CERN-Data Handling Division
DD/84/7 Rev. 2
March 1985
M. Metcalf

HAS FORTRAN A FUTURE?

(Presented at the Europhysics Conference on Software Engineering,
Methods and Tools in Computational Physics, Brussels, 21-24 August 1984)

DD-vf

HAS FORTRAN A FUTURE?

Michael Metcalf
Data Handling Division
CERN, CH-1211 Geneva 23

Abstract

For over 25 years FORTRAN has dominated all other programming
Tanguages in the field of scientific and engineering computation.
Although much denigrated by computer-science purists, it has
consistently shown itself to be attractive to scientific users
because its basic simplicity and power of expression appeal to
non-specialists. Can this situation continue? Will the
introduction of FORTRAN 77 lead to an upsurge in the use of

the language, providing it with momentum sufficient to carry

it through to the end of the decade? Shall we witness a conflict
between FORTRAN 8x and ADA?

This Tecture will take stock of the present status of FORTRAN and
describe its likely development, before going on to speculate
on possible trends until the turn of the century.

FORTRAN today

FORTRAN has a long if not always glorious history. As the first
high-level programming language [1] it spread rapidly in those
non-commercial application areas for which it was well or
reasonably well suited, if only for a lack of competition. Although
in the meantime other languages suited for scientific use have
appeared, they have failed to attract the same following, possibly
because they not only had to compete with an already well estab-
lished product, but also themselves lacked the twin features of
FORTRAN which have kept it in the lead so long - ease of use and
efficiency of object code (see also [2]).

Just at that point in the late 1970's when FORTRAN seemed, intellec-
tually, to be dying on its feet, a new revision of the standard was
published [3] and the new features of FORTRAN 77 breathed Tlife
again into the expiring body, although it took some time for
compilers to become universally available. Whilst PASCAL has made
some inroads into the smaller applications and is in widespread use
as a vehicle for teaching programming, a wholly admirable situa-
tion, in the real-world of big applications FORTRAN remains domi-
nant, and is often taught as a follow-on language to PASCAL, in
order to prepare students for their later careers.

At the present time I have the impression that we are on the steep
part of the changeover curve between the old 1966 standard and the
new standard. Many vendors offer only FORTRAN 77 compilers, or
provide, but no longer support, compilers based on the old stand-
ard. A survey of European IBM sites I conducted at the beginning of
1984 [4] showed that about two-thirds of the use of FORTRAN was
with the VS compiler, though that may hide some use of FORTRAN 66
as it is contained in that compiler as an option. On the CERN
mainframes the use of FORTRAN 77 in what 1is claimed to be an
ultra-conservative community has reached 40%, and all new programs
will be written to the new standard. On the smaller CERN machines,
FORTRAN 77 1is used exclusively. An introductory course and guide-
lines for its use with respect to portability and optimization have
been published [5], [6], [7], [8], and the first three of these
references have appeared combined in a more detailed form as [9].

As well as there being strong evidence for a changeover in the use
of FORTRAN, there is also some indication that the use of FORTRAN
in absolute terms is growing. It is very difficult to measure the
use of different programming languages, as very few statistics are
available, and even then it is unclear whether the relevant para-
meter is lines of code written, number of compiler calls, total
execution time, or whatever. It seems, nevertheless, that the
spread of FORTRAN usage into microcomputers provides an extension
of its use into a new area. At the same time there are signs that
the big manufacturers are strongly supporting FORTRAN Tanguage and
compiler developments. This may not necessarily be what they would
like to invest in, but is in their commercial interest as a response
to perceived user demand.

Major Flaws

In spite of the strength of FORTRAN's position, it is not regarded
even by its most outspoken advocates as being an ideal tool for
scientific programming. This is a problem which besets all program-
ming languages to some extent, and results in part from the slow-
ness of language standards development, and the slowness with which
the new standards are made available to users in the form of
reliable compilers. Thus one's expectations are always in advance
of what is available. Even viewed in that 1ight FORTRAN has some
notable drawbacks, resulting mainly from its position as an early
high-Tevel Tlanguage combined with the conservative nature of the
last revision.

In the past, FORTRAN's deficiencies were alleviated by the wide-
spread use of language extensions provided in non-standard ways by
compiler vendors, and by the development of many pre-processors.
These latter were often implemented by large organizations as a
means of providing structured programming constructs for in-house
use. In 1975 a survey by Reifer and Meissner compared no fewer than
55 such products [10]. The introduction of FORTRAN 77 was the death
knell for most of these pre-processors as it contained a sufficient
number of worthwhile new features to make their continued use
unattractive. The two most significant new features in this respect
were the IF...THEN...ELSE construct and the character data type.
Since then, only two new FORTRAN pre-processors have appeared in
the 1literature, but neither 1is based on the new standard,
generating FORTRAN 66 not 77 source code [11], [12].

