for this purpose, it being noted that reasonable accuracy should
be particularly sought for the interpolation formula if differentiation as well as
interpolation is contemplated.
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2.The Interpolation Formula:
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Based on the net shown, but not -12 02 12 22
employing the four extreme corner points, . B o .
a central interpolation formula for two -11 01 11 21
variables may be developed of the Bessel . . . .
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'This development has the following properties:

(1) For any functional Form,
Av=8 e O =F Yy
Lzl =0 —>V,

AL = 0} //d‘“--'-/ B VO/
/a‘/) Ud:./ e l/!f

(2) The expression fits any third order polynominal in 4, &t
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(3a) The sum of the coefficients of «%and ¢~* will equal zero, corresponding to
the (2- dlmensmnal Cartesian) harmonic combination «?2 — =2, provided

='—£Wo * Yob * Vot + Vera 1 as it will be
through 3rd order for a harmonic function or if \/,, is determined by a
relaxation process employing the usual algorlthm for Laplace's two-dimensional
equation.

(3b) The cubic terms, moreover, are harmonic if the foregoing condition is
satisfied for each of the four interior points (I/,,Q, Va/ Ve s ]/”j and

if v,,_,-.«-:/,,-i-v_,.,f»]/o,,_ Vaa P Vot # Vers# V32 This
latter condition is also automatically satlsfled through third order for a harmonic

function.
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In the special case that L= ﬁ o= ’5 , this interpolation formula
gives
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3. The First Derivatives:

From the 1nterpolat10n formula of Section 2 one would infer that

Y o 2V TN sl -, s ]

b
‘/‘[\60’2 o+V/D_7’“’
7(._!’—[/3_,?"[6@“'/1:4.*‘6[/,—‘/‘/ ‘V.-
7 o
7‘1/51-'9‘/6,-#.? oe "'V[ V_”-v‘-[/w

ra
*r 2.[7(“ -3V, +3Voo 2 V_/p]a,z'

i




V - =} +y
o 7 2 =~ Voo e ol 7 a2
V/ﬂ » Vc’o 2 V,_/ - Vot 3

%L}_L/,. = 3__‘_{__ @Lﬁl/a:z"' é}fﬂ- 5’-1/;0‘-214_1_7

o ‘/:21"‘ Vao-Vs +6 V¥, - YV,45- V,-/]
y *Vg;z q%l ‘1"-2,/5, *Va._; -V-/f * Voo

. [VOI s ang - Vé_/ -7”-‘
Var =Vy - V.
/[ 2/ e o + V-w ] 2
V + ///a +l/oo "'V-.../a s
\/024 V/ 'rVoI
—V/o T Vo + V5. = Vo _7(47/"

¥

- [Voz_‘?vo/+3]/ 'Vp-/_]ﬂ‘z

4. Examples:

(a) An example for the application of the interpolation formula to the potential
is afforded by the results of Illiac run FL.0004, in which a 2-dimensional Laplace
problem is solved for a rectangular pole. We take as given the potentials at
every other net point and compare the interpolated and Illiac values for an interior
(central) net point. The input potentials are indicated in the following diagram:

o o
.124472 .106660
(=] ] -]
.104373 . 081181 . 069842
X
V%, &
-] o o £
. 091427 . 061047 . 044681 . 037052
o [
O o
For the central point 1/2, 1/2, indicated by X, we find
Calc. by Interpolation, l/), ¥y = . 072918%*
" " . R L
Illiac . 073347
Error (difference) . 000429
Fractional Error . 00585
*If one just averaged the 4 central points, one would obtain .07282 05,

with an error ,0005265 and a fractional error .00718.

S



(b) A second example considers the relatively smooth 2-dimensional harmonic
function V& sin x Sink y on a net including the values 0.882, 1.008, 1,134,
and 1,260 for x and the same set of values for y.

