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ABSTRACT

The coupled equations for radial position, momentum,
and phase oscillations in a synchrotron are treated by use of
difference equationse. The effect of a radial variation in
the sccelerating radio-frequency voltage is included in the
treatment; any resultant damping of one type of oscillation
is shown necessarily to be accompanied by equal anti-damping
of oscillations of the other type. A simple treatment of -
the adiabatic variation of parameters for systems of linear

differential or difference equations is given.
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Coupling of Betatron and Phase Oscillations in a Synchrotron

The equations of motion in a synchrotron have been
treated by many authors.(l) The accelerating radiofrequency
voltage, which 1s applied across one or more narrow gaps,
is Fourier-gnalyzed and only the synchronous component consid-
ered. In addition, the separation of the motion into betatron
and synchrotron oscillations appears rather arbitrary.

We felt 1t worthwhile to treat the problem in a more direct
fashion. We consider, for simplicity, a machine in which the
accelerating rf voltage is applied across a narrow gap at
some azimuth, say € = 0. The applied voltage varies sinusoi-
dally in time, but can also vary radially. The magnetic
field BD at the fixed "equilibrium" radius RO, and the
radiofrequency Ws, will be tracked to fit an ideal particle
which is continuously accelerated so that its momentum P
(speed L and total energy ES) just mateh to give a2 circular
orbit of radius Ro at all times. Since the particles in the
actual machine are given impulses at 6 = O, ;none of the ac-
tual particles will follow the ideal circular orbit.

Except at © = 0, the equations of motion are just

those of free oscillations

2
d x , - ) P
d X 4 (1-n)x = &= (1}
a 62 o P
Ap = P-F, (1a)

)
R.Q. Twiss and N. H. Grank, RSI 20, 1 (1949)
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where x is the ratio of the radial displacement from the
equilibrium orbit to Ry, n is the field index, and p is the
momentum of the particle. We have limited ourselves to the

linear spproximation. We alsc have for the speed:

U= ré (2)
U stAr y
§ =U = SR PR s _?f_ S (1+ 4 u -x) (2a)
The radiofrequency will be tracked to equal WS = _11:{/‘_5_ S0
0

that the ideal particle always reaches the gap at the seme

phase . From 2a:
s 2

ES AP

7 Eg Pg

where Eo is the rest energy. Integrating equation 3 over ©

- 4 "
Wt = ae (1- _7-;75& #x) = de (1- + x) (3)

from 0 to 2T , the left side gives é'zf, the increase in

phase (j? for one turn:

o

th=2m£2 ae (x-—g-gl érz_) ()
3

dx

de
)/'th turn by Xy) s x.')). By integreting Equetion 1, we find their

We denote x and x! just after passing the gap on the
values after one turn around the machine, XV 1 ? X')/—i-l’

which are linear functions of x,), x}/ , and (__A~_P) "
Pg 7y
s

;(70 =()D - 90 is given by Equation L. Using for x the
ytl Y/
solution of Equation 1 for the )/'th turn, % +1 is expressi-

Pq

we must obtain an equation for the momentum. The particle

ble linesrly in terms of xy, x') , (A_ll_)v’ % . Finally,

will receive an increment of energy after it hes completed the
)/ 'th turn. The amount it then receives will depend on

the radius x)j+l at which 1t crosses the gap, and the phase
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F1° Up to linear terms in the displacement, this
; g .
energy increment is e(V0 + V! ox lh,s1n Cfb'fl where V
and Vé are the voltage and voltasge gradient at Ro. Mean-
while, the 1deal particle receives the energy increment
e Vg sin %P . Thus the change iIn the energy error
8
AE = E - Es iss:
' - = -Vl | g1 -

-e VO sinj@ (5)

