
Implementing
Software Supply Chain Security
What to Consider When Designing a Program

By Chris Hughes, Darren Meyer, and Jenn Gile  

WHITEPAPER

https://www.endorlabs.com/


Introduction

Software supply chains are top of mind for security professionals, but there is little industry 

agreement on what it includes or how to secure it. Meanwhile, vendors and talking heads are quick 

to provide definitions (and tools) that may seem self-serving. Practitioners and CISOs alike are left 

with fundamental questions, such as:

■ Why do I need to worry about it?

■ How is it defined?

■ How do I analyze my current state?

■ How do I protect it?

■ What tools do I need?

In this guide, we set out to establish a shared understanding so you can make informed decisions on 

your security strategy. 

The Big Picture
Why organizations should prioritize software supply chain security.

Defining the Software Supply Chain
Components that contribute to development and delivery of your software.

Securing the Software Supply Chain
Recommendations, resources, and methodologies.

2

READ TIME: 5 MINUTES

READ TIME: 5 MINUTES

READ TIME: 20 MINUTES



About the Authors

Darren Meyer
Staff Research Engineer

Chris Hughes is the Chief Security Advisor at Endor 

Labs and President & Co-Founder at Aquia. Chris 

also serves as a Cyber Innovation Fellow at CISA 

and is the author of Software Transparency and 
Effective Vulnerability Management from Wiley. Chris 

hosts the Resilient Cyber podcast and the Substack 

by the same name and is passionate about all things 

software supply chain security and helping 

organizations achieve a secure digital 

transformation.

Darren Meyer is an Application Security 

practitioner and leader with 25 years of experience, 

19 of which have been focused on AppSec products 

and programs. Currently the Staff Research 

Engineer for Endor Labs, he’s passionate about 

practical and affordable security programs, 

socio-technical systems, and getting great results 

from his home espresso machine.

3

Jenn Gile is a seasoned Application Security and 

DevOps marketer and community builder. She 

writes prolifically on tech topics including open 

source, Zero Trust, Layer 7 traffic management, 

compliance, and WebAssembly. She is also the 

author of NGINX’s ebook Taking Kubernetes from 
Test to Production. With a background in learning and 

development, Jenn prioritizes education-based 

marketing programs that provide intrinsic value to 

the community.
Jenn Gile

Director, Product Marketing

Chris Hughes
Chief Security Advisor

https://www.linkedin.com/in/resilientcyber/
https://www.linkedin.com/in/darrenmeyer/
https://www.linkedin.com/in/jenngile/


About the Authors

4

1 The Big Picture

Software supply chain security continues to be one of the most widely discussed topics in the 

cybersecurity industry, and rightfully so. Reports document a continuing rapid growth in supply 

chain attacks, with twice as many observed attacks in 2023 as there were in all previous years 

combined, as well as seeing a three-fold increase in malicious packages over the same period. These 

threats impact thousands of organizations and millions of users worldwide. These include attacks 

against both proprietary software vendors and their products, as well as widely used open source 

software (OSS) projects and components.

Rather than investing effort into compromising a single target, malicious actors can compromise a 

widely used product or open source component, causing a massive downstream impact across the 

entire ecosystem. They have also realized it is much easier to attack the brittle supply chain 

components than it is to target mature enterprise environments that have (and continue to make) 

investments in efforts such as Zero Trust and moving away from perimeter-based security models. 

Rather than traditional “push” style attacks that force their way into an enterprise target, software 

supply chain attacks often rely on a “pull” style model of attack, where victims pull in malicious 

components potentially compromising themselves.

The software supply chain has become the “soft underbelly” of our digital ecosystem, making it an 

appealing attack vector to malicious actors around the world. 

Four Trends in Software Development

Software development is now software assembly.

Before we get into the components of the software supply chain, it’s important to understand how 

software development has fundamentally changed in the early 21st century as organizations adopt 

modern application development techniques. To meet the demands of customers, organizations have 

shifted away from traditional waterfall software development to more agile and iterative release 

cycles which may be shorter with new feature velocity accelerating. But without changing the way 

software is architected, teams have no chance at meeting their SLAs.

Malicious actors have discovered a more effective way.

https://www.sonatype.com/resources/state-of-the-software-supply-chain-2022/introduction


5

TREND 1 Containerization

Over 50% of applications are containerized.

Increasingly, modern applications are run in containers, which are defined as 

“standard units of software that packages up code and all of its dependencies”. 

This allows for applications to be lightweight, portable and standalone, enabling 

scalability, replication, and re-use.

TREND 2 Open Source Software 

OSS represents 70-90% of modern code bases.

OSS is a tremendous asset because it reduces the amount of code your 

developers write by leveraging what already exists. It’s estimated that developing 

this code from scratch would cost firms $8.8 trillion. When applications can be 

created faster by leveraging existing components, organizations experience 

expedited development timelines and cost savings. That said, as we will discuss 

below, OSS isn’t without its own risks and considerations.

TREND 3 Continuous Integration & Delivery

84% of developers are involved in CI/CD activities.

Increasing the development and shipment velocity while meeting functional and 

non-functional requirements required the automation of various development 

activities along the SDL, e.g. compilation, unit and integration tests or packaging. 

Those activities are increasingly performed by CI/CD pipelines that can go as far 

as deploying releases in production environments.

TREND 4 Artificial Intelligence

70% of packages using OpenAI’s APIs were brand new.

AI models are another tool to accelerate development and beat competition. Just 

like your applications, models can contain OSS code and components. AI/ML 

resources and software may share principles much like the OSS world, in terms of 

sharing of training data, models, weights and a wide variety of tools.

