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I INTRODUCTION
The effect of magnet imperfections on the transverse

oscillations can be most conveniently treated in the formalism
of Courant and Snyder} The important elements of this
formalism are reproduced here.

The transverse oscillations in a periodic focussing
system with period length L obey the equation

X 4 Kk(s)y = 0 1
- ds

where s is the axial length and K(s) is the periodic focussing
function, A 2 x 2 matrix formalism can be used to describe
the change in the '"vector' (y,y') from one value of s to an-
other., The matrix M which carries the vector through one

repeat length L can be parametrized as

cos p + a sin p B sin p “\
M= ) | (2)
-(1 + a“)sin p cos B - o sin u//
B

where use has been made of the fact that the determinant is 1
and the trace is 2 cos p. For stability the quantity p must be
real, This parameter is a constant related to the propagation
constant of Floquet's theorem, The parameters P and a are

periodic functions of s,

1, E. D, Courant and H, S, Snyder, Annals of Physics, 3,
1 (1958).
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Courant and Snyder have shown that B(s) satisfies the

differential equation

286" - p'2 + 4Kkp% = 4 (3)

which can be converted to the linear equation

B''' + 4KB' + 2K'B =0 (4)

The correct value of B(s) is that linear combination of the
three solutions of (4) which satisfies (3) and has B(s + L) =
B(s) and B'(L + s) = B'(s)s The function a(s) is given by

20 = -g! (5)
and the propagation constant is given by
=L dszl
o B A (6)

where 2rA is the wave length of the transverse oscillation.,
Once B(s) has been found from (3) and (4), the solutions

of (1) can be written in the exact form

- 1
W o T3 sin § (sj}
L =1B(s)
: L" ’J ) (7)

where

Bs) =[5 S ®)

These solutions are normalized such that

y1'Vy =¥y, =L (9)
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From (7) and (8), one can show that the quantity

2
Y -y, foy + BY")
B Bt P (10)

is a constant of the motion. In fact, if the parameters vary

slowly from period to period, W is an adiabatic invariant.
~ 1/2

The maximum displacement, Y = ﬁamaxw

is at its maximum value 6max (o = 0) and when y' = 0,

, occurs when B

II MAGNET DISPLACEMENT
If the magnets (or other elements) are displaced according

to the function A(s), the transverse oscillations obey the

equation

2
L + R(s)y = K(s)a(s). (11)
ds

The solution of this equation may be expressed in terms of Y1

and y, as

y(s) = y,(s) [?01/2 cos X + fi ds' yz(S')A(S')K(s'E]
(12)

+ yz(s) [?61/2 sin X = fg ds! yl(s')A(s')K(s'z]

where Wb and X determine the amplitude and phase of the
oscillation in the absence of errors.* The adiabatic in=-

variant now has the approximate value

w2z wbllz + fi ds' A(s')K(s')i:gz(S')COS X = yl(s')sin:g] . (13)

1/2

1/2 sin x, oay(o) + By'(o) = (WOB) cos X

* y(o) = (W)



iy
The task is now to obtain the expectation value of
(wllz 1/2

magnet positions, corresponding to a specific distribution
of A(s). The result will also depend on the way in which

)© for a particular method of adjusting the

the focussing elements are distributed within a period.

Several cases will be discussed,

Case 1. Uncorrelated Magnet Errors -- Focussing Doublets

For individual magnets of length /, one finds

W1/2 - Wollz = )5 KjAj [: (s ) cos X - yl(s ) sin x| . (14)

Setting {iAiAj:> = a2 614> ome obtains

Lat? o HH2s o g2 : kK2 (8% + B7) cos?(h + x) (15)

where ﬁ; and ﬁ; are the values of B at the focussing and
defocussing magnets respectively, and each value of m corres-
ponds to one magnet period. If on is the value of Y ex-
pected at the exit of the focussing system in the absence of

magnet errors and the subscript f stands for the exit, one has

2 2 N
= (¥, - =8 dao k2(6} + 87) (16)

max, f 2 upl m

where the average value of cos2 has been taken to be 1/2.
For a design with constant values of Km and B; from cell to

cell, one has approximately

2~ 222
sy 2= Np2k252a (16a)
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where N is the total number of magnet periods. It should be
remembered that any alignment procedure which relies on
angular measurement will lead to a length-dependent value of
A, in which case AYﬁms will be proportional to N3/2.

