CERN/ISRC/70-1

Ref : D.Ph.II/AM/tr Date : 23.1.1970

## Memorandum

To : ISRC

From: G. Charpak, D. Drijard, H.G. Fischer, A. Minten and F. Sauli

Subject: Plans for an experiment to measure proton-proton correlations at the ISR.

- 1. Considerable interest has been recently devoted to the study of the "deep inelastic" proton-proton scattering. 1) This is stimulated by the results of electron-proton scattering 2) and theoretical considerations by Bjorken 3) and Feynman 4), who interpret the experimental results as the scattering of the electron on pointlike constituents of the proton (= partons) at "infinite momentum". This experimental condition of "infinite momentum" is fulfilled in the best possible way at the IRS. Although the physical meaning of a possible comparison between ep an pp scat+ering is not obvious, we feel that the behaviour of the cross section as function of the quantities t and v (v = E<sub>in</sub> E<sub>out</sub>) and their correlations are of fundamental interest beyond any model.
- 2. In an attempt to parametrize inelastic proton-proton reactions by the behaviour of the "leading particles" we propose to measure 5):
  - the inelastic spectrum of <u>one proton</u>, integrated over all final states; similar measurements will have been made by production experiments <sup>6)</sup>, so that this part will be mainly a test and calibration procedure.
  - the correlations in the inelastic spectra of two protons; this includes, among others, the correlations  $(t_1, t_2)$ ,  $(v_1, v_2)$ , and  $\phi$  ( $\phi$  = angle between the scattering planes of the two protons).

CERN LIBRARIES, GENEVA



CM-P00063188

./.

- iii) the correlation between the proton quantities t and v and the configuration of the "missing matter"; the secondary products will be described in a gross way by quantities like: missing mass, charge multiplicity, and angular distribution.
  All measurements can, in principle, be performed simultaneously in the Split-Field Magnet.
- 3. The technical implications are the following:
  - i) The SFM is equipped with chambers for trajectory measurements of forward particle in the main magnet and the compensator magnets; large angle secondaries are detected by one layer of chambers arranged in a box around the intersect;
  - protons are selected by two Cerenkov hodoscopes in the forward cones. The subdivision must be sufficiently fine in order to reduce the probability for double trajectories to a reasonable limit;
  - iii) it seems unattractive to accept the forward particles by conical vacuum chambers as discussed in the past. An effort to develop a very thin or very light round or elliptic tube should be encouraged.

./.

4. A detailed proposal will be submitted within this year.

## References:

- E.W. Anderson, E.J. Bleser, G.B. Collins, T. Fujii, J. Menes,
   F. Turkot, R.A. Carrigan, Jr. R.M. Edelstein, N.C. Hien,
   T.J. McMahon and I. Nadelhaft. Phys. Rev. Letters 19, 198 (1967).
  - G.J. Marmer and L.G. Ratner, J.L. Day, N.P. Johnson, P. Kalbaci, A.D. Krisch, M.L. Marshak and J.K. Randolph. Phys. Rev. Letters 23, (1968) 1469.

CERN-Bologna Collaboration, proposal to the CERN-EEC (1969).

- E.D. Bloom, D.H. Coward, H. DeStaebler, J. Drees, G. Miller,
   L.W. Mo and R.E. Taylor, M. Breidenbach, J.I. Friedman,
   G.C. Hartmann and H.W. Kendall. Fhys. Rev. Letters 23,
   (1969) 930.
- 3. J.D. Bjorken, Phys. Rev. 179 (1969) 1547.
- 4. R.P. Feynman, Stony Brook Conference 1969 (unpublished).
- 5. A similar experiment has already been discussed earlier: J.V. Allaby, A.N. Diddens, R. Dobinson, A. Klovning, D.H. Miller, K. Schluepmann, A.M. Wetherell. CERN/ISRC/69-29.
- 6. CERN-HOLLAND-Lancaster-Manchester Collaboration and
  Bologna-Michigan Collaboration.
  For references see CERN/ISRC/69-55.