Citations: Dell Container Adoption Trends, Synopsis 2024 Open Source Security and Risk Analysis Report,

CD Foundation State of Continuous Delivery Report 2023, Endor Labs State of Dependency Management 2023. 

https://www.docker.com/resources/what-container/
https://hbswk.hbs.edu/item/open-source-software-the-nine-trillion-resource-companies-take-for-granted
https://www.dell.com/en-us/blog/container-adoption-trends-why-how-and-where/
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://cd.foundation/state-of-cd-2023/
https://www.endorlabs.com/learn/state-of-dependency-management-2023


About the Authors

6

Compliance Standards

A burden or a driver?

Software supply chain attacks have spurred widespread concern both from industry and government. 

This concern is highlighted in U.S. Executive Order (EO) 14028 on Improving the Nation’s Cybersecurity, 

which led to a slew of efforts from Federal agencies (such as NIST and CISA) and industry 

organizations (such as OWASP and The Linux Foundation), as well as by commercial organizations 

including Google and Microsoft. And from PCI DSS to DORA (Digital Operational Resilience Act) to 

FedRAMP, there are numerous global standards seeking to protect consumers and national security 

from malicious actors. While some compliance activities may seem like checkboxes that add more 

overhead without adding value, the fact remains that compliance is a useful tool to drive change that 

otherwise might not get prioritized.

May, 2021 March, 2023

Executive Order 
14028
SBOM frenzy begins

March, 2023 October, 2023

Executive Order 
13960
Safe, Secure, and 
Trustworthy AI

National Cybersecurity 
Strategy
Emphasizes need to 
improve software 
transparency

Passes Securing OSS 
Act Bill
Expands CISA oversight 
to securing coding

https://www.endorlabs.com/learn/5-federal-software-supply-chain-requirements-you-should-be-aware-of


7

2

As with many industry terms, there isn’t total agreement on what is included in a software supply 

chain, and therefore what it means to secure it. Definitions range from “everything” to “just the tools I 

bring in from outside my organization.” At Endor Labs, we’ve adopted the broader definition 

popularized by Google, because it integrates better into the software development lifecycle and is 

more reflective of the reality that many organizations produce products that end up in someone 

else’s supply chain (a “consumer point of view”). The benefit of taking a broad view is it encourages 

security professionals to address product security holistically rather than as a siloed, binary “did I 

build it vs buy it” strategy. That definition is:

A software supply chain consists of all the code, people, systems, and 

processes that contribute to development and delivery of your 

software, both inside and outside of your organization. It includes:

● Code you create, its dependencies, and the internal and external 

software you use to develop, build, package, install, and run your 

software.

● Processes and policies for system access, testing, review, 

monitoring and feedback, communication, and approval.

● Systems you trust to develop, build, store, and run your software 

and its dependencies.

● Software you consume from external suppliers and service 

providers.

As defined here, your software supply chain contains at least six discrete components: Your 

developers, code, dependencies, AI models, containers, and CI/CD pipelines.

Ask five people, get five different answers

Defining the “Software 
Supply Chain”

https://cloud.google.com/software-supply-chain-security/docs/overview


8

Your Developers

Your developers represent an absolutely critical part of your software supply chain. They’re the 

individuals responsible for writing first-party code and pulling in third-party dependencies, and 

they’re a crucial attack vector (with regards to their development accounts, endpoints, and more). 

Developers are also your first line of defense because they’re in the position to ensure that trusted 

and secure components are integrated into your organization’s applications. Additionally, technology 

stacks and industry-leading security tools are looking to integrate with developer workflows and 

empower developers to make more secure choices around software creation, consumption, and use.

Your Code

Although most modern codebases are primarily made up of open source software (OSS), 

organizations still write their own code (“first-party” code). Your first-party code isn’t necessarily part 

of your broader software supply chain, but it still has implications for the security of your systems and 

products. It also has downstream ramifications for your customers and consumers, which can be 

impacted by vulnerabilities in your first-party code. 

Your Dependencies

If you’re following current software development practices, your first-party code relies on additional 

OSS components to function properly. These components are referred to as “direct dependencies.” 

While the number of dependencies varies (based on programming language, complexity of the 

software/application, etc.), the average application has several hundreds of direct dependencies. 

Additionally, each of those direct dependencies have OSS dependencies of their own, referred to as 

“transitive dependencies.” 

Like your first party code, vulnerabilities in OSS packages and libraries can present risks to your 

organization, your customers and consumers. Because each OSS package you directly depend on 

tends to have multiple dependencies of its own, these transitive dependencies can be significant 

sources of risk. In fact, research by Endor Labs found that 95% of vulnerabilities that affect customer 

applications exist within their transitive, rather than direct, dependencies. 

Organizations leveraging OSS dependencies must understand the context around vulnerabilities and 

vulnerable dependencies. Moving beyond traditional approaches such as CVSS scoring, this includes 

known exploitations (KEV), likelihood of exploit (EPSS), and reachability.

https://www.darkreading.com/application-security/dependency-problems-increase-for-open-source-components
https://www.endorlabs.com/learn/state-of-dependency-management
https://www.endorlabs.com/learn/cve-vulnerability-epss-ssvc-reachability-vex#kev-a-catalog-of-known-exploits
https://www.endorlabs.com/learn/cve-vulnerability-epss-ssvc-reachability-vex#epss-a-forward-looking-prioritization-approach
https://www.endorlabs.com/learn/cve-vulnerability-epss-ssvc-reachability-vex#reachability-analysis-a-next-level-prioritization-method


9

Your AI Models

AI models are increasingly a core consideration in the modern software supply chain. While your AI 

models are likely a combination of first-party, third-party, and OSS code (found in outlets like 

HuggingFace), we think it’s worth pulling them out separately as they have unique attributes and 

concerns.