Expanding the sin function (we assume small oscillations,

C)o)} - ?s << 1) and dropping products of small quantities,

we haves
(A_E)y o -(AE)y = (eV, coscf s)(% ' -973) -
- (eVé sinefs ) X 41 (5a)
c?PZ Ap
Measuringjo from fs’ and usingd E = __E;s -p—s we can

writes
2 P2

2 pl
PS AP c P
(S &2) 0 -(==F 4B = (eV_ cos¢p,) +
s PgV+l By Y o Ps ﬁg+1
]
+ (eVO sin s) Xy 41 (6)
Our discussion shows that we obtain four coupled linear differ-

ence equations for the four quantities x,) , x')/ > 2, and
Py = (-P_);/ @)

We now do the detailed problem for the ordinary synchrotron,
where n is independent of azimuth. The solutions of Equa-

tlon 1
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have the betatron frequency N1- 1 The general solution

of Equation 8 for initial conditions xy , x%/ is

x = %4- (x)’— Tg-n-"}—) cos Y1-n @ + X:n sin Il-r(19:£-)}

Setting @ = 27T, z// = 2 Y1l-n we have
x)}+1= _l'lifs_«(g Py +cos§l/x))+_sﬂxt)}(1o)‘
= {1l-n

X! Sing

o4t fe WO

{1-n mn(//x‘)-}cosq) =%y (1)

Substituting Equation 9 in Equation lj and integrating
- - 2T ( _EE P
ﬁ v j; [- S (1 n)3/] -

+_( 511; 5 x}}_i_‘l-cosq)) x'y (12)
l-n i-a

Equetions 6, 10, 11, 12 are the coupled differénce equations
describing the system. They can be simplified by the

following scale changes. Replace

{1-n x))—-—-> Xy

Py
- P
{1-n > Y

%(l-n) e 90,)

OQur set of equations becomes
Xy i cos @ )t sin) x|, ¢ (1-cos ¢ ) Py (13)
x'y;'_l' = - sinq}xy{- cos¢ x;}-i- sin(// P, ' (1)

(-E—Eg p))“_l —( o p))/ = eVl singf, Xy+1 4+

l1-n
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eV,cos -
+ —D—%(l_n) 95 f)} 1 (15)

j&y 1 _f; = sin () Xy +(l-cos ¢ ) xsj +Cy, 1y (16)

where
¢y =27 4, (1-n)3/2 —siny (17)
Y, = [ i . _Eg ]
Y 1-n E2 _/)j (172)

First we neglect the slow veriation of the coeffi-
cients in Equations 15-17, drop the subscription Cy and
replace 15 by

P)/ 51 = Hv+l T p}J b B%fl (158.')

where

eV4  sin ¢f sEs - cos_t,P
B = s—j}
2

¢2 p2 (1-n) P2 (1-n)- (18)

Both A and B are of order energy gain p.er turn/total energy
& 1, We find the eigenfrequencies and eigenvectors of
the system 13, 1, 15a, 16.
Let ’

Xy =§)\V ,xrv=§/\y : By 7\’j, (70)/ :-f'?\y (19)
where E, E 1y ﬂ','f are the components of the eigenvector

belonging to the eigenvalue N\ , and substitute in the equa-

tions. The secular matrix is
cos ¢ =N sin ¢ l-cos ¢ 0
-sin ¢/ cosl = sin Y 0
AN 0 1- A B7-
singl} l-cos ¢ C T P (20)

Since A and B are small, we can find the roots of the secular

equation by successive approximation. If we set A = B = 0,
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we find A= 1y 1, ® 11y . For the roots in the neigh-
bor hood of the double root 1, we set )= 1 + € in the
secular equation. Keeping only the lowest power of &,

A, B, we find

EC + B3 - E (A42RC') -EC' = 0 (21)
where

Cr=¢C ¢ sing = 2m ¢ (1-n)3/2 (22)
The lowest order equation wculd be '

EZ = BC' , E = $YBO" (23)
Thus the oscillations will be stable if BC'<_ 0, i.e.,
a/cos Cf? S<L 0. Substituting 23 back into 21, we find
the nexﬁ approximations?

