CERN LIBRARIES, GENEVA

CM-P00063775
SPS/ACC/PvdS/Report 80-27
14 October 1980

TRANSPARENT ACCESS TO MICROPROCESSORS

P.D.V. van der Stok

Contents

Introduction

1. The Auxiliary crate Controller (ACC)
2. The NODAL interpreter and compiler
3. The DATA-MODULE concept

4. NORD and ACC software layout

5. Other facilities

6. Conclusions

Paper presented at the NOCUS meeting, Helsingdr,
15-17 October, 1980

Introduction

The SPS Division has developed a CAMAC module which incorporates the
the TMS 99001) microprocessor into the Auxiliary Crate Controller (ACC)2)
to permit autonomous data processing in a CAMAC crate attached to a host com-
puter. The arrangement is shown in fig. 1. A NORD-10 or NORD-100 computer
is linked through a NORD Crate Controller to the CAMAC crate which contains
the ACC.

A
CAMAC
N-10 g CRATE
or
N-100
|
HARDWARE
SOFTWARE
s eam— ¥
N-10 ,' T T T T\ ms-9900
NODAL NODAL
INTER- | SRMI“V‘ER \ COMPILED
PRETER \ CODE
‘\.- —-—— — am— o—— -—— —-’,
COMMUNICATION
PACKAGE

Figure 1

This arrangement can be considered for parallel as well as for serial
CAMAC crates.

As well as the NORD host the ACC is capable of accessing all CAMAC
modules housed in the same crate.

This paper describes how the ACC is used to unload the NORD CPU by
allowing the ACC to control the equipment in an autonomous way. The NORD
computer communicates with the ACC as if the logic situated in the ACC were
resident in NORD. ;he software layout is also shown schematically in fig. 1.
A Nodal interpeter3 resident in the NORD allows the calling of us?r dependent
functions to control the equipment. This so-called DATA-MODULE#s>) will then

-2 -

perform the specified action on the equipment and its associated tables. The
ACC makes it possible to place the code for this function in the TMS-9900
microprocessor and execute it there. While this function is executed the
NORD CPU is free for other purposes. The NODAL programs do not see any
difference between a call to a DATA-MODULE either resident in the NORD com-
puter or in the ACC.

The DATA-MODULE code is written in NODAL 'language and compiled on the
NORD machine. Communications between the NORD and ACC passes through a stand-
ard communication package which uses the CAMAC driver.

1. The Auxiliary Crate Controller (ACC)

The ACC-SPS 2420 is a one width CAMAC module containing a TMS-9900
microprocessor produced by Texas Instruments. The ACC conforms to ESONE
6500 specifications for the communication with standard SCC-L2 and A2 CAMAC
controllers. It is moreover compatible with CERN's standard NORD dedicated
CAMAC crate interface. A teletype port, a programmable real time clock and
a minimal LAM handing facility are available.

The TMS-9900 has a 64 k byte direct memory addressing scheme. These
32 kwords are divided into two distinct 16 k blocks. The lower block is
implemented in an on-board memory while the higher 16 kword block represents
the NAF field of the crate where the ACC resides. Consequently the CPU can
execute all of its instructions without distinction between memory and CAMAC
equipment addresses. The 16 k Ram can be partially replaced by EPROM (by
internal bridges, up to 4 k in steps of 1 k).

Any memory location can be written or read from the NORD host computer
while the microprocessor executes instructions.

For reading a memory location an internal register is set to the ap-
propriate address value by one CAMAC command. Another CAMAC command enables
the reading of one word from the memory modules, and automatically increments
the memory pointer. A similar sequence applies for a write into the memory.

Four interrupts can be generated from four connections on the front
panel. A programmable interrupt is raised with one CAMAC command while the
ACC can also generate a LAM.

2. The NODAL interpreter and compiler

NODAL is a high level programming language, based on FOCAL and SNOBOL,
designed for interactive use by non-programmer specialists for the daily
control of the SPS accelerator. The most important aspect of NODAL in this
context is that accelerator control programs can be written, debugged and
modified interactively by accelerator physicists, engineers and technicians
in a much faster and easier way than with many other computer based languages.