Organizations need to have safeguards in place to protect their consumption and use of AI, whether 

delivered as a SaaS or self-hosted, as well as ensure any OSS AI resources they’re using are from 

trusted sources and have security measures in place, much like broader OSS usage. Industry-leading 

sources, such as OWASP’s AI Exchange, list supply chain threats as a part of the AI threat landscape. 

They point out that, much like traditional source code and software components, data and models 

may involve multiple suppliers and require supply threat risk management to mitigate threats. 

Security recommendations include standard supply chain risk management practices including 

provenance, pedigree, signature verification, trusted package repositories, and dependency 

verification tools. 

Your Containers

Like the open source in your applications, OSS is also used for containerization. The challenge, as 

discussed in the section regarding dependencies, is your containers may also have vulnerabilities. As a 

result, you need to introduce the practice of container hardening — reducing a container’s attack 

surface and making it less vulnerable to exploits. Otherwise, developers end up building on top of 

vulnerable containers full of unnecessary dependencies, typically referred to as “bloated containers”. 

Those vulnerabilities in container images now place any applications running on top of them at risk as 

malicious actors can exploit vulnerabilities in the underlying containers. They also attempt to 

compromise widely used publicly available container images from popular repositories such as 

Docker Hub in efforts to impact downstream consumers and their associated applications.

Your CI/CD Pipelines

There may be a tendency to focus on the application layer when discussing software supply chain 

security. The reality is that underlying infrastructure and systems, which may also be defined as 

Infrastructure-as-Code (IaC), also represent part of your software supply chain and must be secured 

to mitigate risk to the products and software you produce. A lack of governance around repositories 

and their hygiene as well as the pipelines and associated infrastructure all can allow for nefarious 

exploitation. If malicious actors can compromise pipelines and the infrastructure used to develop 

application layer code, they can still have their desired impact to facilitate software supply chain 

attacks, and these techniques have been used in various notable software supply chain incidents.

https://huggingface.co/
https://owaspai.org/docs/3_development_time_threats/


About the Authors

10

3 Securing the Software 
Supply Chain

It’s tempting to look for a single vendor or product that “solves'' software supply chain security 

concerns. But like other broad security practices, such as Zero Trust, the reality is that SSCS is 

complex. It's impractical to expect one vendor to cover every area of the software supply chain attack 

surface. Due to the wide attack surface of the modern software supply chain (your developers, code, 

dependencies, CI/CD pipelines, and more), as well as a wide array of programming languages and 

frameworks, no single vendor comprehensively covers every aspect of the software supply chain. 

In this section we discuss some of the specific components of modern SSCS as well as key 

recommendations, resources, and methodologies to secure these components or implement the 

associated activities.

One vendor to rule them all? Not quite.

Open Source Governance Code Security

Software Bill of Materials

Secret Management CI/CD Pipelines

AI Security

Container SecurityAttestation & Code Signing



About the Authors

11

Open Source Governance

Open source software (OSS) has risks, including longstanding common problems around vulnerable 

components and other considerations like quality, maintainer support, and so on. Endor Labs 

pioneered the OWASP Top 10 Risks for Open Source Software, which includes lagging indicators of 

risk such as known vulnerabilities, along with leading indicators of risk such as compromises of 

legitimate packages, name confusion attacks, unmaintained software and untracked dependencies, 

and other considerations. 

There are various elements to OSS governance, ranging from selection controls to vulnerability 

management. The creation of an Open Source Program Office (OSPO) is an established way for an 

organization to govern and control the consumption (and production) of OSS across the entire 

organization in a uniform or standardized way. Addressing OSS governance may also help you with 

long term compliance goals related to risk: After all, if you can prevent unhealthy projects from 

entering your ecosystem, you’re likely to have fewer vulnerabilities to remediate in the future.

OSPO Maturity Model

OSPO Model courtesy of The Open Source Initiative.

A
b

ili
ty

 t
o

 E
xe

cu
te

Program Maturity

Legal Education
Compliance, inventory, developer education

Adoption
Adopting open source ad hoc (by developers)

Community Education
Evangelizing use and ecosystem participation

Engagement
Hosting projects, growing community

Leadership
Strategic partner

https://www.endorlabs.com/top-10-open-source-risks
https://ospo-alliance.org/
https://opensource.org/blog/the-five-stages-of-the-open-source-program-office


12

The Endor Labs Solution for Open Source Governance

Endor Labs helps organizations govern use of OSS components without slowing down developers by 

providing monitoring, package scoring, governance, ai-assisted OSS selection, and customization.

Monitoring: Continuously monitor OSS components in your software projects for vulnerabilities and 

other risks, with powerful focus tools and policies that help developers identify and fix the issues that 

matter most to your organization.

Package Scoring: Our AI-enhanced, enriched OSS component and vulnerability database includes 

over 170 types of risk signals for leading indicators of risk from a package or the project it supports. 

This information is consolidated into an Endor Score for each package, which provides an 

easy-to-understand metric of how well a package does based on factors of security, activity, 

popularity, and code quality.With this data, you can build admission policies that prevent risky 

packages from entering your projects, identify suitable alternatives, and identify emerging risks 

before they become critical.

Governance: Integrate governance components with GRC tools, risk aggregators (including SIEMs), 

and developer workflow tools to streamline research and remediation. Use our risk database and 

Endor Score to build admission policies that prevent risky packages from entering your projects, 

identify suitable alternatives, and identify emerging risks before they become critical.