EZ - E(AfBC') =BC' = 0

p=ALBD im*ﬁc"g } oot > 4B+

4 AtBC!
‘ 2 - (24)

or N ¥ 1afeor 4 22 -é-?exp[jﬁg" , -—*;—] (25)
From 18 and 22, °

. eV. COS E . . >
e L L
s

where<L is the synchrotron frequency. Thus the eigensolu-
tions near A= 1 correspond to synchrotron oscillations in
the limit of zero coupling. From 25 it would appear that
by choosing A< O, these oscillations could be damped exponent-
ially. However, we shall now show that the oscillations
for the other palr of eigenfrequencies will be antidamped
by the same factor. For the rcots near ét'iq}we let
M= e£i¢’(1+E). Again expanding the secular equation to

lowest terms, we find E = -A/2 4 iB/2 so that the roots are
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X?exp[ti(tpat-g—)--g—] (27)
From Equations 25 and 27 we conclude thayé radial variation
of the accelerating voltage (which leads to the term ¥ A/2)
will cause damping of one pair of oscillations and an equal
antidamping of the other péir. This effect was first dis-
cussed by Garren, et alg From 27 we see that the second
pair of roots correspond in the limit of zero coupling
to the betatron oscillations.

The components of the eigenvectors are easily found

from Equation 202

sin  1l-cos¢) o© Cos@-"N l-cos @ 0
El |eos@p-A sing O '.E’:_ -Sing  sin{ 0
l-cos C /=~ sSin ¢ C s
Jeosy ~A sing/ O - [Cosg-7 sﬁp 1-cos
-1 |-singy  cosp-d O |=Fi= [-Sin@  cosp-Lsiny
sin ¢ l-cosy /- sy l-cosy C (28)

Eveluating the determinantss:

g . B LT

(1-cos¢U)(1—l?) —sin¢}(]~7.)2 (L-N) (N8 -2 7~c0547+1)-

(A2 - as P+1)
2 Asin( (1- cos#) ) (29)
For the roots near unity we set A= 1+ E, Keeping only the

leading terms, we find

g: &5 ;¢ =Faw¥ F; 7= E-F " (30
Gs o M

’ zC' (l-cos¢/)
For E €< 1, we see that only the phase has a sizable oscilla-
tion amplitude; i.e., we have a synchrotron oscillation.
Similarly for A= efi¢)(l+E) we finds:

(2)
A.A. Garren, et al, UCRL-547, Dec., 1949.
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=fﬁ;§'=-f;ﬂ= L;i—~ﬁﬁi)Ef (31)
fj

so that the betatron oscillations are necessarily accompa-
nied by comparable changes in Qf.

We must now take mccount of the slow variation of the
coeffecients in our coupled equations. The WKB method
can be extended easlly to systems of linear differential
or difference egquations. The derivations are given in the

Appendix., Applying thils technique, we find (a) for the

roots near unity

'E?- sin ¥
—fE Xy = CV l-cos(/) (ﬁ/ Py = cr‘jc'ﬁ/ (32)

Y
g : ki = :
p,= \r“nyﬂ TT (1 1073 + ._3_2{23_) (33)

(34)
3=z -4 «Bgc'j—l

(b) for the roots fear eti

o i%’_ X;) =—L70V’ p)) ='+ 1~ cosqj % o

(?_-_ ot iVCU’IlI)\_l_ - B") (36)
Y j:]_( 2 = 2

with
E = - _%_i_iBCE (37)
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Appendix
WKB Method for systems of linear differential or
difference equations.
1. Differential Equationse.

consider the system

¥y =.§E a4 4Y; (A.1)
where the coefficlents aij are slowly varying functions of
te Let

Y, =X, ef[‘Ydt (£.2)
where x4 and y are slowly varying. Differentiating.
§1= (ii # 1¥x4)et) Y4t (A.2q)

Substituting in A.l: ‘EiJ
X4 :QE; ag4x5 = ivxXs = j (aij - ichij)xj (A.3)

J
First we neglect the time derivatives X @
4Ei(ai - iY’Jﬁ ) x,= 0 (A.L)
J 13 J
]
The Y and x; determined from this first approximation will
be denoted by Y, E; 1.4,

Zj‘(aij 1Y °fi.j) ;j =0

Thus §Tis a root of the egquation
[ayy T S, [= o - 1F1] 2@ = 0 (£.5)
J ij
where A = (aij), I is the unit matrix and I] means determi-
nant = D, The'ii are proportional to the cofactors of any
row, say the k'th:

£ f-M'kj (K.6)

G



L0 EAC-MH/MAC-1
where Mkj is the cofactor of the kj element in D(Y).

