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ABSTRACT

We report on T N events observed at 150 and
175 GeV/c in a large-acceptance spectrometer triggered
by J/Y > uu. We observe with high mass-resolution the
particles Y/, K® and A. We present evidence for a new
resonance at 5.3 GeV/c?, whose possible interpretation

is a meson containing a b-quark.

* * *

At the CERN Super Proton Synchrotron (SPS) we have
performed an experiment which was designed to lock at
the hadrons associated with lepton pairs produced in

T Be scattering at 150 and 175 GeV/c.

A side view of the apparatus is shown in Fig. 1.
The apparatus is composed of a 18.8 g cm 2 Be target
(split into three parts to minimize y conversions) placed
in front of a vertex spectroﬁeter. In the forward direc—
tion the set-up is "completed" by a lever-arm spectro-
meter equipped with a multicellular Cerenkov Eounter and

a muon identifier.

The vertex spectrometer consists of the-Goliath
magnet (1.5 T, @ pole 2 m, gap 1.05 m), whose centre is
2.25 m from the middle target; Goliath is filled with
two small proportiomal chambers (0.6 X 0.22 m®; one
vertical plane, 1 mm wire spacing; two tilted planes,
2 mm wire spacing) and eleven medium-sized proportional
chambers (1.8 x 7 m?; four planes, 2 mm wire spacing).

The number of wires in Goliath is = 30,000.

The forward lever-arm is composed of two large pro-
pertional chambers (3 x 2 mz, four planes, 3 mm wire

spacing) and a multicellular (28 cells) Cerenkov counter
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filled with CO, at atmospheric pressure. The muon fil-
ter consists of an iron shield, 3.4 m thick, sandwiched
between horizontal slabs of scintillator. The front
and rear slabs are arranged in pairs which point for-
ward the targets. The pairs are combined to define
four quadrants relative to the median horizontal and
vertical planes of the experiment (each quadrant has
eight pairs of slabs). A vertical hodoscope (40 slabs)

completes the muon identification after the iron.

The trigger is based on the detection of opposite-
sign muons; this is achieved by requiring hits in
either pair of the diagonally opposite quadrants. A
gap in the horizontal median plane of *16 mrad is pro-
vided in order to lower the trigger rate coming from
m-u decays, between the target and the muon filter,
which produce mainly low up effective masses. The J/u

production rate is 0.35 x 107 (v 100 J/y/day).

RESULTS

1. IDENTIFICATION OF KNOWN PARTICLES

Figure 2 shows the J/Y and y’ signal obtained with-

out any renormalization of the magnetic field map. One

gets
Tables:
™y = 3095.44 + 0.46 MeV/c? . 3097 :.2
L 3683 + 6  MeV/c? 3684 3 .
Oy = 37.5 + 0.4 MeV/c?
ow' = 35 + 6 MeV/c?

The fit of the full spectrum with two exponentials for
the background and two Gaussians for the J/y and ¥’
shows that out of 10,640 events between 2.95 and

3.25 GeV/c? there are 9000 J/Y's. (This spectrum ex-
cludes a sample of 1650 J/y's taken with a special

x > J/Y y-detector configuration.) The background in

our J/Y sample is thus about 157.



One gets also 140 ¢''s with a background of about
40% in the 3.585-3.785 GeV/c? mass range. The mass reso-
lution [G(M)/M = 1.22] is far better than for a beam dump
experiment and allows a clear separation of the J/¢ and

! peaks.

Figure 3 presents the J/y 77 effective mass spec-
trum. The ¢’ signal appears in spite of the high com~
binatorial background. The background shape is obtained
by a polynomial fit to the Jhbﬂ+ﬂ+ + J/y 7w distribu-
tion. The solid line is the fit obtained with a Gaussian
for the resonance plus the previously determined poly-

nomial fit of the background. We get

M = 3682 + 2 MeV ,

g = 12 £ 4 MeV .

The peak contains 280 events. To obtain such a good

resolution, the J/y mass has been constrained to take

1)

its exact value 7.,

2. ASSOCIATED PARTICLES

Figure 4a gives the ﬂf effective mass spectrum
versus the pn effective mass spectrum for the V%'s col-
lected in our experiment. The A and the K® signals
and the y reflection can clearly be seen. Figure 4b
gives the ete” effective mass spectrum versus the 7w
one for the same V®'s., Here the K°, the y, and the A

reflection can be seen.

In what follows, we reject the areas of Fig. 4
which contain the ambiguities between K’ and y, between

K® and A, and between A and Y. Figure 5a shows the K°

signal. A fit to the mass gives

Tables:

497.74 * 0.45 MeV/c? 497.67 + 0.13

Mo

o= 8.1 * 0.4 MeV/c? ,

It yields 520 + 28 K%'s out of a total of 660 events in
a 20 MeV/c? mass range centred on 498 MeV/c?. Hence
- for the events in this range, the background is 21%.
Figure 5b shows the A + A sighal. A fit to the mass
distribution gives

Tables:

= 1115.3 + 0,2 MeV/c? 1115.6 £ 0.05

My

o= 0.3 MeV/c? .

1+

2.6 *
This yields 180 + 20 A's.