A contemporary 1list of FORTRAN's deficiences begins with one of its
most well-known and most used features :

i) Storage association through the COMMON and EQUIVALENCE
statements. The first of these makes it impossible to define
any scope of variable other then 1local or global; it is
impossible to restrict the scope of a variable to a group of
subprograms only. The second allows potentially dangerous
aliasing of locations, even between variables of different
data types.

ii) Lack of data structures. FORTRAN allows only two simple data
structures, the array and the COMMON biock. The former is re-
stricted to elements of a single data type, and the latter
cannot be manipulated as an entity. The high-energy physics
community has designed or produced no fewer than five packages
to overcome these two problems. (We note, that 1in these
important application packages, involving the management of
data structures containing elements of several types, the
EQUIVALENCE statement is essential).

ji1) Rigid source form. The FORTRAN source form is based on the
out-moded punched card, and is inappropriate for entering and
editing source code from a terminal.

iv) Poor error handling. FORTRAN allows detection and recovery
from parity and end-of-file conditions on external files, but
the handling of other hardware conditions such as overflow and
underflow is not specified in the language.

3

v) Lack of a bit data type. The bit is the most fundamental data
type, and has to be manipulated by many programs, especially
in high-energy physics, in a totally non-standard and non-
portable way, as this data type does not exist in the language.

vi) Lack of means to control the precision of computer arithmetic.
The real and double precision data types do not have guaran-
teed ranges or degrees of significance, and there is no means
to ensure that computer arithmetic is stable across a range of
computer architectures.

vii) Lack of environmental enquiry facilities. Linked to the
previous point is the inability to pose questions about the
run-time environment of a program, for instance the largest
available integer or real quantity, or the time of day.

But these points are mere technical details compared with the more
fundamental criticism of the Nobel prize-winning physicist K. Wilson
of Cornell University [13]. He attacks the whole concept of
continuing to program in languages such as FORTRAN (he picks on
FORTRAN because of its exclusive use in the physics community), and
proposes instead transformational systems which would combine a
numerical method with systems of equations, say, to produce what
might well be FORTRAN code, but as an intermediate language. He
complains that whereas information in an advanced text book is
organized in a logical fashion, the same amount of information in a
FORTRAN program is distributed throughout every subprogram and
DO-Toop in an unintelligible way. His criticism has been expressed
also in a letter to the FORTRAN standards committee, X3J3, in which
he adds that FORTRAN and other existing high-level languages are
totally out of tune with modern developments in hardware, especial-
ly graphics, and 1in programming environments and he urges the
committee to stop its work! [14]. These scathing comments cannot go
ignored, but are based in part on two fallacies. The first is that
it is not possibie to write clear programs in FORTRAN, the second
is that the next FORTRAN standard is just "tinkering" with the old,
whereas in fact it is a major advance on the present standard
bringing, as we shall see below, important new facilities which are
of great benefit to scientific programmers.

The fact that a significant investment has been made in a FORTRAN
environment, the Toolpack project [15], shows how much importance
is attached by many organizations to providing just that type of
programming support which Wiison believes to be so necessary.
Although Toolpack has yet to be formally announced, over 700
requests for it have already been received, and this is yet another
manifestation of the continuing interest in FORTRAN, typified also
by the (unpublished) talk by the computing veteran D. McCracken at
a recent SHARE meeting entitled "Why Engineers should Tearn FORTRAN
in the '80's". The potential impact of Toolpack merits further
discussion.

Toolpack

The traditional method of programming in FORTRAN has been to
construct a card deck, or more recently a file of card images,
which is presented to a compiler and loader to prepare the program
for execution. The compiler and loader were often the only software

4

tools, as we now call them, used by many FORTRAN programmers,
although in high-energy physics we are used to maintaining our
codes under a source code management system. Such primitive methods
of working are now regarded as totally inadequate, but the only
progress which has been achieved and made available to users of
most mainframes is the replacement of the key-punch and card reader
by a file editor and terminal. In the best case the compiler may
offer interactive debugging facilities, and only very few users
numerically speaking have access to the sophisticated facilities
offered on the even more advanced personal workstations.