The NODAL interpreter executes several types of commands. In the table
below the list of commands for creating or modifying (actually the same type
of operation) the value of a variable is given :

ASK sets variable to value typed on terminal
SET sets variable to value of an expression
DIM creates a floating point array

DIM-INT creates an integer array.

NODAL works exclusively on floating numbers and when integer values
are needed, the floating point number is converted to an integer.

GOTO go to line

DO execute line or group as subroutine
RETURN exit from DO call

END end program.

Commands for decision and loops are:

IF conditional execution or branch
FOR loop execution
WHILE conditional execution-

Each program line is identified by a unique line number in the range
of 1.01 to 99.99. Program lines which have the same number to the left of
the point constitute a group. In the following example, contrived to show
facilities rather than to perform a specific task, the program is made up
of two groups: one and three.

1.10 ASK 'START VALUE' XS; IF XS<0; SET Y = 1.10 : GOTO 1.9
1.15 ASK 'END VALUE' XE; IF XE<XXS; SET Y = 1.15; GOTO 1.9
1.20 FOR X = XS, XE; DO 3

1.25 GOTO 1.10

1.90 TYPE 'WRONG LIMIT'; GOTO Y

1.99 END

3.10 TYPE "X, EXP(X)=" X EXP(X) !

3.15 RETURN

The group structure allows the execution of sub-sets of program as a
subroutines by means of the DO command. The subroutine calls can be made
recursive and nested to any depth. A useful capability of the DO command
is that it is possible to specify exception handling. For example, the
statement DO 2!3 executes group 2, and when an error has been detected in
the execution of group two, group three is executed.

The NODAL cross compilers) compiles code for a virtual machine. The
associated virtual machine instructions are then translated into code for
the target machine. For each target machine one code generator is needed.
All arithmetic instructions operate on a three-word floating point number.
Consequently the results obtained from the NODAL compiled code in the target
machine are identical to the results obtained under the NODAL interpreter
in the NORD machine.

The compiler runs under the SINTRAN III operatin% system on a NORD com-
puter. Code generators are available for the TMS-99007), the M68008) and

the NORDY) itself. The compilation of NODAL code imposes restrictions on

the language, for example, the command

GOTO expression
should be GOTO N

where N is a line number.

Several commands are available for providing flexibility in the genera-
tion of the NODAL code wanted in the ACC.

- Command COMPILE will create a target machine object file from
a NODAL source program.

- Command SYTBL processes a SYstem TaBLe file, which contains informa-
tion about the functions available in the NODAL programs.

- Command SYSVR creates a list of SYStem VaRiables which are loaded
into the ACC memory together with the compiled programs. These vari-
ables have exactly the same structure as the variables used by the
NODAL interpreter. This permits the loading of the variables into
the storage area allocated to the NODAL interpreter in the NORD and
allows them to be inspected there. Thus the execution of the NODAL
programs in the ACC can easily be reconstructed in the host NORD
machine.

- Command DATAMOD compiles a NODAL program and packs it in memory so
that it can be accessed as a DATA-MODULE.

3. The DATA-MODULE concept

Contrary to the traditional approach to equipment control, where a
central data base is kept up to date by the control computer on a regular
refresh cycle, the SPS equipment control uses another mechanism. The data
belonging to a specific kind of equipment are kept local to the computer to
which the equipment is connected.

This solution implies the splitting up of the equipment in groups of
the same type and same access requirements. They are grouped in software
routines, called DATA-MODULES, which are accessed through a rigidly-defined
calling sequence. This device-oriented method directs all device actions

through the same software module.

A DATA-MODULE has two parameters. The equipment number and the proper-
ty. The equipment number refers to a specific element of the equipment group.
The numbering of the equipment in one group is sequential and local to the
computer to which the equipment is connected.

The property parameter, with a three-character word preceded by the #
sign, indicates which function of the equipment is wanted.

