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The hardware and software problems for an effective image processing system are described, with a
real time high speed system solution as the goal. The discriminating power of the algorithms has
been tested in a simulation made on the PIQUANT film scanner and is between 67 and 92% depending

on the definition of accuracy. The results are expected to be of value to firms designing and build-
ing commercial equipment and to prospective purchasers of it.

To construct a system which will automatically
perform pattern recognition requires both hard-
ware and software to accomplish a large number
of separate tasks. An intelligent person is
taught or learns by himself to optimise the
performance of each of these tasks. Equipment has
over the years been invented and built to help
him with each. The resulting people-oriented
coptimal solutions may well not be optimal for an
automatic system and a great deal of research
into each separate task will need to be done
before a wachine will be working efficiently.
Until then ad hoc solutions which copy the
operator will be the rule, particularly when it
is possible to make a machine mimic a person's
actions.

It is therefore of interest to review several of
these tasks involved in performing a white cell

differential count, and indicate the present sta-
tus of available solutions for an automatic sys-

tem, including our own. Results of a simulation ex-

periment using PIQUANT (Neurath[5]) will be pre-
sented.

(1) Most samples for differential white blood
cell counts in a typical U.S. hospital are
obtained as part of one or two 10 cc vacutalners
of blood drawn by a special team of technicians
for all kinds of blood tests, An order to draw
blood must initiate the process, it must be sche-
duled, "and the sample with the patient's name and
number and the doctor who ordered it must be
identified. The sample is then stored for a
shorter or longer time at-a temperature which is
uncontrolled. Possibilities exist for coordinating
the scheduling, paperwork and labelling by the
use of a computer system linked to the cell scan=
ning system.

(2) Using a drop of blood from this sample,after
suitable agitation a so-called "smear" is made
in the laboratory. It is necessary to produce a

single laver of "undistorted" cells on a micro-
scope slide. The shape of red cells and of

white cells can be used to check on the success
of this process. A "smear" can be made by hand,
in which case not all areas of the slide will
meet the above criteria. A person can,however,
select "good" areas and employ sampling stra-
tegies to minimize the chances that the good
areas will have an unrepresentative differential
count. A slide "spinner" machine, using centri-
fugal forces produced by rotating the

slide at a given angular velocity for a given
time under suction,represents a considerable
improvement over the reproducibility of the

hand process. The cells which first touch the
stationary slide when the drop of blood settles
on its central =2 cm diameter circle tend to
stick; the remaining cells are spun off with
just enough force so as to (i) remove them all
from that area and (ii) keep the monolayer of
"sticking" cells from being distorted. Because
of the differences in the number of cells/cc and
of the different surface properties of blood
samples, automatic feedback during the spinning
process, so as to change its time or velocity,

is required to meet these criteria. Alternative-
ly, several preparations under different spin-
ning parameters may be made, until one satisfac-
tory by visual inspection is produced. The LARC
system of Corning Glass Co. [1] has used the
first approach with a special spinner,while our
hospital uses the second method with a Platt
machine. A machine recognition system works best
if no red cells touch white cells, because other~
wise additional processing time is needed

for isolation. A person has no such problem. The
best trade-off between obtaining the proper cell
spacing on the slide by preparation, vs. separa-
ting touching cells through suitable image ana-
lysis, remains to be explored. The spinning
machines do not space all cells properly.




(3)Staining of the cells helps to make them more
easily visible in the transmission light micro-
scope and the resulting color differences are
very useful for cell identification. A person
can calibrate his use of colors by the appear-
ance of easily recognized cells and adapt to
large differences in stains. He also adapts to
differences in light intensity. A machine is
more easily programmed if color and intensity
values are either absolute or at least have a
constant, linear relationship to a single
reference value. To meet this requirement
staining should be controlled and a special
machine using special chemicals such as the one
proposed for the LARC system [1l] may be neces-
sary. Performance differences for either people
or machines using conventional vs. such control-
led staining have not been reported. Our
laboratory has used the Ames machine, and we
have found that for satisfactory machine results
it will need to be kept cleaner than is custom-
ary in routine visual ‘work.