AI-Assisted OSS Selection: With DroidGPT system, is a GPT-enhanced recommendation and 

research engine, that helps developers can use natural language to identify OSS components that 

meet their needs while minimizing risks introduced. It’s backed by our enriched OSS component 

database that monitors over 170 risk indicators for each component (summarized to 4 individual and 

one overall Endor Score), along with known specific risks like vulnerabilities, malicious behaviors, and 

evidence of supply chain attacks like typosquatting. The API for this capability makes it simple to 

leveraging the data for admission control decisions -- such as “disallow any component that has a 

Security Score of less than 6, or an Activity score less than 4”, or even against individual signals like 

“warn about any component that does not have significant high-reputation contributor”.  During the 

CI/CD pipeline runs, this data is combined with our SCA analysis (which includes function-level 

reachability data; see Code Security below) and policy to allow for notification or 

deployment-blocking behaviors should there be packages in use that don’t meet policy, providing a 

detective control even if developers bypass the preventive control.

Customization: Our API-driven design philosophy and our integrations allow for a mix of 

out-of-the-box and easily developed custom routing of issues to places developers work (like their 

IDE, within pull requests, issue tracking systems, etc.) and risk is managed (like GRC tools, SIEM tools, 

and compliance/risk aggregators).

https://docs.endorlabs.com/managing-projects/scores/
https://www.endorlabs.com/use-cases/ai-assisted-oss-selection


About the Authors

13

Code Security

A core part of SSCS is code security, which analyzes code projects for vulnerabilities and other 

weaknesses. Code security tools generally fit into one of two categories:

■ SAST (Static Application Security Testing) tools examine source or binary code to discover 

coding errors that represent actual or potential security risks.

■ SCA (Software Composition Analysis) tools examine a software project’s dependencies for 

known vulnerabilities and related risks.

This tool divide is essential because the remediation process for each use case is different. Novel 

flaws detected by SAST tools typically require changes to the design or implementation; that is, a 

developer must rethink how a problem is being solved and make changes to the code. Risks 

discovered in OSS or other dependencies usually require a version upgrade to the affected 

component. This latter may sometimes also require code changes to accommodate (or to mitigate 

flaws that cannot be repaired through an update), because sometimes updates change how the 

consuming code must be written.  One key difference in outcomes is that while it may be very 

reasonable to break a build where first-party code is vulnerable, with OSS code your teams will want 

more flexibility because a fix might not be available from the OSS producer, or because the required 

upgrade may cause unrelated problems over which your teams have very little control.

Use of SAST tools enables developers to scan code earlier in the software development lifecycle 

(SDLC) prior to runtime production environments, meaning they can identify vulnerabilities before 

the affected code is released to production environments where it can be attacked. SAST can identify 

not just existing vulnerabilities, but also poor coding practices that later manifest as vulnerabilities.

SAST tools typically enable direct feedback to developers with details on the vulnerabilities identified 

as well as guidance on how to resolve the vulnerabilities. The challenge here is that SAST tools can 

also be noisy, often producing false positives and findings that can sink developers' time investigating 

and discussing with security peers, despite not being actual vulnerabilities or posing real risks. We 

hear from many customers that a noisy SAST tool actually directly leads to developers not 

remediating risks. This makes it key for organizations to adopt high quality SAST tooling that can 

produce high-fidelity findings, minimize false positives, and enrich findings to help developers focus 

on real risks.



14

The Endor Labs Solution for Code Security

Endor Labs helps organizations address Code Security through integration and management, and 

reachability-based SCA.

Integration & Management: Simplifying tool management by providing out-of-the box integrations 

with existing security tools; this is a growing list that includes SAST tools like GitHub Advanced 

Security’s CodeQL, risk aggregators like Vanta, and so on. And we help our customers build and 

integrate reusable security pipelines that make swapping out specific security tools a much simpler 

process.

Reachability-Based SCA: Providing a next-generation SCA and vulnerability management platform 

that identifies security and operational risks in OSS components with strong focus and execution 

tools.

Endor Labs takes a “get safe, stay safe” approach with our next-generation SCA. We identify the OSS 

components your applications rely on, as well as the components those components rely on 

(transitive or indirect dependencies), and perform static call path analysis on your applications and 

the whole of your dependency tree to determine which risks genuinely affect you through context 

data and Function-Level Reachability Analysis.

This prioritization system helps security organizations identify relevant and actionable risks and 

prioritize them for remediation, allowing an organization to “get safe” by reducing the existing risk 

footprint. Additionally, the comprehensive, high-accuracy vulnerability data combined with our 

reachability and context analyses and our enriched OSS package and risk database allow precision 

policies for identifying the most important and actionable risks in your dependencies. This looks like 

being able to set policies to help development teams “stay safe”, such as:

■ “Leave a PR comment if a pull request results in a new risk in a dependency, where a patch is 

available, the vulnerable function is reachable from first-party code, and the chance of exploit 

in the next 30 days is > 1% based on EPSS data”

■ “Open a Jira ticket if a direct dependency in a project is no longer maintained”

■ “Send a Slack message if the released version of an application has a new critical or high 

severity vulnerability affecting it”

https://www.endorlabs.com/learn/5-types-of-reachability-analysis-and-which-is-right-for-you#function-level-reachability-sca


About the Authors

15

Artificial Intelligence (AI) Security

Security practices related to AI are still in nascent stages, but with both industry and government 

focused on the topic, we can expect this field to grow quickly. Like a human, an AI model can be 

tricked into divulging sensitive information (such as API keys), and like any other OSS project, it can 

be the victim of bugs and malicious code. In recognition of these risks, in July 2023 OWASP released 

the first Top 10 for LLM list. The risks range from the malicious (prompt injections, training data 

poisoning, DDoS, supply chain) to accidental (overpermissioning, data leakage). 