3. J/y Km EFFECTIVE MASSES

Building J/Y K, J/¥ K*, J/y Km, J/¥ K*1 effective
mass spectra is a way of looking for possible naked

beauty states; a possible quark diagram is:

b . ¢ /c
w; j—=d/y
i lor O or\Z
B- bl
yor d oi/ 8
{ —= K, KmKr»
a g

One expects masses greater than 3.2 GeV/c2 due to the .
limit set by the T":
Mo ) s .
MB > - = 5.2 GeV/e“ ‘
Our sample of 9000 J/y's
one (6671 J/Y's) taken at 150

J/Y's) taken at 175 GeV/c incident pion momentum.

is composed of two subsets:
GeV/c, and the cther (2324
The
JﬁbKoﬁi effective mass spectrum is given for both
samples combined in Fig, 6. In each effective mass cal=-
culation the J/¢ and K° are constrained to their exact
valuel). The binning, 40 MeV, is equal to the resoluti&
A peak shows up at 5.3 GeV/c?. The JAPK—H+

seen in Fig. 7 also shows an enhancement at 5.3 GeV/c?.

spectrum

It appears clearly when we ask for pp(K) > 0.5 GeV/c.
The J/Y K~ spectrum does not show anything (Fig. 8),
but it can be seen that the background is twice that for
the K-;
of our k' sample. Figure 9
Kor% and I/ Kn* channels:

and in Fig. 9b with 20 MeV bins.

to the proton contamination
shows the sum of the J/y
in Fig. 9a with 40 MeV bins

it is probably due

A fit to the spectrum

with a polynomial plus a Gaussian yields

My = 5300 ¢+ 7 MeV/c?
o= 22% 7 MeV/c?
N = 45 + 14 Mev/c?

In order to estimate the statistical significance of this
peak, we have made a special histogram in which a given

event contributes only once to a given bin (Fig. 9c).

We get:
Signal 25 events
Background 37 events .
Total 62 events -
s/vVB = 4.110
S/V/T = 3.180 ’ -

3.1 Cross-section estimate for T p - BE + X

OQur average J/{ total production cross-section is
100 + 10 nb *), With 9000 J/y's there is a semsitivity
of v 11 pb/JY event.

model it is difficult to estimate our acceptance.

Without any established production
A
crude calculation for the K acceptances leads to Bo

v 2 nb.



. P 3)
If the branching ratio is arcund 1% ), we get
953 " 200 nb. This result is not far from previous-
. . 4)
ly predicted cross-sections ).

3.2 Theoretical interpretation

)

In March 1979, Fritzsch®
cays of the B in J/¥ K, J/Y K*, J/y ®r, J/¥ K*7. The

predicted observable de-

branching fractions at each vertex that he predicts are:

b N] OOO/O Cc
i
Wi ~20% J/Y
! C
~14%|
S

This leads to an estimate of the branching fraction
B+ J/Y X of v 37.
and J/¥ K*,

We do not see anything in J/y K

5
Since then, Fritzsch ) and Wetzel (private communi-
cation) have given kinematical arguments which suppress
the J/¥ K and J/ K* modes:

variant mass is between 1.1 and 1.8 GeV/c, the J/ Km

since the recoiling in-

mode 1s favoured.

4. A SECOND WAY OF LOOKING FOR BEAUTY

An alternative diagram which also has J/y, K's, and

m's in the final state is:

7 . a g m's \
} Knrm
8" ————
l W u } D~ Km~
b c
b
Wi Yory
L
d l

N X

In this, a B meson decays to Dm, D2m, ... .

+ +

Summing allchannels(KQ nni)g with 2 < n £ 5, we

get Fig. 10a. No peak appears. Tf we ask that one
combination (K~ mﬂi) with 1 < m £ n-l1 has the mass
(MD * 40 MeV) we get Fig. 10b.
5.3 Gev/c2,
momentum, pT(K) > 0.5 GeV/c, reinforces the signal
(Fig. 10c);

decays into light particles.

A small peak appears at
S *
An additional cut on the K%, K~ transverse

this cut is justified because a heavy mass

The peak is still there (Fig. 11) if we restrict

+
the mass (K" m7n” )" further to be Mt 20 Mev.

CONCLUSION

Evidence for a new resonance at 5.3 GeV/c? is

appearing. In the J/U K7W channel there is a 4.10 effect;

in the K o7 channels an effect is alsc seen. Clearly,

more statistics are needed in order to settle the ques-
tion, The reason why it seems easier to see the B than
the D signal, despite the small branching ratio in both

cases, is that the J/y, the trigger particle, enters the

effective mass combination, whereas this is not the case
for the D. Moreover, the J/y, with its very clear sig-
nature, allows us to reach very small cross-sections.
For the K n7 case, because of the large mass of the B,
the signal appears because there is little phase-space
left for the background and because we sum all the pos-

sible K mm decays of the D.
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FIGURE CAPTIONS

Experimental layout. H represents a scintillator hodoscope; | is a muon beam halo detector.

Dimuon mass spectrum, uncorrected for geometrical acceptance.

J/Y 7t mass spectrum with the background shape from J/¥ . J/Y T ;uperimposed.
pT effective mass spectrum versus the T effective mass spectrum for the observed V°'s.
ﬂ+n- effective mass spectrum versus the ete” effective mass spectrum for the same V°'s.
Mass spectrum of the K°.

Mass spectrum of the A and A.

J/ Koﬂt effective mass spectrum.

JN K 1" effective mass spectrum with pT(K-) > 0.5 GeV/e.

J/ K'n~ effective mass spectrum with pT(K+) > 0.5 GeV/e.

A sum of the J/¥ K ™ and J/¢ K 7' effective mass spectra, with 40 MeV/c? bins.
Same as (a), with 20 MeV/c? bins.

+ . . . . . s
J/ K°1 effective mass spectrum in which an event contributes only once to a given bin.
+

o+

(K nﬂi) effective mass spectrum:

a) 2 <n<5; . +

b) Same as (a) with the additional requirement that the effective mass (Kg mﬁi)2 has the mass
+ 40 MeV/c?) and 1 < m < n-1;

c) Same as (b) with pT(K) > 0.5+GeV/c.

Same as Fig. 10 but with mass (Kg m‘ni)I = MD + 20 MeV/c?.
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