(4) The stained dried slide must be identified
with a code referring to the patient. Ideally

the machine should be able to read that code. It
must then be inserted in a microscope. In spite
of the intense competition between many major
microscope manufacturers who produce new models
every few vears - square shaped ones are "in"
presently ~ not one of them offers an automatic
slide changer and coder, not even a stage which
holds and indexes the slide by its front surface
which could help keep it in better focus and
would at least eliminate the need for refocussing
because of differences in slide thicknesses. Our
hardware is designed to meet these problems part-
way, with a slide changer in mind, designed on
paper, but not yet built.

(5) The slide must be moved to find the cells,
There is approximately one 15y diameter cell in
each 200 x 200 u area and it needs to be located
approximately within 4u. This means scanning
twenty five to fifty 8u strips of 200u length
per cell. If one cell is to be found in 1/5
second,an gu wide strip of 25,000u length must

be scanned per second. This can be done by
moving the slide at that rate or by performing
several (n) 8u scans optically or electronically,
while the slide moves at 1/n the rate. Young [2]
uses a television camera which stores a 100u x
100u image at one scan. LARC uses a rotating
mirror. Data to decide between such options are
not available. Our own system was designed to
perform the single strip high speed option with

a servo motor driven,light weight slide holder.
As yet it is only performing stably up to 1/2

the design speed. Commercial stepping-motoxr
driven stages have a great deal of inertia and
take a good part of a second to stop. However, if
the cell detector scans ahead and stops the slide
gradually, this limitation can be overcome. This
means steering it so that the cell will be in the
center of the final scanning area when the slide
stops.

(6) Next,one must find the position of the white
cells. This is relatively easily accomplished,
because in yellow light the cell nuclei are
almost the only dark objects which are several
microns in diameter.A coarse threshold detector
is adequate although its performance is improved
1f the average light intensity of the slide area
ig used as a reference.

We are using a photo diode and hard~wired
circuitry independent of the computer to detect
the white cells and stop. Repeated stops on the
same cell after adjacent scans must be prevented.
It is not essential that every cell be detected,
but in that case there must be no preferential
skipping of certain types of cells. Focussing
is not too critical for cell detection. Whether
a small central square or a narrow long strip
should be scanned depends on the method of pre-
paration and needs to be investigated. The
main problem with cell finding is the accuracy
of centering of the cell because this deter-
mines the area which must be scanned in the end.

(7) Before scanning the cell itself, it must be
focussed. Several schemes to focus an image
exist, but over a limited area of the slide it
may be possible to eliminate refocussing on the
basis of the image by checking the focus in the
corners of the scan area and driving the focus
axis linearly, proportional to AX and AY from one
corner. We still have to test this approach.
The criticality of the focus depends on the
resolution desired in the final scan. The focus
tolerance is of the same order of magnitude as
the distance to be resolved.

(8) At this point, having a well~stained focus-
sed cell in the center of the microscope field,
one 1s ready to capture the information in its
image and to transfer all or part of it to the
computer for analysis. A number of different
scanning schemes exist. A CRT or other flying
spot scanner is one option [3]. It operates
close to being photon limited for signal to
noise ratio, i1f the point scanned is small and

if 106 points or more per second must be
examined. Take for example, 32,000 points spaced
0.25u apart, which would make up a 180 x 180
raster about 45y on a side. If these 32,000
points are to be scanned in 1/30 of a second, it
presents a serious challenge to existing techno-
logy. If the raster size is increased to 0.5u
and therefore the number of points is decreased
by a factor of 4, the time per point and its size
can be increased proportionately, and this signal~
noise problem can be reduced. An alternative
which eliminates this photon noise limit is to
use an integrating scanner. A TV camera is an
example of such an integrator. It adds up the
light received on its faceplate for a time equal
to the scan time of all points, thus gaining a
factor of about 107. Its disadvantages are lag
(requiring at least 2 scans per frame), shading,
high band width{making it susceptible to external
electrical noise),and faceplate imperfections.
Linear arrays appear to offer an attractive




alternative, but at the moment TV systems,
perhaps because of their avallability, are more
popular. Because color is important for WBC
differentiation, scanning must be done in
several colors. This requires the use of 2 or
more color filters. Either narrow band inter~
ference filters(as used by I. Young(2] at MIT)or
wider band Wratten filters may be used. For high
speed data acquisition with a TV system,where
each frame scan time counts,the filter should be
in focus and moved across the image in synchron-
ism with the scan motion. The focus of the
microscope objective must also be adjusted for
the different wave lengths. Visually at least,
microscope optics are notably not achromatic,

