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1. INTRODUCTION

The complete clinical examination of a blood sample comprises a number of
tests of which one is the white blood cell differential count. This test consists
of examining a suitably prepared blood smear under the microscope to establish the
percentage of occurrence of thé five normal'types of white cell and to see whether

any abnormal or immature cells are present. Typical values would be:

Neutrophils  (including band cells) 65%

Lymphocytes 27%
Monocytes 5%
Fosinophils 2%
Basophils 1%

A complete description of the various hematological tests has been given by Wintrobe

(ef (11)).

When done by a trained technician, the average time required to find and
classify the customary 100 cells is in the region of ten minutes. A large hospital,
with some 2000 beds, would do in the region of 100.000 differentisl counts per yea
and thus need several technicians for this purpose alone. Given the repetitive
nature of such work and the importance of recognising the occasional aﬂomalLes,
maintaining a uniformly high standard of work is difficult and automation would be

desiradble if the required level of performance could be reached.

Although other approaches are being tried too by Kamentsky (cf (7)) and

Saunders (cf(10)), publications by Bacus (cf(2)), Ingram (cf (5)), Prewitt (cf (9))

and Young (ecf (11)) sugzest that mest of “he work con suscmatis white blood cell
recognition has been based on the "pattern reccgnition" spproszch, medning: <the
analysis by digital conputer of a digitised grey-:scale inage. This is not surprising

in that many of the features thought to be used by the eye can in principle be

extracted by the computer from such an image and on the other hand there are not many



and which would also reveal the anomalies which may occur.

Of the work published to date, only the groups of Bacus (cf (2)) and
Ingram (cf (5)) have presented results based on as many as a thousand cells and
although some manufacturers have announced their intention to market scanners suitable
for routine use, it has still to be demonstrated that one can do as well as a compet-—

ant technician. This is particularly true with regard to recognising immature cells.

The work described in the present paper has been done in collaboration with
the group of Neurath at the New England Medical Center Hospitals (NEMCH) in Boston
who are engaged in a project aimed &t the development of an instrument suitable for
routine use. From NEMCH we have received cell images digitised using their existing
CRT scanner PIQUANT which has been described by Neurath (cf (8)). The results
presented here have been obtained by analysing this data using the CDC 6600/6500
system at CERN. o, A ' '

2, DATA ACQUISITION

For normal use, a blood smear is prepared by placing a drop of blood.on a
glass microscope slide and then smearing it out into a thin layer by pressing another
slide over it. It is then stained either by hand or with an automatic staining
machine using Wright's stain or an equivalent. More uniform preparations can be
obtained by using a "slide-spinner'" to spread out the drop of blood but these are
not in general use. Most of the cells present are red cells since they are about one
thousand times more numerous than the white ones. The white cells seldom overlap
one another but do sometimes appear in contact with one or more red cells.‘ In a good

preparation this is relatively rare.

Staining gives the white cell nucleus a bluish-purple appearance which varies
somewhat with cell type. The outer part of the cell (or cytoplasm) stains differently
and less heavily and may range from blue-grey through blue to pink in colour. This
colouring serves to define the boundaries of both the cell and the nucleus as well as
providing important information about the cell type (figures la and 1b). Further in-
formation about the cell can gome from the presence of granules in the cytoplasm which
stain differently and thus stand out clearly. Also in the nucleus, in addition to its
variation in shape, some internal structure or texture is usually visible and this
too contributes to the recognition process. Even from this very brief description it
is easy to see that recognition by eye uses some combination of features such as cell
area, nuclear area,‘nuclear shape, contrast between nucleus and cytoplasm, cytoplasm
colour, nuclear colour, nuclear texture, presence and colour of granules, etc. In

the present work one tries to evaluate similar features with the computer and



to classify a sample of cells using the values obtained.

The PIQUANT scanner measures a 35 mm photograph rather than operating
directly through a microscope. Thus each cell is first photographed at high magni-
fication using coloured filters. The resulting black-and-white negatives (one for
each filter) are then scanned in turn using PIQUANT., In this way the optical density
of the images is digitised into 64 levels over an area which on the slide corres-
ponds to 96 x 64 microns using a nominal resolution of 0.1 microns. Though such a
procedure would be unsuitable for routine use, for the purpose of acquiring data
with which to develop the recognition programs it is entirely adequate and in fact
produces higher quality data than one would have from a scanner optimised to this

specific application.

