Université Claude Bernard Lyon I

THESE

pour l'obtention du DIPLOME DE DOCTORAT

Conception, construction et essai d'un accélérateur linéaire à protons impulsé à 3 GHz (LIBO) pour la thérapie du cancer

Paolo Berra

14/10/2005

Index presentation

- **1. Introduction**
- 2. Brief description of a LIBO facility
- 3. LIBO-62 prototype module
- 3.1 Design:
 - basic constraints and conceptual design
 - half-cell plates
 - material analysis
 - thermal stabilisation for frequency control
 - bridge couplers
 - end half-cell
- **3.2 Construction of the copper structure at CERN**
- 3.3 Tests
 - metrology, vacuum and RF power tests at CERN
 - brief on acceleration tests in Catania
- 4. Conclusions

1. Introduction

LIBO concepts

- A new compact LInac BOoster for hadrontherapy
 - [<u>Ugo Amaldi, Hadrontherapy in oncology</u>, U. Amaldi and B. Larsson eds, Elsevier, 1994 and <u>Mario Weiss</u> et al, *High frequency proton linac*, in *The Green Book*, U. Amaldi, M. Grandolfo, L. Picardi eds, 1996)]

• LIBO boosts the energy of proton beams extracted from a cyclotron up to 200 MeV for deep-seated tumours

In 1998 an international collaboration, chaired by Dr Mario Weiss, has been established for the design, construction and test of the first prototype module of LIBO-62 facility.

TERA Foundation

• CERN

University and INFN of Milan

• University and INFN of Naples

Libo Collaboration 1998-2002

<u>U. Amaldi</u>^(1, 3), P. Berra⁽¹⁾, C. Cicardi⁽⁴⁾, K. Crandall⁽¹⁾, D. Davino⁽⁵⁾, C. De Martinis⁽⁴⁾, D. Giove⁽⁴⁾, M.R. Masullo⁽⁵⁾, E. Rosso⁽²⁾, B. Szeless⁽²⁾, D. Toet⁽¹⁾, V. Vaccaro⁽⁵⁾, M. Vretenar⁽²⁾, <u>M. Weiss⁽¹⁾</u>, R. Zennaro⁽¹⁾.

(1) TERA Foundation

 (2) CERN
 (3) Milan-Bicocca University
 (4) INFN and Milan University
 (5) INFN and Naples University

Main Milestones for the LIBO prototype:

• Design

 Construction at CERN in the frame of the Technology Transfer Division (<u>Dr H. F. Hoffmann</u>)

 High power RF tests at CERN and beam tests at INFN-Laboratorio Nazionale del Sud, Catania, Italy

2. Brief description of a LIBO facility

Main features of LIBO

Compact modular linear accelerator (SCL type)

 Conceived in view of the Technology Transfer to industry for medical applications

What is a compact accelerator for protontherapy?

- U. Amaldi \rightarrow Hadrontherapy program \rightarrow PACO project (COmpact Accelerators Project for protontherapy), 1993.
- Acceleration of 2 x 10¹⁰ p/sec (min.) to an energy of at least 200 MeV (running efficiency comparable with the conventional electron linacs);
- Installation of the facilities in a bunker with a total area of 300 m² or less;
- Maximum power consumption of 250 kW;
- A 60 MeV beam for eye melanoma therapy at low cost;
- Typical beam characteristics required for protontherapy

Compact modular linear accelerator (SCL type)

- A Side Coupled linac (SCL) is a biperiodic RF structure operating with $\pi/2$ normal mode.
- This structure shows good stability and high efficiency.
- Experience from Los Alamos National Laboratory: structures operating at 800 MHz and designed for protons with $\beta > 0.4$.