One finds (including in the coefficients 2 figures which are not significant):

V = 1.00441817 + .07981752 cc -+ 16542506 2/
-. 00796157« % + .01321427T4 2~ -+  .00798319 ¢~ %
-.00019001 4 3  -. 00142752 4<%
+ .00061894, ¢~% 4  .0046094 -F
then, withh = 0.126,
,6_’__1/: .07981752 -.01592313 < — (01321427 &~ R )
)X = [-.00057003¢% -.00285504.4 1~ ~ .00061894 =% [© 0.126
_;-_’Z 16542506 + .01321427 4« 7 01596637 ¢~ 1
)#: -.00142752 4™ +  .00123788 ¢~ 5 .001382821%/°0.126 :
For the potentials ore finds:
Vi/2, 1/2 1.130281 by interp. V3/4 3/4 1.195568; by interp.
1.130289 by exact. fen. : 1.195575; by exact fen

.000008 error

©.000007,
,000007 frac. error 000007; error

. 000006 frac. error

Similarly, for the fields

7.~ R ' innterp Vx exact Error Frac. | Vyinterp. Vyexact Error Frac.
Error | Error
0 0 .633472 .633639 .00167 .000264 1.312897 1.313079 .000182 .0006139

1/2 1/2 ||.617155 .617181 .000026 .000042 | 1.431061 1.431041 ,000020 .000014
3/4 3/4|.604821 .604751 .000070 .000116 1.491918 1.491868 .000050 .000034

(c) A horrible example can be contrived, as might be expected for a 3rd
order formula, by taking the potential to be a pure 4th order harmonic--e.g.:

V= x?; 713:1 -‘é«}’??‘- j’(xjg +y‘/.

For this function our interpolation formula would suggest
2
V= =2Y -2~ +UL™ + ¢ v~ Y
+aud-rzav >+ 243
consistent with Vo =0 V.= 4 ¥, :.4 v ==Y,
For U= _127) = J:/L we find however -1 while the true value is -.25;

for a = %, V= 3/‘/) we similarly find -1.875 while the true value is -1,265625.
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(d) A somewhat realistic analytic example, similar to example (a) can be
contrived by considering the two-dimensional potential in the neighborhood of a
corner. (Another similar example might be based on the slotted plane,
illustrated by Fig. 4.23 of Smythe's text, )

For a corner, a conformal transformation
leads to the result

Z:“%ﬁ /-2, %'gb Ei fé g T?
/-2, +1d5 "

W= -",Tl?- (;Z”’ Z, _":7!).

By expansion of this result one is led, following a suggestion of Dr. Sessler, to
consider that there would be interest in considering the following simpler,
but similar potential;
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We consider a grid of basis cell size ——%L;‘ , for which the potentials are
believed to be as illustrated: 5
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Interior points of interest may include

J 7
4, HE 5 n=dRs o #=1.892547 "
1, 1/2 : S 90°
54
pla”i ¥,
1/2, 1 i - ST e 2.034444
oy
3/4, 3/4 J1.625 1.768192
e A
Our interpolation formulas then read:

/\/, = 748748 -.143002 4 -.181013 U~
Yo it

2 2L
. 007429 « -.003816 7~ -.006571¢

t

P
.002897.4.°> # . 007810 <& v

*

-.047839 a v + 003458 v~ ° | with

Fx g
—= 5(.143002 -.014858 <t + _00:;‘16 v

Velg

2
-. 008691 «.* —. 015620 & P+ 047839 v~ ),

Ey
—_ 5(.181013 + .003816 4+ ¥ .013142 ¢~
Volg = ’
- 007810 %4 . 095678 e T~ - 010374 =)

For the potentials we find:

4o L~ oV interp. 47 Vexact Error Frac.

P A Error
1/2 1}2 . 581792 .579396 . 002396 . 00412
1 1/2)f .514392 .508556 . 005836 . 01135
1/2 1 . 471465 .471682 . 000217 . 00046
3/43/4 . 489867 .486899 . 002968 .00606
Likewise for the fields:

Loig ] _
At LT %EX inZ‘erP- EXa,c,'!i' EXCor  ervoy %E'ﬂ 'lh{crf’. E,Ka,C{' Exvvyoy £:3’fp :
a2 IR .716815 .756304 .039 .052 | 1.044328 1.035444 . 0088 .0086
i 1/2 .627555 .652478 ,025 - .038|1.144178 1.130125 .0141 .0124
e 1 .886225 .902927 017 .018 |{1.157878 1.120809 .037; . 033
3/4 3/4 .739775 .765801 .026 .034|1.186610 1.145239 . 041, . 036;

5. Further Orientation by l1-dimensional Examples:

In view of the possible difficulties suggested by the last example of the
¥ L



preceding section, it was proposed by Dr. Sessler that useful orientation
could be obtained by considering analogous one-dimensional problems.