This lack of progress is in strong contrast to the widespread
realisation that the compiete environment in which a programmer
works is just as significant for productivity as the language and
compiler he employs, if not more so. The two most significant
developments in environments are in the design of the Ada Programming
Support Environment (APSE), for which there currently exists no
implementation, and the Toolpack Integrated System of Tools (IST).
The Toolpack project is a Jjoint enterprise led by the Argonne
National Laboratory and including American Tlaboratories and
universities, as well as NAG in the U.K. It sets out to provide a
file system which allows various "views" to be taken of, say, a
FORTRAN subprogram. For instance, seen by a FORTRAN intelligent
editor, the text file will consist of source code, of lexical
entities and of a parse-tree. Seen by a transforming tool, the text
may be instrumented to check on execution counts and array bounds
or to test embedded assertions in order to help demonstrate the
correctness of the program. A1l these possibilities rest on a
compiex file base containing different representations of the
program. The facilities planned for a final version (only some are
ready now as prototypes) are :

i) A FORTRAN intelligent editor, which will accept abbreviated
FORTRAN keywords, position statements correctly, check input
for syntactic and semantic consistency, allow searches for
specified variables, and allow editing within specified
regions of a program, such as the scope of a DO-loop or a
given subroutine. /

i1) A formatter, which will lay out the code in a neat and
consistent fashion.

i11) A structurer, to extend FORTRAN's structured constructs.

iv) A dynamic testing and validation aid, enabling programs to be
instrumented to provide trace, summary and error information,
as well as checks on assertions. The large amount of output
provided by this tool will require others to extract the
required information.

v) A dynamic debugging aid offering such facilities as snapshots,
breakpoints and single-stepping, with the ability to examine
the current values of variables.

vi) A static error detection/validation aid, based on lexical,
syntactic, semantic and data flow analysis, and enabling the
detection of many coding errors before any execution is
attempted.

vii) A static portability checking aid, checking for non-standard
features.

viii) A documentation generation aid, by which it is planned to use
the static and dynamic analyses to produce some form of
documentation.

ix) A program transformer, providing a means of translating from
one dialect of FORTRAN to another, to change the arithmetic
precision or to create special-purpose control or data struc-
tures., This will be achieved using three specific tools, known
as a template processor, a macro processor and a correct-
ness-preserving transformer.

Toolpack is an ambitious project which, Tike most ambitious soft-
ware projects, is running behind its original schedule. The current
plans are to have early releases this year, suitable for preparing
programs of up to about 10,000 lines. In spite of these limita-
tions, it is an important attempt to embed FORTRAN in a powerful
framework, and the long-term fate of FORTRAN may well depend as
much on its environments as on its own strengths and weaknesses as
a language.

FORTRAN 8x

We are now in the era of FORTRAN 77, and have speculated that the
new standard combined with the huge existing investment in FORTRAN
programs will, by themselves, keep the language alive for a long
time. In this competitive world, however, it is not sufficient to
stand still, and those who regard the FORTRAN style as the one most
suited to their own needs and working methods have to consider how
the language should evolve, regardless of other developments such
as Toolpack, but taking into account the incessant claim of devotees
of the PASCAL family of languages, and especially of ADA, to
possess the key to the ultimate truth in programming methodology.

The main task of standardizing FORTRAN is entrusted to an American
National Standards Institute (ANSI) committee known as X3J3. The
rules of ANSI require that a standard be confirmed, withdrawn or
revised after a five-year period, and X3J3 decided shortly after
the introduction of the new standard in 1978 to aim at a revision
of the lanquage, and now aims to publish a new draft standard for
public comment in 1985, with a final publication 1in 1988. The
language defined by that new standard, currently known as FORTRAN
8x, will not be a standard in the classical sense, choosing and
defining one implementation of a feature from a number of existing
versions, but rather a total revision of the language.
Nevertheless, the goal 1is to remain backwards compatible with the
current standard and, to the largest extent possible, to introduce
features which have at least been demonstrated in the context of
other Tlanguages, even if not in FORTRAN dialects themselves. Thus,
FORTRAN 8x should be modern, reliable and portable.

The new standard will effectively be a superset of FORTRAN 77, but
many of the features of FORTRAN 77 will be "deprecated", their
functionality either being connected with storage association and
available in a more modern form in the new features, or redundant,

or otherwise regarded as bad practice (see Table 1). Thus, whilst
FORTRAN 77 programs will be guaranteed to work under FORTRAN 8x
compilers, and whilst it will be possible to continue to use
deprecated features until they are removed in a subsequent revision
cycle, it will be possible, by avoiding deprecated features, to
write code which has a totally different appearance to the FORTRAN
with which we have been familiar for nearly three decades. This
code will, however, be guaranteed a very long life.