For doublet magnets each of length /, separated by a
distance £', in a period L, one can show in the smooth

approximation (neglecting rf defocussing forces) that¥*

k22 & (LZ' £’) (16b)

A L

#®An expansion in powers of the focussing strength is carried
out in Courant and Snyder who show that (Eq. 3.39 with g =0 )

- = /:—ﬁ)?
:7 2 &3

A =

ef. "
where 21 (s) = - K(s)s If 4 << £', one can write K(s) =

K2 [é(s) - (s = Z'i} « This leads to

o t
((=R(L - ) 0o<s < g
L
'
ef1 _ y
2 } 2
+K2 I ' < s <L

"~

which in turn leads directly to (16b).



In this approximation B ~ A and (16a) becomes

2.2
2 wma
AY s ~ @ -1 (16c)

Case 2. Uncorrelated Magnet Errors -- Focussing Triplets
The analysis for triplets is parallel to that for doublets,

with (16) becoming

2,2 N

2 ) 2, .+ -
AYrms N 5max, £f 2 mgl Km (ZBm + 46m) 17

Here the focussing magnets are each of length / and strength K,
and the defocussing magnet of length 2/ and strength K, the + - +
triplet having inter-magnet spacing %'. The equivalent re-
lations to (16a), (16b) and (16c) are

2 ~ 2,2,2,2
AYrms - 3NBTKTL7A" , (17a)
1~ 2,2 4
v 2 2L

Case 2a, Ixiplet Units ’
If the triplets are each perfectly bench-aligned and the

ends of the triplets are then aligned relative to the machine
axis, the main component of the error is removed, In this
case (17) is replaced in the smooth approximation by
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N 2!
2 _ 2.2 2,” m2 +
AYrms ﬁmax,fz a mgl Km ( A ) P (18)
The equivalent of (1l7c) is
2 2L ,42'.\2
Ay, oo~ N2 (57 (18¢)

which represents a significant reduction from (17¢), since

4' is usually small compared to 4 .

Case 3, Alignment via Monuments

As pointed out in the discussion following (16a), align-
ment of long machines will lead to prohibitively large displace-
ments if each magnet is aligned to some predetermined curve
with an accuracy proportional to the length, For this reason
Courant2 has analyzed a procedure of aligning monuments and
subsequently aligning the magnets with respect to these monu=-
ments for a circular accelerator. The procedure works as well
for a linear accelerator and leads to a reduction in the ampli-
tude growth by a factor of order 1/M, where M is the number

of monuments.,
This can be seen as follows:

There are two sets of uncorrelated errors in such a
procedure, The first is the set of monument errors and the
second is the set of errors in the adjustment of the magnets
to the line joining the nearest pair of monuments., The
second error leads of course to formulas (16) - (18), but in
this case the value of <:A2 >>1/2 is consistent with a length

NL/M instead of NL,

2. E. D, Courant, Internal Report IA-3, EDC-43 (1961).
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The set of monument errors leads to an increase in
amplitude which can be viewed as being due to a change in
angle as one passes a monument, If the line joining the mth
and (m + 1)st monuments makes an angle 8, with the accelera-

tor axis, one finds from (10)

= ! '
Wy =8 .2 (cy + By )mAy o (19)
' -
with N A Qm + 1 Gm e« Writing

ay + By' = Y(%—--)ll2 cos ¥, y = Y(E-—--')I/2 sin ¥ (20)

max max

with {' = % , one finds

1/2 1/2
i ﬁm (gm

AY = Bmax 41" Qm) cos wm (21)