The absorption spectra of the cells after stainiﬁg do not show a great
deal of structure. For the present data two coloured filters (Kodak 4k and 22)
have been used corresponding to the regions hyo - 550 nm and 560 - 700 nm respectiv-
ely. Other tests have indicated that the red cells can be more reliably rejected by
using an additional blue filter for the region 400 - 470 nm.(Kodak LT7B) but it is

not yet clear whether this additional complication is necessary when one uses well-

prepared slides. Moreover the results of Gelsema (cf (L)) suggest that the add-
itional filter does not contribute much to the colour measurement of the areas

within the cell.

3. PREPROCESSING

The raw data for a cell consists of two sequences Of grey-scale values
(one for each filter image). The work described in the following sections is done
on a (3 x 3) reduced image,.i.e. only one point out of 9 in the original raster is
used. The nominal resolution is therefore 0.3 um and a typical cell image has
60x60 raster points. Fig.lc is a computer printout of a cell image, where the grey-

scale information is represented by 16 different printer characters.

The purpose of preprocessing i1s to distinguish three areas of interest in
such a picture, i.e. background, cytoplasm and nucleus. Also, any touching
red cells should be removed from the white cell. They must not be included in the
background either, because, as will be seen later, the background density is used as

a reference for the colour determination.

In order to achieve this, & grey—-scele histogram is consiructed, in which
the frequency of occurrence of all density values is plotted versus the density.

Fig.1ld shows such a histogram for the cell in fig.lc.

Ideally such a histogram has three peaks, roughly corresponding to the
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a and b: eosinophil as registered on black and white film through a red
and a green filter, respectively. c¢: computer print—out of the red image
of the same cell with 16 levels of grey. The horizontal dimension is
slightly expanded with respect to the vertical one. d: histogram showing
the number of points in the field of fig. lc with a given density versus
the density. From this histogram threshold values for the separation

into background, cytoplasm and nucleus are obtained. e: boundaries of
cytoplasm and nucleus as obtained in the preprocessing phase.
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three areas mentioned above. The background density value dpg is defined as the
densify corresponding to the maximum in the first peak. The threshold value for the
cytoplasm is then defined as the integer value nearest to dpg + 3. This has proved

to be a simple and adequate estimate for a large number of cells.

The threshold value for the nucleus is more diffiqult to obtain, because
to some extent the shape of the right hand side of the grey-scale histogram depends
on the éell type. For a histogrém as in fig.ld, where there is a clear minimum
between the peaks corresponding to cytoplasm and nucleus a simple and stable estimate
for the threshold level is the integer value nearest to the value for which the
frequency is minimum. This is stable in that if an error of one unit in the thres-
hold value occurs, i1t will cause little change to the boundaries computed. The sit-
uation is more difficult in cases where the nuclear peak is only a shoulder on the
cytoplasm peak or when the cytoplasm peak degeneratés to- a shoulder on the nuclear
peak. It was therefore decided to determine the nuclear threshold not from the grey-
scale histogram but from its derivative. The threshold level is then set at the
integer value nearest to the minimum in the derivative curve, (having first excluded
that due to.the maximum of the histogram itself). It was shown on a large sample of
cells that this is an adequate estimate. In "shoulder cases" the determirnation is or
course more critical, since a small error in the threshold value may have a large

effect when applied to the image.

The procedure described above having been applied to both histograms of
a cell, the cytoplasm threshold on the red image tc is then taken as the final one
and the nuclear threshold on whichever image gives the smallest nuclear area, tn,

is retained, this yielding the best approximation to the real morphological nucleus.

A process of contour following is then initiated on the red picture to
locate +the cell boundary. This is done on the red image because there the red cells
are more transparent than on the green image and are therefore less likely to distort
the boundary. The process consists of: starting at a given point with density z“tc

on the cell boundary, moving to a neighbouring point on the scan raster with:
1) density Z_tc and

ii) colour angle greater than a preset minimum value, keeping all neighbouring
points with density < tc to the left (our units of colour measurement are

defined in the next section).

