CERN/ISRC/72-18 17-67-

INTERESECTING STORAGE RINGS COMMITTEE

LETTER OF INTENT

INVESTIGATION OF POSSIBLE PARITY VIOLATING EFFECTS IN PROTON PROTON COLLISIONS AT ISR

Pierre Lehmann, CERN/Orsay

It is proposed to test, within about 10⁻², the presence of parity violating amplitudes in proton proton collisions at ISR energies.

The method is the following:

One observes a particle M, of spin 1/2, produced by p-p collision.

Any component of its polarisation in its plane of production P indicates the presence of a parity violating interaction.

Let us consider the center of mass reference system. In the plane P there are two components of polarisation of M, longitudinal and transverse, which can have quite different implications.

A longitudinal polarisation of M could be due to parity violation in p-p interaction or to the weak decay of a particle M' (let us say a \equiv 0) giving a particle M (let us say a \wedge 0).

But it can be shown that if the observed particle M comes from the weak decay of a particle M' produced in a parity conserving interaction, and if the decay parameter β of M' (assumed spin 1/2) is zero, then M cannot have a transverse polarisation in its production plane.

It thus appears that, if seen, the most conservatory explanation of that transverse polarisation should be a parity violating term in p-p interaction.

We propose to detect \land 's with a large acceptance set—up and to analyse their (π^-p) decays. CERN LIBRARIES, GENEVA

CM-P00063249

Possible convenient set-ups are, for example, the R602, R603 or forward director in SFM. One should like to have the smallest possible beam tube around the interacting region in order to have a selective trigger on Λ 's.

It seems reasonable to try to detect them at the largest angle compatible with counting rates which permit the accumulation of a few 10 4 $\,\Lambda$'s.