October 2023, the United States released an Executive Order on the Safe, Secure, and Trustworthy 

Development and Use of Artificial Intelligence. This E.O. has many requirements that echo what we 

saw with the Cybersecurity E.O. Most relevant to an organization’s SSCS strategy include the 

requirements regarding:

■ Development of standards, tools, and tests by NIST to help ensure that AI systems are safe, 

secure, and trustworthy. 

■ Establishment of an advanced cybersecurity program (at the government level) to develop AI 

tools to find and fix vulnerabilities in critical software

■ The safe, ethical, and effective use of AI by the United States military and intelligence 

community.

As a result of the E.O., we can expect frameworks to be created and help with secure usage, and of 

course vendors will start to fill gaps. In the meanwhile, most AI security is somewhat do-it-yourself.

Most organizations started by setting policies regarding the use of AI, which typically addresses the 

types of data (e.g. proprietary vs. generic) that can be fed into different types of models (e.g. public vs. 

private instances). This is a good first step that covers some risks, but there will still be gaps that will 

require processes and tools. When designing a SSCS program to address AI, it’s helpful to think about 

the ways your organization is using - or plans to use - AI. For example, will they use AI models to write 

application code? Are they developing proprietary AI models?

When developers use AI to write code (and we bet yours already are), there are interrelated 

concerns:

■ Is the developer using an approved model and does it adhere to good security practices? 
This may be the easiest to address if your organization has already vetted a model and has a 

contract with the vendor (e.g. OpenAI). But the large vendors can be expensive, so your 

organization may resort to open source LLMs that can bring in more risk.

■ Is the AI-generated code bringing in any risks to your supply chain?
Code generated by a model should be subjected to SAST (including SCA) just like your other 

first-party and OSS code.

Continued on following page.

https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/


About the Authors

16

Artificial Intelligence (AI) Security

When your organization is designing AI-based tools, including your own models, then you need a 

program in place to evaluate whether the components meet your security requirements. Building a 

foundational model is very hard, but building on top of a foundational model is much easier. As with 

application code, AI models often have numerous dependencies, many of which are open source. You 

can reduce risk by:

■ Reviewing how the model was constructed

■ Reviewing the organization that created the model

■ Taking advantage of HuggingFace’s security features

■ Being careful about downloading dependencies from models in HuggingFace

The Endor Labs Solution for AI Security

Python is the language of choice for creating AI models, but because of this popularity it’s likely to be 

targeted by malicious parties. Unfortunately, detecting vulnerable dependencies is difficult because 

many Python dependencies aren’t in the manifest so they aren’t caught by traditional SCA tools. 

Endor Labs’ SCA tool scans Python source code to find hidden dependencies and uses reachability 

analysis to prioritize just the risks that can actually impact your application. This involves a four-step 

process that results in better visibility of risk: 

1. Source Code as a Ground Truth: As the primary "source of truth", Endor Labs uses the source 

code offers the clearest insight into which dependencies are called upon and used.

2. Correlate with Package Manager Data: After establishing dependencies, the data is cross- 

referenced with package manager information, identifying phantom and unused 

dependencies.

3. Correlate with the File System: By comparing dependencies declared by package 

management manifests with those used in the code and those available in the file system, you 

get a complete picture of the dependencies used.

4. Highlight Discrepancies: Any variations between the actual code and package manager 

definitions are clearly marked, alerting developers to potential issues like missed 

vulnerabilities or unnecessary packages.



About the Authors

17

Software Bill of Materials

As the industry looks to grapple with software supply chain threats, the SBOM has become a key 

component of enabling software transparency, a longstanding cybersecurity best practice cited in 

sources such as CIS’s Critical Security Controls list. An SBOM is a nested inventory of components 

that make up a piece of software. This enables both suppliers and consumers to have an 

understanding of what components make up a specific product, service, or application. An accurate 

SBOM enables discovery of known vulnerabilities within software components that make up an 

application system.

The ability to exchange SBOM data reliably has given rise to standards for SBOM representations. 

The industry currently has two predominant SBOM representation format standards: The Linux 

Foundation’s Software Package Data Exchange (SPDX) and OWASP’s CycloneDX. There’s been 

significant advances in both OSS and proprietary tooling to create, enrich, analyze, store, and report 

on SBOMs, helping both suppliers and consumers understand their software asset inventory.

Some highly regulated industries, such as the United States government (including the Department of 

Defense and the Food & Drug Administration) have begun to call for the use of SBOM’s between 

software suppliers and consumers as well as for critical activities and environments.

A comprehensive SBOM solution must, at minimum, consider both SBOM Producers (generate 

SBOMs for your components) and SBOM Consumers (ingest SBOMs from applications you consume), 

which of course can both occur at the company or even within the same team.

Your customers and external auditors who require SBOMs will need assurance that you have 

accurate and complete SBOMs tied to each application, service, and component they consume from 

you; and that you have appropriate processes to maintain the accuracy of these as new versions are 

released. In many cases, in order to provide an accurate SBOM to this audience, you will also need to 

consume SBOMs generated by 3rd-party providers you use to deliver your applications and services. 

Consuming SBOMs also enhances your own 3rd-party risk program, as it enables close monitoring of 

components in your environment, and rapid identification of affected 3rd-party applications and 

services when new vulnerabilities are announced in components they consume. For example, if you 

have consumed accurate SBOMs for your services, and a vulnerability like log4shell is announced, 

you can rapidly determine which 3rd-party services and applications use the affected version, and 

take steps to mitigate.