This process is repeated until one returns to the original starting point; in the
area enclosed by the cell contour a search for nuclear material (points with density
3_tn on the appropriate image) is then initiated and when one has found a nuciear

point/a nuclear contour is traced in the same way as described above. One must then
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make sure that all nuclear maﬁerial is enclosed by the contour as some cells may
have nuclei consisting of apparently distinct fragments. Once all nuclear fragmenis
have been found and contoured in this way, the areas corresponding to cytoplasm and
nucleus are easily obtained in the form of segment tables, i.e. tables giving the
starting point and end point of the area on each scanline. In this form the areas
of interest are in'the most suitable form for the process of feature extraction.

The cell and nuclear contours for the cell in fig.lc, as obtained in the way des-

cribed above are given in fig. le.

4. FEATURE EXTRACTION

The properties or features that the eye uses in recognising the different

cell types may be subdivided into three general categories:

i) geometry
ii) colour

iii) texture.

In this work similar features are extracted. The three categories are

described below:

Geometry

Once one has the segment table representation of the image (section 3)
parameters such as total cell area, total nuclear area, nuclear perimeter, etec. are
readily obtained. Two other parameters, based on these and which are thought to
contribute considerably to the separation between the various types are the ratio o.
nuclear to cell area and the nuclear shape. The shape factor was defined as the

ratio of the square of the circumference to the nuclear area.

It is already clear at this point that there will exist strong correlat-
jons between the parameters. They cannot therefore be expected to contribute

equally to the separation. This problem will be dealt with in the next section.

Other geometrical features are total extinction, average transmission for
both the cytoplasm and the nucleus, and contrast between the cytoplasm and~the nucleus.
lThrpugh the densi§y vs.illumination curve of the film these parameters can be defined
on the smear rather than on the film, assuming that one always works in the linear
part of the curve and assuming y = 1. Total extinction is defined as the area of a
completely black disk of the same absorption. These parameters are classified in
the category of geometry rather than of colour because they can be extracted from
both colour images independently. This is in fact done because it is not known a

priord which image will yield the more powerful descriptor. Here again, of course,



strong correlations between the parameters occur. In total 19 geometrical features

are extracted.

Colour

The colour properties of a cell (for a given light source) are completely
described by its absorption spectrum (fig. 2). Even the eye is unable to exploit all
fhe information contained in such a curve. What the eye sees can be simulated by
combining the information contained in three suitably colour-filtered images. In
this way each possible colour may be represented as a point in a chromaticity diagram
as described e.g. by Judd (cf (6)). Young (cf (11)) and Gelsema {(cf (4)) have studied
the use of three filters forthis application. Using only two filters, it is not possible
to represent colours in this way. By measuring the transmission through the'object
using each of the two filters in turn one can, however, characterise the colour by
using the ratio of the two values. This is.a degenerate form of colour representation
with respect to the chromaticity coordinates but it is still powerful when the two

filters are suitably chosen.

Trénsmission,being directly related to film densitjaa colour may bdbe
represented as a point in a diagram with the two axes corresponding to the two film
densities. BShifting the origin in this diagram to the point corresponding to both
background densities (the two-filter representation of white), the colour represented
by a point in the’diagram may then be measured as the angle between the radius vector
to that point and one of the axes. The "red axis'" was taken as the reference direc-

tion. Absorptivity is defined as the absolute value of the radius vector.

In the process of extraction of the colour parameters the colour and absorp-
tivity of a sufficient number of uniformly distributed points in the cytoplasm and
in the nucleus were determined. Points near thé boundaries were not taken into,
account in order to minimize the propagation of errors from the preprocessing phase.
Average values and standard deviations of the distributions for cytoplasm and nucleus
are the final colour parameters. In order to have colour parameters that are
completely free from errors in the nuclear boundary definitibn, averages of colour
and absorptivity for the whole cell were also retained. Finally, colour contrast was
defined as the vector in the colour diagram joining cytoplasm and nucleus of each

cell. A total number of 12 colour parameters were extracted.

Texture

The approach to texture presented here should be regarded as a preliminary

one, liable to indicate ways to possibly better solutions.

