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ANALYTICAL APPROXIMATION IN MARK V SCALLOPED ORBITS
AND TO RADIAL BETATRON OSCILLATIONS ABOUT THEM

David L, Judd
University of California Radiation
Laboratory and Midwestern Universities
Research Association*
L} &.--. Hed

August 10, 1955

As a check on the work of Laslett, and because
of apparent discrepancies between (1) Ridge Runner (2)
Feckless Five, and (3) Laslett's analytieal values
obtained with the aid of his tables, in determining
frequencies of radial betatron oscillations, if was
decided to compare analytically these various approaches,
using an independent method of procedure, for motion in
the median plane, At the conclusion of this work,
correction of errors in Laslett's anélysis produced
satisfactory agreement, and all treatments of this prob-
lem now agree except for some discrepancies in the co-
efficients in xg below, The present work is believed

to be more accurate at this point,

I, Comparison of RR and FF,

The Ridge Runner (rigorous) equations are
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for motion of a particle of mechanical momentum
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P = 8, ﬁyy){; in the median plane of the field
B= B, (‘7,,)[+7‘M }"“/&1( ) /V}”jj Here

=Y, (1+ %] Ar¢ 2 W+ Ao /4}

The Feckless Five equation;f which are approximate,
have been supplied by Laslett, and, when specialized to
motion in the median plane, assume the form
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Here & = tan™L(k+ 1w, Nﬁ?/\/m,ﬂ. Straightforward ex-
pansion of the Ridge-Runner equations yields
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where one term in x3 has been explicitly kept to compare
> k+1 (k+1)x
with Feckless Five, and where ( 1+ x ) and e

have been used interchangably since X ¢ 1 and k¥ 37 1.

Thus a discrepancy to this order in x exists in the terms
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in x s Since
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with the second term being erroneously present in FF
and missing in the rigorous RR, The error is no doubt
comparable with the neglect of termsﬁof order x3 for the
small values of § appropriate to the range of parameters
of current interest, Validity of the neglect of x3 terms
is certainly open to question in therstudy of non-linear
effects in betatron oscillations but does not appear to be
significant in locating the closed orbits or in determining
the betatron frequency in linear approximation, for the

range of parameters of present interest,

II. Analytical Determination of Closed Orbits.
The rigorous (BRR) equations may be expanded without

the somewhat artifiecial introduction of the quantity J .
The result, to the order indicated, is
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Here Y := —--4/¢ Neglected terms in the above equations
are small with respect to the leading terms. In the first

equation,

3
X Py

L3 - 7 2
"UNX Ni/—i < JXiIo fﬂ// A 7 25
we /MJ L

Fx
In the second,
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One may proceed to convert these highly accurate equations

to a single second order differential equation:
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In order to proceed further analytically, it is necessary
to expand in powers of f%’ s even though considerable in-
accuracy may result for some values of x/w,. The terms

neglected in the %Fgree of approximation used below are of
_F
order~L JL— *

A4S relative to the

largest’ terms in the differential equationj this quantity

is less than 2 x 1072 for s +y, W25, 1/w %X 103 but

may be as 1arge as ¥ for N > 25, l/w 3 x lO3 13
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This expansion, when carried out, using the abbreviation
£ : N ¢, yields
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The largest neglect is that of the terms in V7.7
This equation may be solved by iteration for the closed

orbit, which is that solution having period 2 7/N in ©.
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Here 4y By.o...E are the square brackets on the right side

of the differential equation being solved

To minimize the labor from here on, we note that,

according to Symon's smooth approximation,
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so that for reasonable values ¢y ~ 7/a, Ig_ ~ ’Tr/ﬁ/ 5
we have, approximately, é ~ J g ol = I:'V", since

+ ~ F£/pb, ,amd D~N? D;--4N Thus the
first terms in o<, o<, ,and o<, are the largest, | fur is
an order of magnitude larger than k, and the largest terms
in ﬂ and ﬂj, are those in f3/(w2 D,"‘ ) and -/’? */D,.,

The largest terms on the right side are those coming

from the large part of A (- = @/"—5) times the largest
terms in x ( C e NP "f'{me?’), from the largest term
5
in B (‘5;4«'«;) " times x, times the two
2 2
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largest parts o Xy S F(A) O 20 0,w ’
and from the largest term in D ( %_,? 5*‘-5 ) times 1/6 xg "
We thus obtain the approximate equation
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where only the largest term in /g’ (=< L‘;L; ) has been kept,

and D7/Do ~ 1/k. ‘We thus obtain
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Finally we may collect all our terms below and
evaluate the orders of magnitude of the various terms,
expressing all quantities in terms of N through use of
Symon's smooth approximation expressions with the choices

of 5 made above,
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To get orders of magnitude: take k*’-‘:é PIS A 22 i
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It is felt unlikely that for any reasonable design
the numerical relationships used above will differ by
more than about a factor of 2, or that the orders of mag-
nitude of the various terms arrived at will be changed by

more than a factor of 10.
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ITI., Linearized Equations for Radial Betatron Oscillations.