Table 1

Deprecated features of FORTRAN 8x

Storage association

EQUIVALENCE statement

COMMON statement

BLOCK DATA

ENTRY statement

Assumed size arrays

Passing a scaler entity to a dummy array

Redundant

FORTRAN 77 source form

DIMENSION statement

DATA statement

DOUBLE PRECISION statement

Arithmetic IF

Computed GO TO

FORTRAN 77 DO statement

Statement functions

Specific names for intrinsic functions

Other

4.1

PAUSE statement
ASSIGN and assigned GO TO
Alternate RETURN

The 1ist of features in Table 1 clearly implies the addition of
many powerful new features to replace and extend them. The rest of
this section consists of a rather brief summary of some of the more
important of these new features, although to do them justice
requires a book rather than a section. The powerful data type and
array processing features are described separately in the two
following sections.

We note that D. Williams has made a powerful defence of the
alternate RETURN [16], and it remains to be seen whether his plea
will be heeded by X3J3.

Source form

A new source form will allow free form source input, without regard
for columns. Comments may be in-line, preceded by an exclamation
mark (') and continuation lines are indicated by an ampersand (&)

4.2

4.3

4.4

4.5

on the previous line. The character set is extended to include the
full ASCII set, including lower case letters (which in FORTRAN
syntax will be interpreted as upper case). The underscore character
is accepted as part of a symbolic name, allowing one to write
variable names such as CROSS PRODUCT, up to 31 characters in
length.

Significance of blanks

The blank will become a significant character which may be used as
a separator and which, therefore, may not be embedded in a name or
keyword. Thus

END FILENUNIT

must be written as

ENDFILE NUNIT

to be an acceptable statement.

Attribute oriented declarations

The present standard requires declarations to be made as one
attribute followed by a list of variables possessing that at-
tribute. The new standard will require declarations to consist of a
1ist of variables possessing a common set of attributes, following
a list of those attributes :

REAL, ARRAY(50), SAVE, INITIAL(50*1.)::A, B, C

In this example, we note the new way in which variables may be
initialised by an INITIAL rather than a DATA statement.

Precision specification

New attributes which may be declared are the range and precision of
real variables, allowing true portability of numerical software,
with guaranteed results. The Tong form of the declaration is
illustrated by

REAL, PRECISION10=12, EXP_RANGE=100, ARRAY(10)::X

Environmental Inquiry

The attributes of the environment can be interrogated using a set
of new intrinsic functions. These provide information such as the
smallest and largest positive numbers (real or integer), the
absolute spacing of real numbers near the value of the argument to
the function, and the model base for real numbers. These functions
will also ease the task of those writing portable numerical soft-
ware. For instance, as a convergence test in a fit procedure one
will be able to write

IF (A-B.LE.EPSILON(A)) THEN

rather than having to specify an actual value for "epsilon", which
may not be achievable on some machines but which is too coarse for
others.

8

4.6

4.7

4.8

4.9

Another set of intrinsic procedures will give access to the local
date and time, and to the difference between that time and a
reference time (GMT).

IMPLICIT NONE

The IMPLICIT NONE statement removes the FORTRAN default typing of
variables and functions, and thereby makes type declarations
obligatory even for real and integer entities.

BIT data type

A new BIT data type is introduced. Arrays of bits may be declared
as

BIT B1(8), B2(32), B3

and operations BAND, BOR, BNOT and BXOR performed upon them and bit
constants :

Bl
B3

B1.BAND.B2(9:16)
B1(1:1).BXOR.B'1"

Assignments such as this rely on the array processing features to
be described in Section 5 below. Functions to transform bit arrays
into integers or logicals and vice versa are available.

Extension to type character

Some extensions to the facilities associated with the character
data type will allow null strings, some new intrinsic functions and
the ability to overlap the two sides of an assignment, making

A(:5) = A(3:7)
a legal statement.

CASE construct

The new CASE construct allows the execution of one block of code,
selected from several, depending on the value of an integer,
Togical or character expression. An example is

SELECT CASE (ITEMP.EQ.100)

CASE (.TRUE.)
BOIL=.TRUE.
LIQUID=.FALSE.

CASE (.FALSE.)
BOIL=.FALSE.
LIQUID=.TRUE.