Differantiating A6,
3/ féﬁ' + Mﬁ//‘fﬁ (K.7)

Now we use this first approximation for the Ei in A.3 and
find ‘ o y ’ 5 i
Z(dy _4/57'_]269/_7 Mé/f,é g‘i)’(j'o(a.s)'

Z(d ")/5;7 57{46"%-}-/1%/1“ ])7(3 o (8.82)

The secular equation for E is:

| AVI 57/46*77*’77/7 /o (.9)

E vagp and Mkj/Mkj are small quantities; expanding to

1;weSt fier)/v};e; 2[4 ¥ /7 Mé/’f )/‘4} =0 (A.10)

The first term is zero according to Equation A.5. Solving

for E [f/f' + M‘% M/Z M (A.11)

Y=Y +E ; Substltutlng 1f? and 6 in Equatlon A2:

ﬁ,::;f’f%u eap 4 [f_xf()/*%ff{f’ ! M4 Mﬁ/ZMﬁi)]

= M [aapf Ft2 ] ey -Jiaf2 y M:,@/Z

(A 2)



-11- EAC-MH/MAC-1

Note that the factor f drops out. The result is independent
of the index k, since a change of k is equivalent to multi-
plying by a common factor f.

As examples, we treat some simple cases. (We omit
comment, but label equetions with their numbers in the

general derivetion). ,
ﬂ’,=-'£,aypj ?: ='Q,2.r ?: (1)

7'[’_ = dp: 7‘; —-":yzl?. (3)

(}T)i 44 44 )7‘1\/4/‘ “a (5)

Using the minors of the first row_in By
X,’ Q,a, Xasiy=+" "d}ﬂa.ﬂ (6)

5 - 4 - “ da
X’/’X:" '¥/4'14 ) A ')(,_2%"-( %2t Jé:u)
(

, 7)
__(4“'43:3- *"l}/)_'f,- _,h%/a»a% e

L

4_,,7(‘ -’(4' }/f%;{ﬂfkajlfﬂ:'/g:u})}’)=o (8)
)/r}/i-é’)' -(dia4’:-1*”’4’7"{)/)7{1"4”'%*: =

% : Oa (8a)

As1 ¥, —-('4)/7“.(‘6 7‘%&{\“!&411 ' 14)})13;0 )

Expanding the determinant. -

= . o @ / ﬂ‘a
L€ Cau y)*“"y(‘%' 74, +7 ;/4’::):0 (10}
o i 24
€ *[%VIWQQfV ﬂ&ﬂ] (11)
(daz Q,mwwfdf[t m"”h;(%aq%mrj Q%M i
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= a.r / v
( %Jz)/yﬁf'r“’fdf m’

%:-z?""(q”/@,ﬂ_)yﬁlw.:t@fd* {a,,2,, o
Another example

aﬁﬁ# a%;%g) %ﬁ- 2, 7 # Ry Te (1)

X’(QH /07))( ta, X,

Xy (an-«?’)x,, (3)

(CL,—A )’)(aﬂ_ "*7) ilys ¥ 2, = 0O (5)

V= -4 Tt 4—__-?5/

‘where T-la,, 22_,9( )R Cy Bgy t
X -a'm'-Ma-I; X =y VMg

Tyka %/a/).iy;l Z%JL (7)

Substitute in 3 to get
(a-ll-“" Y_""G" ma%/):z./)x/ +4 X/:. .Z'O
a. ‘. = _-_ -
2/ X/‘*().R_.z Y ~ & M:%gg_)xﬂ.;o (8a)

(6)