(a) A problem similar to that of )5 5d is provided by taking

2/3
= (0.3 s -E = 0.2
Z) - (——-1-{-3-0.33{) and

employing the interval indicated:

| \ \ s
el " 1 T
x=/ 2 3
Here X “ 0 1 2 3
v || 0 4481405 .7113787 .9321698

3rd order interpolation, based on values atx = 0, 1, 2, and 3 gives

V = .4481405 -+ .33194684 -.0924512 % 4~ 0237425 w3 |
-E, = .3319468 -.1849023 « # 0712276 e
We find
Frac. Fra
* U Vf'n'lltrp Vf.-woe.. Erm— Evvror ‘E:‘n{CFP _£1.‘rb& £Hror Erro;

11/3 1/3 || .5493964 .5428835 0065129 .0120 |.2729508 .2714418 .0015090 .0056
11/2 1/2 ||.5939689 .5872302 .0067387 .0115 |.2573026 .2609912 .0036886 . 0141

12/3 2/3|[.6353838 6299605 .0054233 .0086|.2403353 .2519842 .0116489 .0462

The errors are of the order 1.2% in V and 4.6% in E, similar to the
2-dimensional example.

(b) The example of sub-section (a) was repeated, using higher-order
interpolation.

V= /-ﬂ- Bw+ Cu?* + Do +E/uy) where

A'—'- Vo
B2 [0, V1Y, = Lot V]

= & v, -ee Vg vl + Y Vs ]
= 74,;,,[_3V_,+ o, =il *“"V:&"é]

.;5:1[1,_1_7% oV, -+ V]
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x || o 1 2 3 4

¥y e . 4481405 .T113787 . 9321698 1.1292432

V = ,4481405 + .32163634¢ —.0872959,ug“+~ .034:053(;‘643 —.0051552‘/@7
_E = .3216363  -.1745918 4 + .1021590+4" -, 0206210 e .

We then find

Frac. Frac.
X u Vinterp  Virue Error Error | -Einterp -Etrue Error Error

11/3 1/3 .5468506 . 5428835 .0039671 .00731 |.2740263 .2714418 . 0025845 .00952
11/2 1% .5910691 .5872302 .0038389 .00654 |.2573025 .2609912 .0036887 .01413
12/32/3 .6328380 .6299605 .0028775 .00457 |.2445359 .2519842 .0074483 .02866

It is seen that the errors are not markedly reduced, being just somewhat under
1% for V and about 3% for E.

(c) As an illustration of a finer mesh, we take

ita Vv,
“ Vo 0¥ Y V2 y
X=| 2 =
Now

V-1= .2823108 V= .4481405 VvV, = .5872302 Vo = .T113787

V = .4481405 1 .1504932 (L -. 0133700 ¥ 4 0019665 w?

2
-Ey = 2(.1504932 -, 0267400 ¢ # 0058994 « )

At 4= 2/8 (x =11/3)

Erac, -E -E Frac.

Vinterp Virue Error Error interp true Error Error
.5431097 .5428835 .0002262 .000417 |.2705770 .2714418 .0008648 .003186

The error is seen to have been reduced considerably in this example, being
about 0.04%in V and 0.3% in E.

(d) It may be also of interest to examine the accuracy resulting from storing
the field directly, then interpolating without differentiation.

With E_; = .3764144
g;’ : Egg;gfj using the mesh of sub-section (c),
Eg = .2371262



third order, Newtonian 2nd order, and linear interpolation give, respectively,

! iy
E = 2987603 - 053381454 #+ 019925 2.* - 00433015.% ,

N

E = .2987603 -. 0447211 w + .. 0069520, w ,

E = .2987603 ~-.0377691 4. .

We then compare the interpoluted fields at = 1/3, 1/2, and 2/3 with the
true fields

12837967, Eyjp = .2773445, 2714418

and find
For the 3rd order and Newtonian 2nd order cases, a fractional error of

about 0.3 % (similar to that of subsection (c) above) and, for the linear case,
about 1%.

In summary, the grid size seems all-important. Extensive interpolation formulas,
by contrast, are of little advantage. Direct interpolation on the fields themselves

appears to be of little help, perhaps because the fields become singular.