Continued on following page.

https://www.endorlabs.com/blog/sbom-is-just-a-means-to-an-end
https://www.cisecurity.org/controls
https://www.endorlabs.com/blog/sbom-requirements-for-medical-devices


18

Software Bill of Materials

The National Telecommunications and Information Administration (NTIA), part of the U.S. 

government, issued a document describing the minimum requirements for a SBOM. They are:

■ Supplier Name: The name of an entity that creates, defines, and identifies components.

■ Component Name: Designation assigned to a unit of software defined by the original supplier.

■ Version of the Component: Identifier used by the supplier to specify a change in software 

from a previously identified version.

■ Other Unique Identifiers: Other identifiers that are used to identify a component, or serve as 

a look-up key for relevant databases.

■ Dependency Relationship: Characterizing the relationship that an upstream component X is 

included in software Y.

■ Author of SBOM Data: The name of the entity that creates the SBOM data for this 

component.

■ Timestamp: Record of the date and time of the SBOM data assembly.

Unfortunately, Chainguard found that only 1% of SBOMs were entirely conformant with these 

requirements. This emphasizes the importance of selecting a comprehensive SBOM tool.

The Endor Labs Solution for SBOM

Endor Labs supports SBOM programs for both producers and consumers.

SBOM and VEX Generation: Our SCA tool creates an accurate inventory of OSS components 

(aligned with NTIA guidance) necessary to generate accurate SBOMs for your first-party applications 

and components. SBOMs for your packages can be exported in standard formats via the UI, or in an 

automated fashion via an API call. This allows your release pipelines to generate a valid SBOM as an 

artifact in an automated and repeatable fashion. Additionally, Endor Labs supports the VEX 

(Vulnerability Exploitability eXchange) format, an OASIS standard format that follows CycloneDX 

conventions to produce a sidecar file that describes the vulnerabilities in the components within your 

SBOM, along with analysis data detailing their impact. For example, we can produce a VEX document 

for a component that lists the disclosable vulnerabilities in OSS components, and annotates those 

that are not exploitable because the vulnerable function in that dependency is not reachable.

SBOM Ingestion: Our SBOM Hub product addresses the Consumer role by allowing import of 

common SBOM format documents from suppliers via simple API calls or use of our command-line 

tool. Ingesting an SBOM connects the components identified with our enriched OSS risk database, 

allowing you to quickly identify vulnerabilities and other OSS component risks in your 3rd-party 

software.

https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.chainguard.dev/unchained/are-sboms-good-enough-for-government-work
https://www.endorlabs.com/use-cases/reachability-based-sca
https://www.endorlabs.com/product/endor-labs-sbom-hub


About the Authors

19

Secret Management

In cloud-native environments, the use of “secrets” has become commonplace for DevOps and 

operational activities. A classic example is the username and password that allows an application 

access to its database, but a secret can also be API keys, credentials, certificates, and private keys, 

among other types of information. When secrets are unintentionally leaked, they can allow malicious 

actors initial access, providing the ability to move laterally across enterprise environments and gain 

administrative or elevated access to systems and infrastructure. Secrets can be leaked when a 

developer “hardcodes” the secret into the application or stored in repositories, even if they’re not in 

application code directly, but in supporting artifacts such as configuration files. Additional factors 

leading to the sprawl of secrets include the growing popularity of source code, container images, and 

infrastructure-as-code (IaC) manifests where secrets may be exposed. 

Poor (or non-existent) secrets management has been associated with several incidents. For example, 

Samsung’s 2022 source code leak included over 6,000 secret keys. Leaked secrets account for an 

average of $1.2M revenue loss, yet most organizations report that they do not have a mature secret 

management program.

To mitigate these risks, organizations need to have a robust secrets management policy and process 

in place. This program should include secrets scanning tools, which can identify secrets which may 

inadvertently be exposed and abused. 

The Endor Labs Solution for Secret Detection

Endor Labs Secrets helps you avoid secret leaks in your git-based repositories, in any text file, at three 

control points:

■ Deep scan: Scan your entire repository commit history for secrets in order to identify latent 

secrets-related risks.

■ Branch scan: Scan a given branch, either from within the pipeline (enabling you to block a PR if 

a valid secret is detected) or in a supervisory fashion without needing to alter your pipeline.

■ Pre-commit hook: Developers can include a rapid, “changes only” secrets check in a 

pre-commit hook in their development environment to stop new secrets from entering the git 

history in the first place .

Our solution addresses the noise problem present with many secrets scanners by testing secrets 

whenever possible, allowing you to set policies to handle secrets known to be valid credentials -- and 

thus high risk -- while ignoring those that are known to be invalid (while still being able to track and 

analyze them as resources permit).

https://www.endorlabs.com/blog/how-to-evaluate-secret-detection-tools
https://www.csoonline.com/article/572171/extortion-group-teases-190gb-of-stolen-data-as-samsung-confirms-security-breach.html
https://www.endorlabs.com/use-cases/secret-detection


About the Authors

20

CI/CD Pipeline Security

It isn’t just the security of the code going through a CI/CD pipeline that is of concern, but also the 

pipeline itself. If malicious actors can compromise the pipeline and platforms facilitating the delivery 

of code to production environments, they can compromise the code and downstream consumption. 

There are also ample examples of notable software supply chain incidents that involved abusing flaws 

in the CI/CD environment, such as SolarWinds, CodeCov and the PHP breach. So while it is critical to 

conduct activities such as SAST and secrets scanning in pipelines, the underlying pipeline, processes, 

and infrastructure supporting the flow of code must also be addressed. 