2

The value of AYrms now depends on how the angular errors are

correlated,

Case 3a. First Difference Monument Errors

If the monument errors are of the first difference type
(as in the case of alignment of the vertical position with a
level or plumb line), each Qm is uncorrelated and one has

2 M

Mrmg  ~ Bmax,f<9 >m§1 Py (22)

For a constant P design, in the smooth approximation one finds

2~ 2,2
ay_ © = Mp <e > (22a)
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Case 3b., Second Difference Monument Errors

For second difference type errors (as in the alignment

of horizontal position), each value of AOm = Qm +1 " Gm is

uncorrelated and one has

B M
2 max,f 2
AYrms - 2 <(A9) >m E 1 Bm (23)
and 2 '
2 _ M 2
avz o~ B <(A9)> (23a)

III ERRORS IN MAGNET FIELDS

If the magnetic field gradients have uncorrelated errors,
the transverse amplitude will be stimulated as it is by mis-
alignments, In fact, the result in (15) can be converted to

the case of gradient errors by replacing the displacement by

its equivalent.

A —> %yu-%Ysin b+ %) (24)

where éﬁ& is the fractional gradient error, This leads to

<(w1/2 _ W01/2)2> -
| (25)
v2 42 <(%(')2> %Ké (B;; + ﬁ;) COSZ(CPm + Q() sinZ(Cpm + %(),

2

Since the average of sinch cos“p is %’-, one finds



2,2 N
2 _ v24%  AK.2 2 4+ .-
A yms = Pmax,f ~8 T 21 Ky B+ BY) (26)

which, in the smooth approximation, becomes

2.2.2,2
2~ NY°BKRZ4S /OK,2
N G > (26a)
or ) 2
2 NY L AR, 2
Moms ~ 4 T - 20 <(K) > (26b)

Clearly, any correlation of field errors in adjacent magnets
will lead to a reduction of the estimate in (26) similar to

that in (18c).

IV ERRORS IN ORIENTATION OF TRANSVERSE MAGNETIC AXES

Any random error in rotation of individual magnets
about their null axes will lead to a coupling of both transverse
oscillations and to an increase in each, An analysis similar

to that in Section III leads to the result

av? = unx2p2x 2,2 <(Atp)2> 27)
2 ~ 2.2.2.2 2
Axrms - 4NYTBK™Y <i(A@) ;> (28)

where X and Y are the two transverse amplitudes, Here
<(Acp)2> is the average of the square of the angular error,
Once again, if the errors in adjacent magnet orientations are

correlated, these results are greatly reduced,



V SUMMARY

In general all types of errors may be present -~ individ-
ual magnet positions, monument positions, position errors for
groups of magnets, field errors, orientation errors, etc. As
long as these are uncorrelated, one just adds values of
AYrms2 for each source of error,

As an example, let us consider the case of imperfectly
"bench~aligned" triplets, which are then aligned relative to
monuments., The contribution due to the monument (2nd difference
alignment) .errors is given in (23a). The contribution due
to the errors in the alignment of the triplets to the line
joining monuments is given in (18c). The error due to the
inaccuracy of bench-alignment within a triplet is given by
(17a), where AZ is the rms displacement error, which is one-
third of the averaged square second difference error of the
triplet,

It is also clear from the analysis, and from the treatment
of circular accelerators, that the essential requirement is
the alignment of the transverse focussing system to any
"smooth" curve, The quantitative definition of "smooth' is
contained in a Fourier analysis of the displacement error,

The use of monuments provides a method of minimizing those
Fourier components which cause large buildup of the transverse
amplitude,

1t should be mentioned that the difficulties caused by
alignment errors are relatively less important in linear
accelerators than in circular accelerators where the particles

traverse the focussing system many times,