Example to Illustrate a Suggestion:

In taking stock of our position with respect to our ultimate application, it seems
likely that one would do best to store the potential, or some other single quantity,
rather than the field components themselves. This scheme would economize on
storage., An adequately fine net is most important. The size of the net, and the
number of figures stored per net point, should be adjusted together within the
limitations of the computer memoryto optimize the overall accuracy. It appears
that improvement in the accuracy of interpolation, and possibly adequately accurate
results with a feasible net, may be obtained by storing something like the potential
divided by the axial distance from the median plane.

To illustrate this suggestion, we consider a case exhibiting the type of singularity

considered earlier, feeling that cases with smoother pole-contours will be no
worse.

s~ [ue 2% - (1-F)h]wbor et 27
We introduce
AW = V/A = [/+%)% - %)%
x */3
z ~4 b
o)V/ %/Zf/ }:;1_’) é(/_%) 3_7 analytically

and also equals W 7 7(-;;" /A#_)n

—
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We consider net-points such that

—_ = 0;"(- '2/ B __.-/-2 /e i.e., the net -size h is
g e 7 )
<
related to the semi-gap such that A = _)(g’

For this example the following figures are representative:

w, §£5)
0 1.3333 1/18 1.33425
1/18 1.3336 1.5/18 = 3/36 1.33540
2/18 = 1/9 1,.3346 2/18 = 1/9 1.33702
3/18 = 1/6 1.3361 8/18 = 4/9 1.40072
7/18 1.3492 8.5/18 =17/36 1.41097
8/18 = 4/9 1.3545 9/18 = 1/2 1.42233
9/18 = 1/2 1.3608 15/18 = 5/6 1.75612
10/18 = 5/9 1.3683 15.5/18=31/36 1.82930
14/18 = 7/9 1. 4151 16/18= 8/9 1.92603
15/18 = 5/6 1.4341

16/18 = 8/9 1.4590

17/18 1.4953

A Bessel interpolation formula may be applied of the form
- - = L
u:\'jr-f—(-yj"’ by viay, a‘j-"-)u,f- (9—! :‘594":11)& +
v /12 2 -3 3
(4133 % 52 )
(31 2 (N [Tg -, vt~ Ty
Tx L9 6(’_‘]-/ i L:J:a) “?34'3 Yo fI/) w

("7_‘1_;"‘0’2?}0 e i 93.7 )uj

In the first interval, taking fﬁ = A /,4 3

3
Y= 1.3336 + .000683u + .00035& =~ - 000033w

4 :(_{)[,0/2_304- L0 1o us = oo/gouﬂ_z
3X g < il=
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leading to E, = 1.33428, 1.33554, and 1. 33717 at the points considered.
Similarly in the center interval,

y = 13545 + .005792% + .0005uZ + . 000025u3

X d%/z - (:9{) [(10395 + 018w  .00135u2 ]

leading to values Ex = 1. 40070, 1. 41102, and 1. 42245 or 1. 42247,
In the last interval, nearest the pole,

y = 1.4341 + .021033 W + .00295u® +  .0009166 w>
.‘312- X 2
de = 5- . 3786 & 1062w % L 0495 W, :’

For the three points of this interval which were considered,

Frac.
x/g W -Exinterp -Extrue Error Error
5/6 0 1. 74960 1. 75612 . 00652 . 00371
31/36 1/2 1.82787 1. 82930 . 00143 . 00078
8/9 1 1.93393 1. 92603 7 00790 . 0041

We may then regard the frac. error as typically 0. 4%.

Lower-order interpolation (second or first order) did not appear to give as sat-
isfactory results, errors of 1% or 3 1/2% being respectively obtained.

7. Application:

Application of this suggestion indicated in Section 6 to the computation of orbits in
a /7/(" V spirally-ridged FFAG synchrotron would appear to involve the following
storage scheme in some l’,:? plane (quantities out of this plane would be obtain-
able by virtue of the scaling properties of the structure - - see Sessler's notes of 10
January):

Store a quantity roughly proportional to V/Z, the exact character to be determined
by the scaling aspects of the problem. Scale the magnitude of this quantity care-
fully and store as 1/3-words on a mesh (2 > O )18 x 18 in area. The no.

of memory points required for this storage is, then, 19 x 109 = 691 full words.

Third order interpolation and differentiation is imagineg (requiring perhaps a few
extra net points at the boundaries for perhaps a total of 703 words) and it is hoped that
the field-error would then rarely exceed 0. 4 percent.
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