This risk is identified in industry resources such as OWASP’s Top 10 CI/CD Security Risks. This 

guidance specifically calls out insufficient flow control, inadequate identity and access management, 

and insecure system configurations. It also points out that CI/CD environments and their associated 

processes and systems are fundamental to modern code delivery. 

The Endor Labs Solution for CI/CD Pipeline Security

Endor Labs CI/CD helps address three of the main considerations in hardening CI/CD pipelines:

■ Tool Discovery:The tools, pre-build actions, templates, etc. your pipeline consumes are a type 

of dependency. Our scanner understands common pipeline configuration files and identifies 

the components in use, identifying risks they or their dependencies pose to your pipelines, as 

well as highlighting excessive privileges given to pipeline jobs. As with all our findings, you can 

then apply policy to prohibit or require certain tools, route important issues to DevOps teams 

for repair, etc.

■ Repository Security Posture Management (RSPM): Your CI/CD environment relies on 

effective controls around the code commit and management process. Endor Labs can scan 

your repository configuration to determine if it complies with your organizational policies, 

making sure that your controls function appropriately across your enterprise. This isn’t 

one-size-fits-all: our flexible, open policy system allows you to have different requirements for 

different sets of projects across your repositories.

■ Artifact Signature Verification: Our artifact signing solution (see more on Page 22) can be 

used as part of CI/CD security posture controls by ensuring that components and tools pulled 

into your pipeline have been signed and verified before being executed. This allows mature 

security/DevSecOps teams to implement adoption controls, sign consumable dependencies to 

attest that they’ve been appropriately tested and approved, and ensure that components that 

don’t flow through that path are not used during the build pipeline.

This approach ultimately gives confidence that you have control over what enters the repository (by 

ensuring a strong configuration using RSPM), confidence in what’s running in your pipelines (using 

tool discovery), and confidence that critical components that enter your pipeline have been properly 

vetted (using artifact signing).

https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://www.endorlabs.com/product/endor-labs-ci-cd


About the Authors

21

Attestation and Code Signing 

As malicious actors increasingly look to carry out software supply chain attacks, including tampering 

and injection of malicious code, organizations have begun to push for not just transparency of 

software components, through artifacts such as SBOMs, but also assurances around integrity. This 

includes integrity of the software development and build processes as well as final outputs and 

software components. 

In fact, some organizations and industries, (especially highly regulated industries) are increasingly 

calling for the use of artifacts such as SBOM’s and attestations to provide assurances around the 

integrity of the software development process and its associated outputs. To meet these 

requirements, it’s necessary to use build integrity verification, which refers to the process of ensuring 

the integrity and authenticity of software builds or container images. This is achieved through 

signing, verification, and provenance.

Signing: Developers use tools like Cosign (Sigstore) to digitally sign their container images or 

software builds. This involves attaching a cryptographic signature to the image, which proves that the 

image has not been tampered with and was indeed built by the claimed author or organization.

Verification: Users or other stakeholders can then use the same tool to verify the signatures on these 

container images. This verification process involves checking the digital signatures against public 

keys which provides a trust mechanism to ensure the authenticity and integrity of the image.

Provenance: Sigstore aims to provide transparency and a clear provenance for software builds, the 

public keys and signatures are stored in a tamper-resistant, publicly auditable log, making it possible 

to trace back and verify the history of a container image, including who signed it and when. 

Artifact Signing Options



About the Authors

22

Container Scanning & Hardening

Increasingly, modern applications are run in containers, which are defined as “standard units of 

software that packages up code and all of its dependencies”. This standardized packaging allows for 

applications to be lightweight, portable and standalone, enabling scalability, replication, and re-use. 

The challenge, as discussed in the previous section regarding dependencies, is that those 

dependencies also may have vulnerabilities. 

This makes the concept of container hardening, and utilizing hardened and secure containers that 

have a minimized vulnerability footprint critical. Otherwise, developers end up building on top of 

vulnerable containers full of often unnecessary dependencies, typically referred to as “bloated 

containers”. Those vulnerabilities in container images now place any applications running on top of 

them at risk as malicious actors can exploit vulnerabilities in the underlying containers.

Malicious actors have shown that they will look to exploit vulnerabilities in underlying containers, as 

well as compromise widely used publicly available containers from popular container repositories 

such as Docker Hub in efforts to impact downstream consumers and their associated applications 

using the vulnerable containers.

The Endor Labs Solution for Artifact Signing

Endor Labs provides an alternative to Sigstore’s Cosign for organizations that value signature privacy 

(unlike the public sigstore) and no-new-infrastructure deployment (unlike rolling out your own 

private sigstore).

The low-code/no-code artifact signing solution is part of Endor Labs CI/CD. This solution provides a 

robust path to signing any artifact along with relevant metadata, using your existing identity system 

(such as Azure AD or Okta) and our signature and append-only log platforms as the base. This means 

deploying signing is as easy as:

■ Setting up a SAML or OIDC link between your identity system and Endor Labs; do this once for 

your entire organization

■ Deploying an Endor Labs binary into your pipeline (as a CLI tool, GitHub Action, etc.) where 

you want signatures to occur, and configuring the pipeline to call the signing function -- your 

pipeline uses its verified identity in your system to authenticate to Endor Labs, and signing 

proceeds

■ Setting up your admission controller/other points of verification to use Endor Labs to sign 

(typically one command-line call)

https://www.docker.com/resources/what-container/
https://www.endorlabs.com/learn/signing-your-artifacts-for-security-quality-and-compliance
https://www.endorlabs.com/product/endor-labs-ci-cd


23

Frequently Asked Questions
Why is software supply chain security such a major concern?
Software supply chain security is a major concern because vulnerabilities introduced anywhere in the 

complex network of components and processes used to develop software can be exploited by 

attackers to gain access to systems or data.  This makes it difficult to trust even well-known software, 

and highlights the need for strong security practices throughout the entire development lifecycle.