Compact modular linear accelerator (SCL type)

LIBO is a Side Coupled Linac structure (SCL)

operating at 3 GHz

in order to reduce the size

of the full accelerator for medical applications

and with $0.35 < \beta < 0.56$

Conceived in view of the Technology Transfer to industry for medical application

LIBO module is a mechanical entity where all the parts have been machined on standard numerically controlled (CNC) milling machines or lathes, checked by RF measurements, metrology, and brazed together with standard industrial processes

Clinical beam parameters for protontherapy

Minimum and maximum depth Range variation accuracy Distal dose fall off at any energy Dose rate: $2 \text{ g/cm}^2 - 20 \text{ g/cm}^2$

0.05 cm

2 mm (80% - 20%)

45 Gy/min for eye melanoma treatment

2 Gy/min for deep seated tumours

(field size $20 \times 20 \text{ cm}^2$)

Nominal physical beam parameters of LIBO

Energy: Energy spread:

Beam intensity:

Beam time structure:

30 - 200 MeV and continuous energy variation between 130 and 200 MeV
< 0.75% above 100 MeV, < 0.23% at 65 MeV
0.1 - 10 nA
pulse duration 5 μsec, repetition rate 400 Hz

It fits the active scanning application

How LIBO works

- Total efficiency cyclotron-linac: order of 10⁻⁴ (trapped beam ~10%, duty factor 0.2%)
- Input current from the cyclotron: $50 \ \mu A$
 - \rightarrow Output current from LIBO: 5 nA \rightarrow enough for cancer therapy

Beam time structure:

- Repetition rate 400 Hz
 - Macropulse length 5 µsec

The micropulses or bunches are spaced at the RF period of 0.33 nsec. At the injection the buckets are open and the particles are trapped in the stable regions

LIBO-62: basic description

- It is a Side Coupled RF structure where the oscillating electromagnetic field is used to accelerate protons
- It is composed by nine modules, each divided in 4 accelerating tanks and three bridge couplers
- Each module is a RF unit powered by a 3 GHz klystron
- Input energy 62 MeV
- Output energy can be varied between 130 and 200 MeV

LIBO Main Parameters

Value

Operating Frequency (MHz)	2998
Input Energy (MeV)	62
Output Energy (MeV)	200
Relativistic Beta	0.35-0.566
Average Current (nA)	10
Beam Pulse Duration (us)	5
Repetition Rate (Hz)	400
Beam Duty Cycle	0,002
Accelerating Gradient (MV/m)	15,3
Aperture Radius (mm)	4
Transverse Acceptance (mm mrad)	12 pi
Trapped Cyclotron Beam (%)	9,6
Synchronous Phase Angle (degree)	-19
Structure Length (m)	13,32
Number of cells/tank	13
Number of Tanks/module	4
Number of Modules	9
Number of PMQ/Tank	4
Quad gradient (T/m)	160
RF Peak Power/Module (MW)	≈4
RF Duty Cycle (%)	0,2
Number of Klystron	9
Vacuum (mbar)	10-6

3. LIBO-62 prototype module

LIBO-62 prototype module

The final mechanical design of LIBO-62 prototype

Constraints for the design of LIBO-62 prototype

• Final goal of RF structure: constant mean accelerating electric field and simple design

• Final goal of Vacuum: 10⁻⁶ mbar

• Final goal for PMQs alignment dictated by beam dynamics: ± 0.1 mm on 1.3 m module length

• Fabrication of LIBO sub-components by using standard industrial processes (machining and brazing)

• Material must be compatible with electrical and thermal conductivity, brazing processes, high vacuum, high RF fields (small size) \rightarrow (low impurities)

Basics on conceptual design of the prototype

- The coupling cells must be identical in all tanks of the module
- The accelerating cells are identical in each tank and are longer from one tank to the other ($\propto \beta$)
- The coupling slot length is the same in all the tanks of the module
- Final overall frequency: $\pm 100 \text{ kHz} (\pm 2^{\circ}C)$
- Accelerating field error < 5%
- Accelerating gradient: 15.3 MV/m