~—



-8 -

NEUTROPHIL CYTOPLASM LYMPHOCYTE CYTOPLASM
T 100 — 100 —
R o2t SN
A = o
S »c"‘(x‘”/
M 5ot 50 — L
1 L
S ol
S L L
I . -
U] Olllllllllllllll Olllllllli__l,llllj
7
N 4oo 500 600 700 uQo 500 600 00
WAVELENGTH (NM) ) WAVELENGTH (NM)

MONOCYTE CYTOPLARSM

EOQSINOPHIL CYTOPLASM

100 - 100 —
-
..ﬁ..~~~‘¢xx -~
50 b- L 50
| ’,l‘
L o~
O —J { i 1 l I | 1 1 l i 1 1 _Lu: O D O | i l 1 1 1 i l I3 1 l_ 1 J
400 500 600 700 400 500 600 700
T WAVELENGTH  (NM) WAVELENGTH  (NM)
NEUTROPHIL NUCLEUS RED BLOBD CELL
100 .
50 50
O 1 1 1 i J L i 1 1 .I 1 o1l 1 J O -_J ) . ) l ) | , ] i ‘ l ) ‘
u0o 500 600 700 400 co0 o0 o0

WAVELENGTH (NM) WAVELENGTH (NM)

Figure 2
Absorption spectra as obtained using a microspectrophotometer. Each curve shows

the transmission as a function of wavelength for a region of the cell approximately
1 pm in diameter. :



In the cell three types of object were defined:

1) very high density objects (dmax—h <d i-dmax’ where dmax 1s the highest non-
empty bin of the frequency distribution)

2) low density objects (holes) in the cytoplasm (4 < dc, where dc is the cytoplasm
threshold level)

3) 1low density objects (holes) in the nucleus (d < dn, where dn is the nuclear

threshold level).

For these three types of objects the following five parameters were

obtained:

a) chance of hit (i.e. following all scan lines the number of transitions from
non-object points to object points divided by the total number of non-object

points) - “ ‘ a
b) total area (i.e. the total number of object points)
c) mean length (i.e. the average number of consecutive object points)
4) ‘average colour
e) average absorptivity.

If a certain type of object was not found the last two parameters were set
to the colour and absorptivity of the area in which it was defined (i.e the surround-
ing area being either cytoplasm for type 2 or nucleus for types 1 and 3). Thus a

total of 15 texture parameters were transferred to the classification process.

5. CLASSIFICATION

For the classification of the white cells on the basis of the 46 features
described in the previous section two methods have been used, one being in a way
complementary to the other. Both methods consist of two phases. In the learning
phase cells of known type are used to establish for each type mean values and stan-
dard deviations of all parameters as well as the correlations between them. In the
classification phase these values are then used to assign unknown cells to one or
other of the classes thus defined. Textbooks on multivariate analysis are e.g.

Anderson (cf (1)) and Cooley (cf (3)).

Linear Discriminant Analysis

With this procedure one finds the linear combination of all parameters
which best separates the different classes by optimizing the ratio of differences

amongst the different classes to the within group differences. The coefficients for
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the discriminant function represent the weights assigned to the different parameters
and may be used to list them in order of decreasing separation power. In this way
the problem of singular diépersion matrices in the case of completely dependant para-
meters is avoided. Also, if strong correlations between pairs of parameters exist,
the better one will have the larger weight, the weight of the second one decreasing
with increasing correlation coefficient. This ranking of parameters will in general
depend on the classes being considered. The linear discriminant model used 1s based

on two assumptions about the different populations:
i) all parameters are normally distributed and
ii) have the same dispersion matrix.

For the majority of parameters the first condition is probably fulfilled, the second,
however, is not. - For this reason only the learning part of the discriminant proced-
ure was used. Classification was then achieved using a least chi-square method,

using the best parameters as obtained from the discriminant model.

Least Chi-Square Analysis

In the least chi-square procedure the learning phase is repeated in order
to calculate a dispersion matrix for éach class. By taking the most powerful para-
meters from the preceding analysis one is relatively sure that problems with singular

matrices will not occur.

“

In the classification phase the following quadratic form is evaluated for

each class J:

> . > .
where x 1s the vector of parameters, ij 1s the vector of group means for class J and
Dj is the dispersion matrix for class J (the superscript T indicating transposition
of the column vector). This function has a x2 distribution with N degrees of

. . . -
freedom, where N is the dimension of x (= the number of parameters used).

For each unknown cell the expression:
2
X5 + log  |D.|
j ge I 3

is then evaluated, where IDjl is the determinant of the dispersion matrix. The cell
is assigned to the class for which this expression is minimum. When the dispersion
matrices are different for the various classes, the second term serves to minimize
the number of misclassifications by drawing the boundaries between classes through
points of equal population densities rather than through points of equal xz. The
only assumption underlying this classification procedure is the assumption of multi-

variate normal distributions.
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A priori probabilities are sometimes included in the expression to be
minimized. This is not done here as the objective of the present work is to demon-
strate the classification power of a set of parameters, independently of relative

sample sizes.