What are some different types of attacks that can target a software supply chain?
Two prevalent types of attacks are infiltrating a vendor's network and injecting malicious code into 

software before it's distributed (e.g., the SolarWinds attack) and tampering with open source code or 

app stores to introduce vulnerabilities.

How does the concept of "pull" style attacks differ from traditional security threats?
Traditional attacks target a system's own flaws, while "pull" attacks target trusted sources like 

vendors to inject malicious code that users unknowingly install.

What are some trends that influence how we secure the software supply chain?
The rise of containerized applications and the widespread adoption of open source components 

(OSS) introduce new attack surfaces.  At the same time, Agile and CI/CD practices, while accelerating 

development, can leave less time for security checks.  Finally, the integration of AI models, while 

powerful, brings its own security considerations.  

What role do industry standards and compliance play in software supply chain 
security?
Industry standards can enable better communication and vulnerability management, for example 

SPDX and CycloneDX provide a common format for SBOMs.  Compliance with regulations like PCI 

DSS can also drive adoption of security best practices throughout development.

What are the different components that make up a software supply chain?
The software supply chain includes all the elements involved in creating and delivering software: code 

(internal, open source, vendor-developed), infrastructure (development environments, build servers, 

deployment platforms), people (developers, security, operations), and tools (code repositories, build 

tools, configuration management, containerization).ential vulnerabilities in pipelines. 



24

What are direct and transitive dependencies, and their associated risks?
Direct dependencies are components you explicitly choose for your software, while transitive 

dependencies are those indirectly required by your direct choices. Both can introduce risk: both can 

have vulnerabilities, and transitive dependencies are hidden and potentially unmanaged, making 

them a blind spot for security issues.

What are some security considerations when using open source software (OSS) in 
development?
Security considerations for OSS include evaluating the source's reputation, license terms, and 

vulnerability history. Organizations can leverage tools to detect OSS dependencies, determine if they 

carry risk, and maintain an updated inventory of used components.

What is an Open Source Program Office (OSPO)?
An OSPO is a cross-functional team or program tasked with managing an organization’s open source 

activities, strategies, policies, and best practices. They may set guidelines for using, distributing, 

selecting, and auditing open-source components, as well as educating employees and fostering 

engagement with the open source community.

What is the difference between SAST and SCA tools, and how do they work together 
for better code security?
SAST (Static Application Security Testing) tools analyze source code for vulnerabilities and coding 

flaws, while SCA (Software Composition Analysis) tools identify known vulnerabilities within an 

application's dependencies. Together, they provide a comprehensive view of potential security risks, 

allowing developers to fix flaws in their code (SAST) and upgrade vulnerable dependencies (SCA).

How can organizations leverage AI models securely within their software supply 
chain?
AI models can be vulnerable to attacks that manipulate training data or the model itself. 

Organizations should establish policies for using AI models, considering aspects like data types and 

vendor security practices. Secure practices include using well-vetted training data, monitoring model 

behavior, and implementing controls to prevent unauthorized access or modification.

What are the benefits of using SBOMs, and what are the challenges associated with 
them?
SBOMs offer transparency by detailing all software components within an application, enabling 

identification of known vulnerabilities and other risks.  However, ensuring accurate and complete 

SBOMs can be challenging. Industry standards exist (SPDX, CycloneDX) to address this, and some 

tools can help generate and analyze SBOMs.ulnerabilities in pipelines. 



25

How can organizations prevent accidental leaks of sensitive information like 
passwords stored as secrets?
Robust secrets management involves implementing policies and using scanning tools to identify 

secrets unintentionally stored in code repositories, configuration files, or other artifacts. These tools 

can differentiate between valid and invalid secrets, allowing for focused remediation.

Beyond code security, what other aspects of CI/CD pipelines require attention to 
ensure overall security?
Securing CI/CD pipelines involves hardening the underlying infrastructure, managing access controls, 

and controlling the tools and configurations used within the pipeline. Security tools can discover 

potential risks in pipeline configurations and dependencies, while artifact signing can verify the 

integrity of components used in the build process.

How does artifact signing improve software supply chain security, and what are some 
considerations for implementing it?
Artifact signing involves attaching a digital signature to software builds, verifying their authenticity 

and integrity. This helps prevent tampering during the build process and allows organizations to 

implement controls based on the signer's identity.  Considerations include choosing a signing solution 

and establishing trust mechanisms for verifying signatures.

Why is it important to harden containers used in development, and how can 
organizations achieve this?
Container hardening minimizes the attack surface by removing unnecessary dependencies and 

functionalities. This reduces the risk of vulnerabilities within the container impacting applications 

built on top of them. Container scanning tools can identify vulnerabilities in container images, 

allowing developers to address them before deployment.

What are some tools organizations use for software supply chain security?
There are several types of scanners that are used, including application security testing (SAST, DAST, 

SCA, etc), secret scanners, and container scanners. Organizations usually use a tool to generate 

SBOMs (which may be combined with a scanning tool). And a new category of tools is emerging to 

address CI/CD security issues, which can discover tools and potential vulnerabilities in pipelines. 



Secure Everything Your 
Code Depends On

Start Trial

https://app.endorlabs.com/signup