Half-cell plates

Material analysis and crystallographic tests

Analysis of special

copper alloys

High pure OFHC (Oxygen free) copper is used for LIBO cavity

- Low impurities
- Grain size function of temperature

Brazing tests in air and under vacuum (CERN)

Thermal stabilisation for frequency control

- The thermal cavity behaviour in steady condition is described by an isothermal cavity model.
- The power dissipation has good safety margin.
- Temperature distribution, thermal stresses and mechanical deformations of the cells will not affect irreversibly the material during the operation at full power (no permanent plastic deformations).
- The expected cavity thermal detuning under full power is between -50 and -60 kHz/°C.
- The thermal detuning can be corrected via temperature control.

Thermal stabilisation for frequency control

Design of cooling system

Bridge Coupler

End half-cell

The accelerating tank

Permanent Magnet Quadrupole (PMQs)

for beam focusing

- Gradient: 160 T/m
- Length: 36 mm (good for compact accelerators), Beam hole: 5 mm
- 5 PMQs into the module (FODO structure)
- 8 blocks of Samarium-Cobalt 2-17
- Max temp. allowed: 250 $^{\circ}C \rightarrow$ insertion after brazing

3.2 Construction of the copper structure at CERN

Construction sequences of LIBO prototype

R&D on six test half-cell plates

before full production at CERN

Definition of the LIBO cells
(geometrical cavity shape,
coupling slot, etc.)
Definition of machining sequences
Definition of tuning procedures
Definition of brazing sequences

Production of the prototype at CERN (1999-2000)

<u>Machining on numerically controlled</u> <u>lathe and milling machines at</u> <u>CERN Central Workshop</u> Typical tolerances:

±0.02 mm

Mechanical tuning of LIBO RF cavities

• Mechanical tuning of RF cells by ring machining (compensation of cell frequency spreads)

• Lateral tuning rods insertion (→electric field flatness)

[R. Zennaro]

Brazing of LIBO components at CERN

The brazing technique is fundamental for a good joint and it is connected to: RF contact, vacuum tightness, thermal conductivity

Brazing of the tank

Brazing of the prototype

Ultra-sound tests for filler metal distribution after brazing

Results of electric field distribution

after final brazing and RF tuning

The accelerating field distribution in the four tanks of LIBO shows an uniformity around 3% [M. Weiss, R. Zennaro]

3.3 Tests

- Metrology

- Vacuum

- Power tests

- Acceleration tests

Metrology at CERN Central Workshop

→ Alignment of the PMQs inside LIBO

<u>Constraints from beam</u> <u>dynamics:</u> max transverse PMQs misalignment ±0.1 mm (module length 1.3 m)

Vacuum tests at CERN

Main vacuum constraints: •10⁻⁶ mbar with very low impurities (<u>clean condition</u>) •He-leak detection

RF power tests at LIL tunnel (CERN, 2000)

The installation engineering design

Prototype installation at CERN

RF power source: the 3 GHz klystron at LIL tunnel (CERN)

Control room for RF power tests at CERN

DAQ for RF power tests at CERN =

Power tests:

RF conditioning story (CERN 2000)

time scale in histograms 🗧 3 hours

Dismiss

Print this page

RF power tests (CERN):

stable condition after RF conditioning

3.3 Conclusions

Conclusion 1

 The electric field distribution and the acceleration rate and particles motion, can be controlled inside of the design specifications.

 The accelerating structure, after a short conditioning, is free from electrical breakdown and the final vacuum levels are better of the design specifications.

Conclusion 2

•An accelerating gradient of 29 MV/m has been reached, better than the design value (15.3 MV/m).

 Construction procedures and mechanical tolerances of the accelerating structure allow covering the required physical performances.

The prototype construction and tests of the LIBO collaboration prove that *LIBO works* in agreement with the design and standard industrial technology at "low costs" can be adopted for fabrication, even for this unusual high frequency 3 GHz proton accelerating structure.