6. RESULTS

When comparing a computed classification with that of a hematologist, dis-—
agreements may arise from both machine misclassification and human classification
errors. Bacus (cf (2)) has shown that for the five normal cell types a human error

rate as low as 1.5% can be expected.

However, when a subdivision of these classes 1s attempted, the number of
disagreements befween humans rise% rapidly. This is not surprising since different
hematologists use slightly different criteria to decide, for example, when a band
cell hés developed into a neﬁtrophil. A gi;en hematologist may, however, be quite
self-consistant in applying his own criteria. For this particular subdivision Bacus
finds that for aAgroup of nine people, individuals disagreed with the consensus in at
least 15% of the cases. In the comparison of the machine classification against
that of a hematologist these systematic differences may not be so important. If
there is no clear transition between two successive states, the machine will merely

show the same biases as the hematologist who provided the initial classification.

For the present work a total of 1146 cells were available in digitised
form. These consisted of 483 normal cells (including band cells) and 663 immature
cells. This very large proportion of immature cells was chosen deliberately so that
one could study the probability of immature cells being misclassified as normal ones
and also attempt the classification of the various immature forms. In table 1 the
sample sizes in the training set and in the test set are given according to the hem-
atologist's classification. It should be noted that the total sample consists of
white blood cells and other nucleated cells that may occur in a smear. In the pres-—
ent work the cell types indicated with an (N) are considered as normal cells, all

other types being referred to as immature cells.

With a training set of 243 cells and a testing set of 240 cells, 15 para-
meters have been used to classify normal cells into their six types. The confusion
matrix for the testing set is shown in table 2. The percentage of correct classif-
ications is 87%. Apparehtly better results than these can be obtained with more
parameters and by using the same cells for both the training and the testing set.
Indeed, with 30 parameters and using the wholé set,a 99% correct confusion matrix

was obtained. This results from using too many parameters for the statistics avaii-
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TABLE 1
Sample size Sample size

Class Name in training set in testing set
Myeloblast 33 32
Promyelocyte 31 30
Myelocyte 34 3k
Metamy elocyte 3k 33
Band cell (N) | L Lk
Neutrophil (N) 38 37
Monocyte (N) | 36 35
Lymphoblast 34 3k
‘Atypical lymphocyte L1 b1
Lymphocyte (N) 37 37
Eosinophil (N) 38 38
Basophil (N) 50 Lo
Plasma cell 35 35
Nucleated Red cell A 25 2k
Nucleated Red cell B Lo 39
Nucleated Red cell C 27 27

Total >TT 569

Composition of the total sample according to the hematologist's classification.
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TABLE 5

Computer Classification

32

212111

0

Training set:

0

2

1

0

01132 |10

0

1k

2 |1k |10

13

0

0

0

No. of
cells

32
30

34
33
Ly
37
35

34
by

37
38
L9

35

Cell type

Myeloblast

Promyelocyte

Myelocyte

Metamyelocyte

Band cell

Neutrophil

Monocyte

Lymphoblast

Atypical Lymph.

Lymphocyte

Eosinophil

Basophil

Plasma cell

Red Cell A} 2k

Nuc.

Red Cell B| 39

Nuc.

Red Cell C| 27

Nuc.

577 cells
569 cells

15 parameters

Testing set:

64%
7%

Percentage correct for 16 classes:

Percentage correct for 10 classes:

Confusion matrix for machine classification of normal and abnormal cells.
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able. With a separate testing set misleading results such as these are unlikely.

In order to make a comparison with the results of Bacus and with an
early result obtained by the NEMCH group who used a subset of the present data, clas—
sification on the basis of 8 parameters was also performed. With 15 as well as with
8 parameters a testing set different from the training set was used. The results,
given in table 3A,are for both five and six types - the five being obtained by
adding the band and neutrophil types together. From these results, in view of the
sample sizes, it is concludeé that comparable performance has been obtained by the
three groups. Even when the band cells and neutrophils are combined the performance
is not as good as that of a human though with the statistical errors normally present
in a differential count the additional errors due to the machine would be small.