END SELECT

A default CASE clause is allowed. Although there is some measure of
overlap between the functionality of the CASE construct and the
existing (and wunchanged) IF...THEN...ELSE construct, the CASE
allows cleaner code to be written in many circumstances, and also
requires that one of the conditions be met (or that the DEFAULT
clause be present). It is a replacement of the computed GO TO.

9

4.10 Loop construct

4.11

4.12

4.13

The 1introduction of real DO-Toop parameters and indices 1into
FORTRAN 77 is now regarded as having been a mistake. The new loop
construct has the general form

[name] DO [(control)]
block of statements
REPEAT [name]

(where square brackets indicate optional items). The control
parameter, if unspecified, implies an endless loop; if present, it
may have one of two forms:

i = intexpl, intexp2, intexp3
or

intexpd TIMES
The optional name may be used in conjunction with CYCLE and EXIT
statements to specify which loop in a set of nested loops is to

begin a new iteration or which is to be terminated, respectively.

Enhanced CALL

The calling procedure 1in FORTRAN is fairly primitive. For each
dummy argument in a <called subprogram there must exist a
corresponding actual argument of the same type in the call. The new
standard will allow arguments to be defined by keywords as well as
their position in the sequence, and will allow them to be optional.
Thus, a subroutine with an initial Tine like

SUBROUTINE NAME(A, B, N)
might be called as
CALL NAME(N=I, A=X)
where the presence or absence of B can be established in NAME by

calling the intrinsic function PRESENT, and A and N are defined by
their keywords.

Recursion

Another new feature associated with procedures is the ability to
define recursive functions and subroutines, particularly useful in
such applications as list processing and multi-dimensional integra-
tion.

Internal procedures

The old statement function, vestricted to a single statement, has
been generalized to become an internal procedure, either a function
or a subroutine. This mechanism is not only more useful than the
one it replaces, but includes a facility to overload operations and
the assignment operation in a way which is essential for exploiting

10

4.14

the full power of the user defined data types which we will meet
below. Where a single operator symbol is used for operation on data
of different types, internal procedures corresponding to each data
type, but having the same name, may be defined within one program
unit, and the correct one will be assigned by the compiler.

Extensions to I/0 functions

There are only two new important features proposed to FORTRAN's
already very extensive 1/0 facilities (apart from the obvious
extension to handle the new data types to be described below). The
first is the ability to position a file using the OPEN statement,
and to specify which actions may be performed on it (e.g. read-
only). The second feature is a name-directed 1/0 facility desig-
nated by a double asterisk, e.g. :

READ (UNIT, **) A, I, X
which can read a record like
X=4.3, A=1,E20, I=-4
containing the named items in any order.

Array processing

One of the two major new facilities in FORTRAN 8x 1is its array
processing syntax and associated features. (The second, modules and
derived data types, will be dealt with in the next section.) The
wealth of new features in this area makes it difficult to summarize
them in a short publication, and the description which follows can
provide only a glimpse of their power. More details are given in
ref [17]. Before beginning, however, it is worth mentioning the two
main justifications for developing such facilities at all.

The first stems from a need to simplify and extend the FORTRAN
syntax for handling arrays. This is achieved by defining an array
as an object which can be treated as a whole, rather than on
(mainly) an element-by-element basis, as is the case in existing
FORTRAN. Tests using the new notation have shown that reductions in
the length of code written to solve a given problem can be up to a
factor eight.

The second justification is connected with the increasing use of
array and vector processors for tackling large-scale numerical
problems in science and engineering. A major difficulty in writing
FORTRAN code for these computers has been the limited ability of
their compilers to detect vectorizable sections of code. This has
meant either accepting a Tlower level of performance than can
potentially be achieved, or delving into messy, non-standard vector
extensions or even assembler language. The new extensions make
obvious to a compiler the vector nature of the code, and permit a
high degree of portability not only between different models of
vector processors, but also between vector and scalar processors in
general. On each hardware model the compiler can generate that
object code which is the most efficient. This efficiency extends to
the optimal generation of temporary storage for intermediate
arrays, as these no longer have to be declared explicitly by the

11

5.1

5.2

programmer, with a possibly consequent negative effect on
performance when these are additionaly involved in the storage
association inherent in the wuse of EQUIVALENCE and COMMON
statements.