(9) To digitize the image and load the computer
memory with the resulting data can present a pro-
blem when standard TV rates are used. One half of
525 lines are usually scanned in 1/60 of a
second. If the central 180 lines of the 262
lines are used to give- 32,000 points equally
spaced in X and Y,the rate per point is 60 x
(262)2 or almost 4 pegahertz. A to D conversion
at this rate with sufficient accuracy and
memory access at half this rate, assuming packing
2 points to a computer word,are possible, but
only marginally. The A to D converter must
digitize to 10 bits accuracy if histograms of the
image at 64 levels (6 bits) are not to give
spurious minima or maxima of more than about
+3% (one bit in 5). Solutions are to decrease the
resolution or to slow the TV scan rate. We have
chosen the second, providing up to 256 x 256
raster points (84,000), but extending the scan
time to 1/15 second, while digitizing to 6 bits
and including an opticnal log conversion of the
intensity values. The price is a degree of
flicker in the monitor,and the TV system modi-
fications which are required to slow it down.
Use of scan converters would offer a convenient
alternative if their limited grey scale resolu-
tion could be improved. With them any standard
TV system could be used. Consideration of a
monitor enters into these decisions, particularly
if the system is to be flexible for research
purposes and a light pen may be desired -~ or if
a high quality TV picture must be presented
to the operator. A second camera could be pro=
vided for this purpose, which would, however,
introduce a problem of alignment and of cost.

All TV systems suffer from non-uniform response
across the face plate. To reduce this to 1/64 of
the maximum signal requires considerable hard-
ware effort, as in the IMANCO "cuantimet" [4] or
a time and memory consuming software correction
of every point. It may of course not be necessary
to make this correction if only relatively local
contrast in the image must be measured accurately
for purposes of cell recognition. A really
informed choice cannot be made until the rela-
tionship between the desired accuracy and the
spatial, grey scale and color resolution

needed to meet it have been thoroughly tested.

(10) The computer selection is largely
influenced by the economics of the problem,
With 32k, 16 bit machines now selling for less
than $10,000 on a single order and going down
in price, it probably makes no sense to use
anything smaller. Beyond that it should perhaps
be pointed out that where fine scale texture is
important,computations will be more demanding.

The LARC system uses a PDP~8E. Our research
system interfaces the microscope and scanner to
a Data General NOVA 840 with 128K ot memory,
disks and a 9 track tape. With that size machine
we can investigate almost all aspects of the
image processing algorithms without

resorting to machine language programming. If
eventually it turns out that for some purpose
very lengthy algorithms are absolutely necessary,
hardware preprocessing, possibly using holo-
graphic techniques,might eventually be an
inexpensive alternative to digital computations
in routine use. Computers too are still on an
increasing performance/price ratio curve so

that future systems may well be most economical .
with a large computer and fewer other special
components.

(11) Finally any such system requires operator
interaction. The arrangement of switches,
keyboards, alphanumeric displays, and hard copy
output, video monitors, microscope controls, etc.
can greatly influence the usefulness of any
system. In our own system we have so far been
concerned less with convenience than with having
avallable a variety of controls and options: X,

Y and Z stage controls, a TV monitor, a CRT with
light pen, function buttons, a keyboard and CRT
computer terminal and a fast line printer for
hard copy output and as a means of recording ton-
al images of the cells.These options allow us to
try any scheme. In the hematology laboratory in
which a Coulter counter is used, a printer using
the same card to record the differential might
be a convenient first step. A color TV,if it were
really stable and true to color ,would make
observation easier. Keys and buttons should
eventually be reduced to a minimum. The computer
classification should probably be displayed on
the cell monitor screen with the cell.

(12) Isolation. Once the picture has been digi=-
tized the cell must be isolated from the back-
ground and a nucleus must be found within the
cell. The usual way to do this is to construct a
histogram ot the density values (Prewitt[7]),
which ideally has three peaks, corresponding to
points in the background, cytoplasm and nucleus,
respectively. The density values corresponding
to the two minima in such a histogram can then
be used as threshold values to separate the cyto-
plasm from the background and from the nucleus -
In using this procedure we have
become aware of a few inherent shortcomings in
the isolation of the cell (cytoplasm from back-
ground) as well as in the isolation of the
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nucleus.