The periodic solution just obtained will henceforth be
denoted by xs. If we set # = % "(’,-insert this in the
differential equation, and retain only linear terms in (D ’

we obtain o L
C)“ *(%H)er—‘/f{(a *Ex.;(; +0x;(3' # %{i@ff(f (3 + 1523 (D)
+ & (ehe

Rearranging,
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Transforming to eliminate the first derivative term,

set (’ ’U'M/ﬂ[;-f_),(c "E?'s)“f'f; A ¢Sj obtaining
3
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We will now try to evaluate the square bracket in this
equation, By use of the same interrelationships based
on the smooth approximation as were applied above to pick
out large terms and reject small ones, we may verify that

the terms to be kept are
2y 15 wf’—(«éra)/;a.‘ng' f‘iaéfd(’éf’) *;i*“”"f
W 1 As
* ’”————-ff:*"’)m = /7 sl den i L8
After inserting X5 as obtained earlier and dropping small

terms, we obtain the square bracket as

("”)""Jw':;, e (;:{;,)7 i
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Making the change of variable g = /\/f:JZ‘a, we may write

the linearized equation for v as

Lo Jhs B enstt 1 §) 0 Comltr 04 Dbt ) 1 - frg

with P= VB + BT Lo B 3’5/6’,,_, , C’smﬂ Lon &, = cs/ﬁj

D'—‘D,_),tan Sa was not evaluated since D is less than
0.,1% of B, From the smooth approximation, orders of

magnitude are:
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Ars 4 =178 # —==
B, ~ 1 =-1/128 - 1/256 # -~~~
B ~ 1/16+1/32 + 1/256 + — - -
Cq,x, 1/8+ - - -
C, 1/6% + 1/28+ ---
Do~ 1/128 4 ~-~-
D, ~— 1/2000

The largest terms calculated from the original equation
accurate through third order terms in x, but not written
above, are of order 1/1000 or of order l/N2 when compared
with the orders of magnitude given immediately above. [jNeg-
lect of all of the terms of order 1/N° is not justified

for model parameters with small Nj; this point is inves-

tigated separately belowi] We finally then obtain:

For
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the equation
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There appears to be little point in evaluating this
expression further at present since tables do not exist
which cover values of é;/ other than O or I . For
the cases studied this far numerically, Jﬁ is less than
about 0,15 radian, and é} is less than twice éj ’
so that SLT does not exceed 0.l radian, '
For model parameters use the following formulass

A = same as for large machines

B= \BX+ B,
C=Na+e

]

where
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Dp = N - (A1)

(The underlined terms may be omitted in large scale machines)
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IV, Numerical Comparisons.

The closed orbit results may be put in the form
¥ , ¥
1 = == AA—'«N¢**J' Con NP ~$ 4in 2N ¢ ¢ terms{l% of f/{
The results of Laslett may be written as:

5 f)2
<+ f (A28) (3

) f
¢ Na-(%+0+g(tﬁN -

¥
I A L 4 ]
d 4 [NL(%:H)*??('LM);

g = ©

The results of the present investigation have been
guoted earlier, A numerical comparison has been made

for the representative parameters f = .25, N= 50,

k.=100, w1 =3 x 10,

| 2 [ X Ly
Laslett | 1.25 x 1072 1,01 x 10’“ n«lo"lL+ 0
Judd 1433 X 10"5 1,00 x 10'“ 4.0 x 10"6 3.9 x 10"6

The discrepancies indicate that the values calculated

here may more accurately predict fixed points.
Results for Ay B, and C in the linearlized radial

betatron oscillation equation have been computed for six

cases, and one tabulated below, together with valueg
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of Uy /7 obtained from the Laslett tables and from

the Illiac.

.Earlier discrepancies, largely due to

errors in Laslett's earlier work, have disappeared upon

introduction of his corrected values, which are essentially

the same as those obtained here.

Results for

0o /7

using his corrected values are also tabulated for complete-

ness; good agreement is again obtained,

&/ ) ”?%T

e |2l ln | | i (B lee Bo-jEREe T
150 | 1/% | 209% | 37 | .131| ,135| 1.50 |.309 |.8," (.86 | .4y | .39
75| 1/% | 1047 | 27 | o144 | J146| L.kl |o272 [o8p |79 |.33 |.32
150} 1/k | 209k | %O | L151) o153) 1029 10227 17 |o71 |o25 |#22
150| 1/% | 2200 | 42 | ,138| .139| 1.23 |.206 |67 A2/3 |.27 |.21
150| 1/4 | 3142 | 60 | .070| 070/ 0.868| .0975.%, |43 [.15 |.15
150| 1/4% | 2620 | 50 | .099| ,100| 1.0% | o143 .55 [.53 |.29 |.18
* This value obtained by linear interpolation in C from
plots of levies of constant B on A vs cos ( graphs. Linear

interpolation is not too well justified here, and is especially

bad from plots of lines of constant

7 on A vs B graphs

in this case lying near a stability boundary; the value

obtained in this way is .924
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In the table above it should be noted that the

reading of values of ( from graphs made from the
Laslett tables is uncertain to at least one and probably

two digits in the second decimal place in many places.

V. Conclusions. ,
It is concluded (1) that the Ridge Runner and Feckless

Five equations agree in the median plane through terms of
second order in x and x except for a small discrepancy
which will be unimportant for small kevy (2 ) that a re-
liable expression, accurate to better than 1% of the lar-
gest term, for the closed orbits has been obtained; (3)
that the coefficients Ay, B, and C for the radial linear-
ized betatron oséillation as obtained here and independently
by Laslett are now in satisfactory agreement; and (4) that
the frequencies obtained from inserting these into the
Laslett tables are in satisfactory agreement with the fre-
quencies denied from Illiac computations, LThe principal
recommendation arising from this work is that the section
of the tables from C = -0,5 to C = 1+ 0.5 be extended at
intervals of 0,1 if it is anticipiated that extensive

use of these tables is expected in the future. It may
alsolbe repeated that the coefficients of xg obtalined here
are believed to be more accurate than those of Laslett and
may have some utility in more precise location of fixed

points in the machine calculations.