Expand. P 9) /V) o,
6 =4 ( ad =~ //7?2/,+(Q//-€ Y) M'JJ/MJ& (11)
6‘// ’LQ' e ) 7

Substitute for Y from 5s

2 Msy L Ma W =2 59
2 " R) ‘/f'i%(mﬁim M>
(d M;,W f()we)ay— ( )ij o7 7 Bz Q,,~Qza (1 J-—mmﬂ

EZ;7>4 2 My,

1 II 1

:-i /V}ZI)‘{L
(@{1 M a)
(12)
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2
it d-—z—:;>0, the extra term in the exponent contributes only

i
a phase change. If 294 = 8555 the extra term drops out.
R e A
- T2
so if all = 850 a - -E— = = a12a21
Xy Loz F iy, I oy
Ay Haz F Ay -
From 5 andb M i 2 &
/\,7_?; ﬂ’/a
Il a = a
5 i | ’
22 MJ;L i Q'2'),/2
M, &

II, Difference Equations.

Consider a system of difference equations

AR P v P (a11)
where }) denotes the lattice point and the superscripts
distinguish the variables. The 8y) 13 are slowly varying

functions of_l). Let

gl % T (e )e) (521)

Substitute in 1': » IV
£ ! +-’£)i)/>;¥))f/ - ;(JJ 2:22: 5%;}7;<jz (a31)
(/f.«))/,)(xyﬁ—X") Zﬂ,?xy —_«,/7("2/&‘7 ««—/5/({37&;

Neglect the first differences.{

ZZ (4ﬁ_4)§f7)715'—_0 (8 1)

Cell the root ?; and the minors kj
ﬁy‘d—%v I/ =g (&5 1)
7 - d
’ A Mp ”
7(57),-}: -_7(5 e /\7“4-/ _/\/f (A,E)')

A
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(A7)

Substitute Y and A7!' on the left of A%a"
Z[M {4 f(/»dﬁ)(w?)}fjﬂ o (48")

)/” - )/» r €,
/@‘7_{&})7) + L€y +(//x/;)(/‘7‘4,

))

//’9}57/6“&9,)

Ey and fﬂg#%z;L— are small quantltles Expanding to first
order and using A5 'z L 7.
Z[ € *(”"}/”) )]M < (A101)
{
-V M’?-/‘/”? Z
6)}:4(/:&-«%;) % —W M,,/iz Mj?’ (TS

y=yp+€
/”/»): s ¥g» (/**‘7)(’ Z”w g M%ﬂﬂ)
“Nv [T(w‘)@]["r(/ //w% “‘12'

Agein, we teke an example:

1 Lz _gl2 g2
Ta = Ty

2,4 =32 a21 7 (1)
q 1 % waliyd

((1e 1Y),)%5., =X}, alexs

2 2 = 21 1 '
(1 + 17,)X8,, -X§ = a5 X (31)

~
2
-1y, X1, -al2 X5
e | - < 1
all X5 - 1Y, X5, (3a')

f 1
(14 1v, 2(xL, , -x} )

1]

2 v
24 17, 2065, x3 )
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Neglecting first differences?

b tepad

/ _ ‘2 : (AS1)
vf:) ke 3 g 4:%_,,
XU )/» v

Choose the factor f so that

S 7 / /
3 . ; 4 /‘-_ /4
i e - //,w __/:_\:%1 G "%
_ / &/2 o &Iﬂv &la’ (?')
7{)) “p P 5

Similarly ~ 2/

(61)

24
2/

Substitute {'om 5' and 7' on the 1eft side of Ja':

~(2), * /,L/} [w*m })?{ oy

ag Ay —(iko H{zhor1 3 1o 4 fwa F j Ja
)/ o €, 81)

Il

Expanding the determinant, a/ 2/
- .-( a”- o p Ly 'ﬁy)
€y (/ o )7» ( + PYY
J—' »
/ﬂ){,-/u/p to € (111)

- (7 f_-cy)(/ # d.\)ﬂ _ﬁ,a y+/ _JH})

’T(/u}/)-[’)ﬁjuuyw)] 7Y

Omittlng constent factors,

- i (3 “H(Wy)
?;=( y/a. &% %(/f«t)/z

(121)