Arrays as objects

An array is defined to have a shape specified by 1its number of
dimensions and the extent of each dimension. Two arrays are conform-
able if they have the same shape. The operations, assignments and
intrinsic functions are extended to apply to whole arrays on an
element-by-element basis, provided that where more than one array
is involved they are all conformable. Where a scalar value is

involved, its value is distributed as necessary. Thus we may write

REAL, ARRAY(5, 20)::X, Y
REAL, ARRAY(-2:2,20)::Z

.

Z = 4.0*Y*SQRT(X)

In this example we may wish to include a protection against an
attempt to extract a negative square-root. This facility is provided
by the WHERE...ELSEWHERE construct :

WHERE (X.GE.O.)

Z = 4,0%Y*SQRT(X)
ELSEWHERE

Z=0.0
END WHERE

which tests on an element-by-element basis. An assignment statement
inside a WHERE block implies an ordered execution over the
individual elements. A FORALL statement allows element-by-element
processing over a specified index range, but without regard to
order. '

Array sections

It is clearly not always appropriate to address a whole array, and
a means 1is provided to select sections through an array. Such
sections are themselves array valued objects, and may be used
wherever an array may be used, in particular as an actual argument
in a subprogram call. Array sections are selected using a colon (:)
notation. For an array

REAL, ARRAY(-4:0, 7)::A

A(-3,:) selects the third row of A
A(:, 3) selects the third column.

A triplet notation similar to that used for DO-loop parameters
permits references to non-contiguous array elements:

A(0:-4:-2, 1:7:2)

selects 1in reverse order every second element of every second
column of A. As sections such as this can be passed as actual

12

5.3

5.4

arguments, clearly the called subprogram can make no assumptions
about storage association in the passed section, but on the con-
trary requires a means such as a dope-vector to describe the nature
of the passed array. For this reason an array is passed as a whole
object, and not referenced simply by a single address acting as a
pointer to the first passed element, with implied assumptions about
the positions of all other array elements with respect to that
first one.

Dynamic arrays

A further facility for handling part of an array, and which goes
beyond the array section, is provided by the IDENTIFY statement.
This allows a dynamic aliasing of part of an array as in

IDENTIFY (DIAG(I) = X(I,I), I=1:100)

which dynamically defines a vector DIAG of Tength 100 which con-
tains the diagonal elements of the array X. From this point on in
the program, DIAG may be used just as if it had been declared as an
array in a declarative statement. The index I in this example has
no scope beyond that of the statement in which it appears.

Other dynamic facilities for arrays are the ability to ALLOCATE and
FREE local arrays, the introduction of automatic arrays (Tocal
arrays with variable dimensions), useful as local scratch storage,
and the possibility to pass as an argument an assumed-shape array,
specified in the called subprogram as, for instance,

REAL A(:,:,:)

The extents of the dimensions can be determined if necessary by the
UROUND intrinsic function. Where required, the shape of an array
may be changed using the RESHAPE intrinsic function, and for the
particular case of changing a multi-dimensional array to a vector
and vice versa the PACK and UNPACK intrinsic functions are fore-
seen.

Other features

The 1ist of new intrinsic functions concerned particularly with
arrays goes far beyond the few just described. A full 1ist is given
in [16] or [8], and a few worthy of mention here are those to form
the sum and product of the elements of an array, to find the
smallest or largest element, to merge arrays and to shift the
elements of an array. These powerful new functions operate, where
appropriate, optionally under a mask of logical values.

The last feature to be mentioned is the ability to define array
valued constants, which are enclosed 1in square-brackets:

[1,1,2,3,5,8]
and which may be manipulated in the same way as any other array.
From this short summary it is not possible to appreciate the full
power of these array features, which is best illustrated by exten-

sive examples. The fact that the new company ETA Inc. has announced

13

6.1

6.2

that it intends to incorporate these facilities into the FORTRAN
compiler for its GF-10 supercomputer does mean, however, that we
can hope to see actual examples of working code long before FORTRAN
8x becomes generally available.

Modules and data types

The last set of new features to be outlined are not only individu-
ally very useful, but in combination provide a means whereby a
programmer can define his own data types and operations on those
types. Here some parallels to ADA features and concepts will become
apparent.

Modules

The first of these features is the MODULE subprogram. This is a
program unit which, apart from the header line and final END
statement, may contain only specification statements and internal
procedures. Modules may be imported into any other program unit by
a USE statement specifying the name of the module. The USE state-
ment contains a mechanism for resolving name clashes between
imported and local entities.

Entities declared in a module may be restricted in their scope by
the use of the PRIVATE attribute (a PUBLIC attribute exists too,
but this is the default).