The example of a power supply equipment will be described in more detail.
Independent of the use to which the power supply will be put, commands like
ON, OFF, status reading, interlock settings etc.. will be needed. Also within
the DATA-MODULE verifications are required to ensure that currents or voltages
stay within maximum and minimum values, and comparisons of acquired values
versus reference values are possible. The power supply should also have certain
software properties such as the conversion factors for the setting and measuring
of apparatus. To illustrate the above-mentioned concepts an example for a
call to a DATA-MODULE with specific properties is given below.

SET A = MAGNET(6, #CUR)

will put the measured value of the current that flows in magnet 6 into the
variable A.

The statement
SET MAGNET (7, #MAX) = 10.16
will set the maximum current allowed in magnet 7 to 10.16.

The DATA-MODULES can actually be used as simple variables and their
calls can be put in arithmetic expressions. The statement

TYPE MAGNET(6, #CUR)/MAGNET(6, #MAX)

will print out the relative value of the current flowing in magnet 6 as
compared to its maximum current.

Apart from being very efficient for equipment access, the DATA-MODULE
is also very practical from the implementation side since all information
concerning one type of equipment is packed in a single module.

The DATA-MODULE is an obvious candidate for export to a micro-computer.
It has a clean interface with the rest of the software system with a minimal
data set to be shared and a maximum autonomy.

4, NORD and ACC software layout

The ACC contains NODAL compiled code to control the equipment associat-
ed with it. Six priority levels are available:

front panel interrupt 1
- front panel interrupt 2
front panel interrupt 3
- front panel interrupt 4
DATA-MODULE request
background program.

The code for all six levels is written in NODAL. The interrupt and
background coding are declared by the commands WAIT-I and BACKG, which have
been added. In the example below possible coding for five levels is shown.

1.1 WAIT-I 1 ; SET INT =1
1.2 WAIT-I 2 3 SET INT = 2
1.3 WAIT-I 3 ; SET INT = 3
1.4 WAIT-I 4 ; SET INT = 4
1.5 BACKG SET BC = BC + 1

Supposing that the front panel interrupt two is activated, the code
immediately following WAIT-I 2 command will be executed. In this case the
contents of the variable INT are set to two, and the interrupt level is left
when the next WAIT-I command is encountered. Control then returns to the
next highest level, which in general will be the background routine, here
defined at line 1.5. In the example the background routine continually up-
dates the counter BC.

The variables BC and INT should be situated in the system variable
area if they are supposed to be known to the DATA-MODULE or the NORD compu-
ter. In that case they are loaded into memory with a preset value together
with the NODAL compiled code.

The DATA-MODULE code, which is also written in NODAL, provides the link
between NORD computer and ACC. In the example given below, the DATA-MODULE
DMS will be able to return the value of INT or BC to a NODAL program running
in the NORD. A NODAL program can also store a new value into BC.

DATA-MODULE DMS

10.10 % Reset Background counter

10.10 GET BC; END

20.01 % Return Background counter
20.10 PUT BC; END

30.01 % Return Interrupt counter

30.10 PUT INT; END

A table, which is not shown here, provides the automatic switching to
line 10.10, 20.10 or 30.10 depending on the property of the DATA-MODULE call.

For example, the command in the NORD computer
TYPE DMS (1, # BC)

will send the request to execute the DATA-MODULE coding for property #BC.
The equipment number does not apply in the example.

In the ACC the dispatch coding recognizes the command as an existing
property. Based on the contents of the property table it will then execute
the line 20.10. The PUT command returns the value of BC to the calling pro-
gram and this value is consequently printed on the terminal where the command
was typed. Accordingly the command:

SET DMS (1, # BC) = 4

will result in the execution of line 10.10 where the GET command will store
the value 4 into BC. Finally the command

TYPE DMS (1, # INT)
will print 1, 2, 3 or 4 depending on the interrupt level activated last.