The effect of using 8 or 15 parameters has been considered. (see also table 3B where
a greater variety of cell types has been used) and as can be seen the benefit is
rather small. The reasons for misclassification have still to be studied in detail
but a first look suggests that when errors éccur in the location of the cell and
nuclear boundaries many of the parameters are affected and the classification will

often depend on the particular choice of parameters.

When all cell types are being considered the testing set consists of 569
cells. The confusion matrices shown in tables 4 and 5 show the result of trying to
classify these cells using the best 15 parameters chosen by the discriminant analysis
program. From table 4 one sees that a total of 9.4% of the immature cells were
confused with normal cells. Similarly 13.8% of the normal cells were classified as
immature. Since the former figure corresponds to the proportion of "false negatives"
it may seem the more important of the two. Though we do not have figures on this,
hematologists expect to miss only a few percent of immature cells. However, this is
assuming that there will be more than one immature cell present in the sample. With
a 90% probability of recognition for each immature cell, the probability of recog-
nising that some are present will normally be high and a greater problem is that of
getting rid of the false positives which would be numerous and which could only be
checked by visual inspection. These numbers are therefore marginal because they
imply a machine which requires too much help rather than because it cannot find the

immature cells with sufficient reliability.

In table 5 the complete classification is shown. The order in which the
cells are listed has been chosen so that cells of a given type in different stages of
evolution occur in the cbrrect sequence. The boxes indicate categories which are not
very well separated in nature and which one could reasonably merge together. With
the full sixteen types 647 are correctly classified and this rises to 77% when only

ten categories are used. Table 3 shows the numbers obtained when using only 8
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parameters.

As above, tests using 30 parameters and the whole set of cells have been
made giving 91% correct classification for the sixteen cell types. We do not, how-

ever, believe that a separate test sample would confirm this result.

At this stage the estimation of performance seems of greater importance
than the prediction of the cost and speed of a device to do routine differential counts.
However, it is estimated that the extraction of 15 parameters and the subsequent
classification of a cell take respectively in the region of 0.9 and 0.04 CP seconds
on the CDC 6600. This figure can certainly be improved upon by optimizing those
parts of the procedure that are most time consuming. This has not been studied
so far. On the other hand it is not clear how much additional computation would be
needed to get a significant improvement in performance and this can only be found

out by further study. A -

7. CONCLUSION

The results presented in the previous section confirm that the five comm-
only occurring cell types can be recognised with a reliability slightly better than
' 90%. They also show that immature cells and other similar cells which are sometimes
present in a sample can be recognised as such with 90% probability, while some 14%
of normal cells are incorrectly classed as immature. The classification of the
immature cells has also been tried with an overall success of between 64% and TT%

depending upon the degree of subdivision attempted.

For the classification of white cells into the five normal types, the
present results, together with those of Bacus and the unpublished results of the
NEMCH work show that one is approaching the recognition efficiency of the trained
technician. The present results also show with good statistics that on the crucial
point of recognising whether immature cells are present, the performance is adequate
but the rate of false positives, being 14% of the normal cells present, is too high

for an automatic device.

Since the normal differential count is based on only 100 cells the statis—
tical accuracy would only be slightly modified by the additional errors of the auto-
matic system (even if the standard sample became 200 cells this would still be true).
It is therefore mainly in the reduction of the probability of getting false positives
without loss of efficiency in recognising genuine immature cells that there is the

“most need for improvement.
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Further study of the present data is likely to show that some improvement
is possible. This study needs to cover the whole sequence starting with the hema-
tologist's classification and then looking for reasons for misclassification by the
computer, for systematic effects in the data, for incorrect extraction of features
etc. Finally a reconsideration of the statistical methods of classification would
be desirable. The choice of parameters also deserves more thought. In particular,
it has emerged very clearly that increasing the number of parameters does not neé—
essarily improve performancél Better parameter evaluation may be more important and
since colour seems to be one of the most significant areas, detailed study of how to
evaluate it more effectively would be desirable. There is also reason to think that
a more careful procedure for defining the boundaries would help significantly in the

parameter extraction.

The white blood cell dififerential count may‘prove to bé one of the first
successful medical applications of image processing techniques. The results now
available show that on statistically significant samples one is coming close to the
performance required for a working device. There is a need to improve the recognit-
ion performance still further and the studies should be extended to even larger
samples so that as far as possible one meets with the full range of biological

variability.
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