The module is first and foremost a direct replacement for the
COMMON statement, and the fact that it may include data initializa-
tion statements means that it includes the functionality of the
BLOCK DATA subprogram. The important advantage over the COMMON
statement is the fact that a module is defined once and for all,
and that each occurrence in a program unit will therefore be
identical, making impossible all the pitfalls and dirty tricks
which can be played with COMMON blocks. The possibility to propa-
gate identical copies of internal procedures throughout a whole
program can assist in the construction of procedure libraries.

Derived data types

FORTRAN possesses only a Timited set of pre-defined data types,
integer, complex, etc., and has hitherto lacked the possibility to
build user defined data types. This will be possible in FORTRAN 8x,
using a system illustrated by the example

TYPE STAFF_MEMBER
CHARACTER(LEN=20)::FIRST NAME, LAST NAME
INTEGER: :ID, DEPARTMENT

END TYPE

which defines a structure which may be used to describe an employee
in a company. An aggregate can be defined as

TYPE(STAFF_MEMBER), ARRAY(1000)::STAFF

defining 1000 such structures to represent the whole staff. Indi-
vidual staff-members may be referenced as, for example, STAFF(NO),

14

6.3

and a given field of a structure as STAFF(NO)%FIRST NAME, for the
first name of a particular staff-member. More elaborate data types
may be constructed using the ability to nest definitions as in

TYPE COMPANY
CHARACTER(LEN=20): : NAME
TYPE(STAFF_MEMBER), ARRAY(1000)::STAFF
END TYPE
%YPE(COMPANY), ARRAY(20): :COMPANIES

to define a structure to define companies.

Data abstraction

It is possible to define a derived data type, and operations on
that data type may be defined in an internal procedure. These two
features may be combined into a module which can be propagated
through a whole program to provide a new level of data abstraction.
As an example we may take an extension to FORTRAN's CHARACTER data
type whose definition must be of a fixed and pre-determined length.
A user-defined derived data type, on the other hand, may define a
set of modules to provide the functionality of a variable length
character type, which we shall call STRING, (the example is due to
J. Wagener). The module for the type definition might be

MODULE String type
TYPE String{Maxlen)
INTEGER: :Length
CHARACTER(LEN=Maxlen)::String data
END TYPE String
END MODULE String_type

With

USE /String type/

TYPE(String(60)), ARRAY(10)::CORD

we define an array of 10 elements of maximum length 60. An actual
element can be set by

CORD(3) = 'ABCD'

but this implies a re-definition or overloading of the assignment
operator to define correctly both fields of the element. This can
be achieved by the internal procedure

INTERNAL SUBROUTINE C to S assign (S,C)ASSIGNMENT
TYPE (String)::S
CHARACTER(LEN=*)::C
S%String data = C
S%Length = LEN(C)
END INTERNAL SUBROUTINE C_to S assign

which can be included in the module, together with other valid

15

functions such as concatenation, length extraction etc. to allow
the user defined string data type to be imported into any program
unit where it may be required, in a uniformly consistent fashion.
This powerful new feature allows users to define data structures of
arbitrary complexity, for instance for Tlist-processing, interval
arithmetic etc. These can be coded in modules which can be used not
only in one program, but be placed in libraries for wider use.

The crystal ball

Since the title of this paper is "Has FORTRAN a Future?", the
concluding section must finally come to grips with the difficulties
of prophecy. Viewed in isolation, it might be 1imagined that
FORTRAN, as a demonstrably useful language, could stay with us for
a very long time, especially if it dis kept "up-to-date" by
decennial revisions. It is, however, impossible to think about
FORTRAN's future without also considering potential and actual
rivals.

For many small-scale applications there will certainly be a con-
tinuing trend for PASCAL and sometimes C to be used, where FORTRAN
might have been used before. This will happen because of the
widespread use of PASCAL as a teaching language, making it the
lingua franca of computing, and because of the widespread availabi-
lity of C compilers as the UNIX operating system continues its
onward march. For real-time applications and process control there
will surely be a move towards ADA as soon as proper compilers for
that Tanguage become available. The fundamental question is whether
the hard-core FORTRAN applications in large-scale scientific,
numerical and engineering fields will be significantly influenced
by moves to newer languages. Since PASCAL has many limitations for
this type of activity - poor 1/0, no extended precision, no complex
arithmetic, no expcnentiation, etc. - its ability to displace
FORTRAN from below is inherently curtailed. ADA, on the other hand,
although designed to replace real-time Tlanguages in embedded
systems, has turned out to have powerful numerical capabilities, as
shown by Hammerling and Wichmann [18]. If the problems of building
program libraries with a language which has very general precision
definitions and of interfacing it to FORTRAN can be overcome, it is
conceivable that some FORTRAN users would prefer to move to that
language for new applications. Given the inertia of programmers,
and their heavy investment in existing code, that is likely to be a
move of small proportions. More probable, if ADA ever gets off the
ground outside the DoD, is that new programmers who have learnt ADA
as a first programming language will slowly cause FORTRAN to become
a language used only by an ageing generation.