In the NORD computer, the resident interpreter decodes the NODAL com-
mands which are then sent in the form of a table to the appropriate ACC.
The communication package resident in the NORD will verify that no errors
occurred during transmission. Errors occurring during the execution of the
code in the ACC are retransmitted to the NODAL interpreter resident in the
NORD in the same way as execution errors are transmitted by programs resident
in the NORD computer.

5. Other facilities

The NODAL interpreter is available for the NORD as well as for the
TMS-990010) computers. All arithmetic instructions are executed on three
word floating point values. The NODAL cross compiler is available on the
Nord-10 and Nord-100 machines running under the SINTRAN III run time system.
Code generators are available for the N-10/N-100 and the TMS-9900 computers.
The DATA-MODULES discussed in his paper can be constructed and tested inter-
actively on the NORD as well as on the TMS-9000 machines running the NODAL
interpreter. The execution of compiled programs is identical to the execution
of programs running under the interpreter. In both cases checks are done on
overflow, array bounds, consistent function calls, etc...

The ACC is commercially available and forms the basis for more elabora-
ted CAMAC computers which may contain either up to 8 k of EPROM, or access
a floppy disk. For the latter a floppy disk filing schemell) compatible with
the SINTRAN III filing system has been written. Files can be loaded and saved
to/from the floppy disk when the NODAL interpreter is running; also a floppy
disk bootstrap facility is availablel2),

6. Conclusions

The DATA-MODULE concept together with the NODAL interpreter have en-
abled the exportation of control functions to a microprocessorl3). A call
from a NORD host computer to the code located in the microprocessor is exact-
ly similar to a call to code resident in the NORD computer. The code for
the microprocessor is written in the high level interpreter language NODAL
and subsequently compiled into microprocessor object code. This scheme
presents several advantages:

- The code can be constructed and tested interactively with the aid
of the NODAL interpreter.

- The code can be easily tranported to other microprocessors by attach-
ing other code generators to the NODAL compiler.

- The code resident in the microprocessor is easily accessed by simple
NODAL commands from the host computer.

Acknowledgements

The NODAL compiler and NODAL interpreter for the TMS have been written
by NITTEDATA. The interpreter is owned by NITTEDATA, the compiler is the
property of CERN. The technical support of the ACC is assured by C. Guillaume.
V. Frammery has written all hardware handling routines. E. d'Amico has con-
tributed by being the first to use all the facilities for the solution of
a specific instrumentation problem and by suggesting improvements. T. Stokka
has contributed to the DATA-MODULE support routines and has written the code
generator for the NORD. M. Krueger was involved with the floppy disk handling
routines, and last but not least, J. Altaber and F. Beck have initiated and
encouraged this project.

REFERENCES

1. Texas Instruments, 9900 family systems design.

2. C. Guillaume, Contréleur auxiliaire de chdssis CAMAC (ACC).
SPS/ACC/CG/Note techn. 79-9 (1979).

3. M.C. Crowley-Milling, G. Shering. The NODAL system for the SPS.
CERN 78-07 (1978).

4. M.C. Crowley-Milling. The data-module, the missing link in high level
control languages. Presented at 3rd Int.Conf. on Trends in on-line
computer systems. Sheffield, 27-29 March, 1979.

5. J. Altaber, F. Beck. The distributed data-base for the CERN SPS Control
system. Presented at European Workshop on Industrial Computing Systems
(PURDUE, Europe), Vienna, April 1980.

6. NITTEDATA, NODAL cross compiler. Reference manual.

7. NITTEDATA, NODAL code generator for TMS-9900.

8. NITTEDATA, NODAL code generator for M6800.

9. T. Stokka. Private communication.

10. NITTEDATA, TMS-9900 NODAL interpreter. Reference manual.

11. NITTEDATA, NODAL floppy file system. Reference manual.

12. M. Krueger. Private communication.

13. R. Bossart, A. Chapman-Hatchett, E. d'Amico, J.P. Papis, H. Rossi,

V. Rossi, Beam position measurement for proton-antiproton operation

in the SPS. Presented at the XI Int.Conf. on High Energy Accelera-
tors, CERN, Geneva, 7-11 July, 1980.