A.Igsolation of the cell. In a standard peri-
pheral blood smear there are many instances
where one or more red cells touch the white cell
under consideration. The boundary as detected by
the method referred to above will include the
touching red cells. This may be corrected by
either detecting points of maximum concavity in
the boundary and then replacing the segment
between suitable pairs of such concavities by
straight lines, or by making use of the differ-
ence in color between the red cell and white cell
cytoplasm.

Tests have been done on a geometrical cell iso-
lJation approach, consisting of fitting an
ellipse (EL) through a number of boundary points,
detected as points of maximum gradient along a
radius vector. The ellipse E2 definéd by the
five bhoundary points closest to El is then taken
4% the cell boundary. This procedure has been
tasted on a few cases with touching red cells
and the results look promising. An attractive
feature of this method in contrast to the edge
following procedure is that the closure of the
boundary requires no special programns.

In a smear of peripheral blood instances of two

white cells touching each other will be rare and
a simple test on the shape of the area enclosed

by the boundary will detect such cases which can
then be rejected.

An additional problem that wmay arise with the
avtomatic cell detecting instrument is that the
cell may not be centered in the digitized frame
s0 that part of it may disappear beyond the
frame edges.

B. Isolation of the nucleus. It is our belief
that the detection of the nuclear boundary is
the most difficult, yet the most critical part
of the software. Using density histograms and
boundary following techniques, the isclation of
the nucleus is straightforward in most cases.
Sometimes, however, the minimum corresponding to
the nuclear boundary is ill defined and there
are cases where the high density peak in the
histogram even when it 1s separated by a well
does not correspond to the morphological nucleus.
As a result, the distributions of all parameters
extracted from the cytoplasm and from the nucleus
will be broadened for many cell types, resulting
in a bhigh confusion rate.

An additional method used to help isolate the
nucleus is that of an edge follower, which cor-
relates the boundary with points of maximum
gradient in the density distribution, or similare
ly, the use of a Laplaclan (see Gallus' [g]). In
some cell types, e.g. in basophils, the morpho-
logical nucleus is often completely masked by

the presence of heavy granules.

A way to overcome this difficulty is to combine

logical decisions and statistical decisions in
one classification scheme. Before nuclear
detection is attempted one should differentiate
such cells as basophils on the basis of their
heavy granularity. Only the remaining cells
would then proceed to the stage of nuclear iso-
lation.

After the boundaries have thus been defined and
traced,they are stored in a convenient way,
usually in the form of a segment list (see
Rutovitz [9]). In this way the different parts
of the cell (i.e. cytoplasm and nucleus) are
easily accessible for the parameter extraction.

(13) Paprameter extraction. The parameters
extracted from the image after preprocessing as
described above may be subdivided in four
categories (Neurath [g]):

i) optical density parameters

1i) geometrical parameters

iii) color parameters

iv) texture parameters

i. Examples of parameters in this class are
average and integrated optical densities of the
cell constituents as seen through a particular
filter, Also included are parameters describing
contrast between the cell constitutents. These
parameters can be estimated from the histograms
but -they are more accurately determined after
boundary tracing has been completed.

ii. The geometrical parameters describe e.g. the
shape of the nucleus, the area of the nucleus,
the area of the whole cell, the ratio of these
last two, etc. They are easily obtainable using
a segment list description of the cell constitu~
ents.

iii. For the extraction of the color parameters
one relates the densities of points in one color
image to the densities of the corresponding
points in the second color image.

One can either derive parameters from a
comparison of the histograms of the images as
seen through two color filters or from a two-di-
mensional plot, mapping all points in the origi-
nal image onto a scatter diagram displaying one
filter density versus the other,

If one had three color images available one
could go a step further and compute average chro-
maticity coordinates of the cell constituents,as
first described by Young[2]. Our experience in-
dicates, however, that with two suitably chosen
filters (Wratten 44 and 22) a third filter does
not contribute significantly to the determination
of the colors arising in this application
(Gelsema [101). It may be emphasized here that
parameters of color (especially the color of the
cytoplasm) are amongst the most important in
terms of discriminating power.



iv. Texture describes the fine structure of the
density pattern in the image. Texture parameters
may be extracted in a global way, e.g. by study-
ing the standard deviations of the density his~
togram peaks, corresponding to the cell consti-
tuents under consideration. This, however, does
not lead to a knowledge of how the different
density values are distributed topologically in
the image. Moreover, it is often not possible to
correlate these peaks with the cell constituents.