But what are the straws in the wind ? On the one hand we learn that
MIT has chosen to standardize on four Tlanguages for its ATHENA
project, which 1is planned to couple several thousand personal
workstations over the whole campus. They are LISP for the purists,
FORTRAN for the realists, C because it is in the selected operating
system and PASCAL for teaching. No-one wanted ADA at all. On the
other hand we know that Digital is about to announce an ADA compiler
for its VAX machines and clearly if it works well, many potential
FORTRAN application programmers might be tempted at least to try
it. At the same time, interest in ADA in US universities seems to
be tailing off, although it remains strong in Europe, and is

16

certainly much stronger than academic interest in FORTRAN, as may
clearly be seen by comparing any issue of ACM FORTEC Forum with any
issue of ACM ADA Letters.

What we basically see 1is a huge investment in ADA creating an
irresistible force, which will shortly meet the enormous inertia of
FORTRAN, an immovable object. One key to the final outcome will be
the acceptance or otherwise of the new FORTRAN standard, and its
rapid and successful implementation, enabling it to compete with
ADA on an equal footing, as by that time ADA should be fairly well
established. The other key will be user reaction. The fact that a
useful FORTRAN program can be written by a novice in a day, even in
FORTRAN 8x, makes it attractive for non-specialists who use compu-
ters as one of many other tools. ADA is a language for experts, and
the final division may then well be ADA for big specialist appli-
cations, FORTRAN for big applications written by non-specialists,
PASCAL for small applications, with non-procedural languages
displacing a1l three in the long-term.

17

References

[1] Backus J. et al. (1957). In "Programming Systems and Languages"
(S. Rosen ed.) pp.29-47. McGraw Hi11, New York, 1967.

[2] Metcalf M. (1982) Aspects of FORTRAN in large-scale programming.
In Proceedings of the 1982 CERN School of Computing, CERN 83-03,
pp. 140-146.

[3] ANSI (1978) - Programming Language FORTRAN, X3.9-1978, ANSI,
New York.

[4] Metcalf M. (1984) Survey of user reaction to FORTRAN 8x proposals.
Minutes of IS0/TCS7/SC5/WGI. April 1984, Geneva.

[5] Metcalf M. (1982) An introduction to FORTRAN 77, CERN DD/US/11.
[6] Metcalf M. (1983) FORTRAN 77 coding conventions, CERN DD/US/3.

[7] Metcalf M. (1983) Design conventions for FORTRAN programs, CERN
DELPHI/83/99.

[8] Metcalf M. (1982) "FORTRAN Optimization", Academic Press, London
and New York.

[9] Metcalf M. (1985) "Effective FORTRAN 77" Oxford University Press,
Oxford.

[10] Reifer D.J. and Meissner L.P. (1975) Structured FORTRAN
Preprocessor Survey UCID-3793, LBL, Bekerley.

[11] Sakoda J.M. (1979) ACM Sigplan Notices, 14, 1, 77-90.

[12] Wagner N.R. (1980) ACM Sigplan Notices, 15, 12, 92-103.

[13] Wilson K. (1983) CERN Courrier, 25, 5.

[14] Wilson K. (1983) Minutes of X3J3/157, pp. 188-189.

[15] Osterweil L. and Clemm G. (1984) An extensible toolset and
environment for the production of mathmatical software, In
Proceedings of the International Conference of Tools, Methods
and Languages, North-Holland, Amsterdam and New York.

[16] Williams D.O. (1984) Alternate RETURNs, SIGPLAN Notices, 19, 10.

[17] Crowley T. (1984) Array features in FORTRAN 8x, In Proceedings of
the International Conference of Tools, Methods and Languages,
North-Holland, Amsterdam and New York.

[18] Hammerling S.J. and Wichmann B.A. (1981) Numerical Packages in Ada.
In "The relationship between numerical computation and

programming languages" (Reid J.K. Ed.) pp. 225-244,
North-Holland, Amsterdam.

18