Procedures to evaluate texture in a more precise
way tend to be very time consuming. On the other
hand, granularity is often the discriminating
feature in the separation of certain cell types.
Although the texture parameters used by us (see
Vastola [12] and Gelsema [1l] so far rank low

in discriminating power, it is felt that this
could be improved upon. In particular a hybrid
scheme combining logical and statistical
decisions may give texture parameters the
greater importance which they have in the judge-
ment of hematologists. Once such parameters are
well defined, theilr lengthy computation could be
eliminated by constructing specific texture
analysis hardware. Texture is one of the areas
of feature extraction where the scope for exper-
imentation and improvements is largest.

Summarizing these comments about parameters, we
want to emphasize once more that all parameters
relating to the cell constituents depend heavily
on the way in which the boundaries between these
constituents have been drawn. This makes the
nuclear boundary tracing algorithm a necessary
and worthwhile object for further study.

(14) Classification. Before classification can
be attempted, the best discriminating parameters
must be selected. This is done with a stepwise
procedure which, using a pooled covariance ma-
trix, provides us with a ranking of the para-
meters according to their linear discriminatory
power. This ranking is in general dependent on
the cell types under consideration, which is one
of the major weaknesses of this classification
scheme. If for instance one wants to separate
promyelocytes from myelocytes effectively, one
should not attempt to do so using the set of
parameters that separate all 17 classes most
effectively.

This is another reason why a hybrid decision
scheme combining logic and statistics seems most
attractive. Easily recognisable types should be
separated at an earlier stage, leaving the more
subtle differences to be decided upon by a sta-
tistical procedure, using selected parameters
that best reflect these 'differences. The best 20
out of a total of 70 parameters have been used

in a discriminant analysis. In contrast to pre-
vious work, using a quadratic classifier assum-
ing multivariate normal probability distributions
(Gelsema [11]) we now use a linearized version of
this classifier, which further assumes equal co-
variance matrices for each class.

Our experience indicates that on the average
the two classifiers give comparable results.
We find, however, that the linear classifier
is more stable.

Testing and training may be done on the same
sample or one may use different samples for the
two phases. Using the same sample is likely to
lead to misleading results, especially when the
sample sizes of diftrerent cell types are small.
The results shown in the next section have all
been obtained by training and testing on
different cell samples, each sample containing
half of the total number of cells available for
each type.

RESULTS

The results presented in this section have been
obtained in a simulation experiment, using
PIQUANT (Neurath{6]). Prior to doing the analy-
sis the reconstructed cell images were judged
in terms of the quality of the cellular and
nuclear boundaries and the cases showing
serious disagreement with the real boundaries
were eliminated from both the training set and
the testing set. In this way 98 of a total of
1494 cells were removed. The computed classifi-
cation of the remaining cells in the testing
set were compared with the hematologist's
classification and the global results are given
in the following tables.

In each case the computer classification was
obtained using the 20 best discriminating
parameters. The best five of these are: cyto-
plasm color, cell area, a measure of high den~
sity red material in the cell, ratio of nuclear
to cell area, nucleus color. The first parameter
involving texture is ranked eighth.

As mentioned previocusly, all quoted figures

were obtained using a linear discriminant anal-
ysis. Overall classification results using a
quadratic discriminant function differed from

the linear results by no more than 2% in any cast
The confusion matrix in table 1 shows the result
obtained when classifying the 5 normal cell types
plus bands. The testing set contains 247 cells.
The overall rate of correct classification is
91.5%. :

Table 1

COMPUTED CLASSIFICATION

BAS EOS LYM MON NEU BAN %

BASophils 48 0 0 1 1 0 96

EOSinophils 0 38 0 0 0 0 100

LYMphocytes 0 0 39 3 0 0 93

MONocytes 0 0 0 38 0 0 100

NEUtrophils 1 0 0 0 26 8 74

BANds 1 0 0 0 6 37 84
% 96 100 100 90 73 82



Table 2

COMPUTED CLASSIFICATION

BAS EOS LYM MON NEU BAN MET MYC PRO MYB LYB LYA LYI NRA NRR NRC PLA %

B2Sophils
BEOSinophils
LYMphocytes
MONocytes
NEUtrophils
BANds
METamyelo
MYeloCytes
PROmyelo
MYeloBlasts
LYmphoBlasts
L¥Ymph (Atyp)
LYmph (Immuno)
Nucl.Reds (Aa)
Nucl.Reds (B)
Nucl.Reds (C)
PLAsmas

% 80 100

1 0 1
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Relating these results to those expected on

a smear of “normal" composition (65% neutro-
phils, 27% lymphocytes, 5% monocytes, 2% eosin-
ophils, 1% basophils), and ignoring the neutro-
phil-band confusion, it can be seen that only in
the case of basophils are the errors in the
computed classification outside the statistical
errors (square root of the number of cells of
each type expected in a sample of 100 cells).

Table 2 shows the result of the classification
of immature as well as normal cells into 17
cell types. The testing set contains a total of
648 cells. The overall correct classification
rate 1s 67.3%. It is interesting to note that
if one accepts the cells in the extended diago-
nal drawn in table 2 as correct classifications,
i.e. if two subseguent stages in the evolution
of a given cell type are considered as indis-
tinguishable, the rate of correct classification
rises to 77.3%. Thus, 30% of the misclassified
cells are found within the extended diagonal.

Table 3

COMPUTED CLASSIFICATION

BAS EOS LYM MON NEU BAN IMM %

BASophils 40 0 1 0 1 0 8 80
EOSinophils 0 38 0 0 0 0 0 100
LYMphocytes 1 0 31 4 0 0 6 74
MONocytes o 0 0 29 0 0 9 76
NEUtrophils 0 0 0 0 25 8 2 71
BANds o] 0 0 0 6 32 6 73
IMMatures 9 0 3 21 2 2 364 91
% 80 100 89 54 73 76 092

Generalizing even more, if one collects all
immature cell types (except bands) in table 2

in one single category, the confusion matrix
reduces to the one shown in table 3. The rate of
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correct classification as obtained from this
table is 86.3%. The rate of false negatives
(immature cells classifying as normal cells) is
8.7% and the false positive rate (normal cells
classifying as immature ones) is 12.5%.

As a reference, according to the Poisson dis-
tribution, the probabilities of not detecting
an event with a frequency of occurrence of 0.02
and 0.03 in a sample of 100 are 0.14 and 0.05,

respectively. Therefore, if one analyzes a sam-—
ple of 100 cells, the false negative rate of
8.7% is comparable to the Poisson errors, if
between 2 and 3 abnormal cells are present.

The false positive rate of 12.5% in the sample
studied here drops to 9.1% if related to a
normal sample.

CONCLUSIONS

In our view, a practical differential white cell
counting machine must, at least, reliably dis-~
tinguish the five normal cell types and flag
abnormals to be reviewed by an operator in an
interactive system.

From the results of our simulation experiment we
can draw the following conclusions:

i. The performance of a system based on our
methods would be adequate for distinguighing
normal cell types.

ii. If one includes abnormal cells such a sy s=
tem would be capable of recognizing them as such.
However, the false positive rate of 12.5% would
be too high for an interactive system. Even
working on a sample consisting largely of
"normal" smears, too much time would be spent

in reviewing normal cells.

Since even a minimal system must handle abnor—
mal cells in the manner indicated above, we must



aim to reduce the false positive rate to the
order of a few percent.

An ideal system should classify the different
types of abnormal cells as reliably as normals,
and thus the discrimination among the abnormal
types must be improved.

We feel that significant improvements will
result from: 1) increased accuracy in nuclear
isolation, 2) introduction of hierarchical
classification schemes, 3) introduction of
more specific parameters to separate pairs of
classes for which differences are often subtle.

Our experience indicates that the consistency of
human classification in defining the training
set must be carefully checked, as Bacus |13]

has also shown. For example, we have found
significant disagreements between hematologists
in distinguishing monocytes and metamyelocyltes,
and this is directly related to the false
positive rate.

The entrance of commercial companies into the
differential white blood cell counter field
makes it look as if the moment has come in which
an almost 15 year effort in biomedical computer
pattern recognition is coming to fruition. It
can be expected that the introduction of
machines for image analysis in the biomedical
field will save time and costs, and equal human
performance, particularly as computer hardware
suited to such tasks is further developed. It
should also lead to a more systematic examina-
tion of the results and their significance. For
instance, the statistical meaning of a differen-
tial which differs from certain norms could be
calculated routinely as part of the machine's
program. Finally, new cell classes may well
come to be defined by quantitative criteria not
used by people. Such cell typing could increase
the diagnostic usefulness of the differential
white blood cell count.
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