Interoperability in Open Heterogeneous Multirobot Systems

S. Ambroszkiewicz and W. Bartyna
M. Faderewski and G. Terlikowski

Institute of Computer Science, Polish Academy of Science

Al. Ordona 21, PL-01-237 Warsaw

and Institute of Computer Science, University of Podlasie

Al. Sienkiewicza 51, PL-08-110 Siedlce, Poland
Email: sambrosz@ipipan.waw.pl

Abstract

An approach to the problem of interoperability in open and
heterogeneous multirobot systems is presented. It is based on
the paradigm of Service Oriented Architecture (SOA), and a
generic representation of the environment. Robot, and gener-
ally device, is seen as a collection of its capabilities exposed
as services. The representation of environment is used to de-
fine tasks, and service interfaces. Several protocols are pro-
posed to enable interoperability among the services in order
to publish, discover, compose services, and execute the com-
posite services. The representation, language for task defini-
tion, and language for service interface definition, as well as
the protocols constitute together an information technology
for automatic task accomplishment in open system consisting
of heterogeneous devices (robots).

Introduction

The paper (Parker & Tang 2006) is the pioneer work consid-
ering the problem of interoperability in open heterogeneous
multirobot systems, that is, fo enable a group of heteroge-
neous robots to form coalitions to accomplish a multirobot
task. Although this paper is an inspiration and the main ref-
erence of our research, the proposed approach to the prob-
lem of interoperability is based rather on information tech-
nology point of view than on the pure robotics one. The two
corner-stones of the approach are: the paradigm of Service
Oriented Architecture (SOA), and a generic representation
of the environment.

SOA provides a standard programming model that allows
software components (as self-contained, modular applica-
tions) to be described, published, located over a network,
and then invoked by each other as services. There are essen-
tially four components of SOA: Service Provider, Service
Requester (also called Client), Service Registry, and Broker.
The provider hosts the service, controls access to it, and is
responsible for publishing a description of its service to a
service registry. The requester (client) is a software compo-
nent in search of a component to invoke in order to realize
arequest. The service registry is a repository that facilitates
service discovery by the requesters. The broker acts as com-
plex service towards a requester and as client towards sim-

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

24

K. Cetnarowicz
Institute of Computer Science
University of Mining and Metallurgy
Al. Mickiewicza 30, 30-059 Krakow, Poland

ple services; the complex service is composed by the broker
from these simple services.

Generally, the term robot in multirobot systems should
be replaced by device equipped with microcomputer (mi-
crocontroller) and connected to a network, i.e., being able to
communicate meaningfully with software applications run-
ning on computers, and other devices.

In order to apply SOA to robotics we must revise a bit
the classic concept of multirobot system as consisting of au-
tonomous robots, and assume that service is the basic com-
ponent of the system. There are three general kinds of such
services in multirobot system:

e The first one may be viewed as an ability to perform some
kind of physical action by a robot (its actuator) or device;
it may be called physical service.

e The second one as an ability to perceive the environment
via a sensor; it may be called cognitive service.

e The third one is just a software application processing
data; it may be called software service.

Hence, the notion of service from SOA may be extended to
the ability to perceive and to change the environment. How-
ever, for any of such services there must be software applica-
tion (or application hardcoded into the device) that controls
it. Any of these very applications may be viewed as ordinary
service in SOA representing appropriate physical or cogni-
tive service.

Operation performed by service and a way to invoke the
service must be described and published so that they can be
understood, and the service can be accessed automatically
by a requester (client) being also a software application. It
means that the semantics of this description must be formal
and explicit. Such description is called service interface.
There are several approaches to define service interfaces, for
example, (WebServices 2002), and (SemanticWebServices
2004). However, we propose new interface definition lan-
guage based on a generic representation of the environment.
Service interface is defined in the terms of changes in the en-
vironment caused by the service operation. It means that the
interface is defined as precondition and postcondition (ef-
fect) of the service operation.

Also tasks to be accomplished in the systems must be
formulated in a way that can be understood automatically
by client application. Task may be defined, in the natural

way, as a change of local situation in the environment; it is
a declarative way to define tasks. The procedural (impera-
tive) way to define task specifies a sequence of actions to be
realized. Since the basic components of SOA architectures
are software applications, tasks must be performed automat-
ically by discovering appropriate services, composing them
into workflow, and then by controlling the workflow execu-
tion.

The processes implementing the discovering, composi-
tion and execution control may be called software agents.
These agents communicate using conversation protocols.
Once it is supposed that all services are connected to
the network (based on Bluetooth/IEEE 802.11/Ethernet
/TCP/UDP/IP), these agents may be situated anywhere in
the Internet, e.g., on a server or on an autonomous robot, or
they may be distributed over network and form a multiagent
system, see (Ambroszkiewicz & Cetnarowicz 2006).

A generic representation of the environment is the basis
for defining service interfaces, and in this way for creat-
ing infrastructure that enables automatic task accomplish-
ment in open system consisting of heterogeneous devices.
From the point of view of this infrastructure any device is
seen as its service interfaces. Since the interfaces are de-
fined in terms of environment changes, the infrastructure is
independent from the physical devices that are in the sys-
tem. This independence allows creating the infrastructure as
implementation of a pure information technology. Modern
information technologies are built at the level of protocol
specifications to assure interoperability when the protocols
are implemented by different vendors in different devices
and operating systems.

The proposed technology (actually, its first experimen-
tal version) is also created at the level of specification of
a generic representation of the environment, a language for
defining service interfaces and tasks, and communication
protocols for automatic task accomplishment in open het-
erogeneous multirobot systems. The goal of the paper is
merely to introduce the idea of the technology, and its proto-
type implementation for relatively small multirobot system
consisting of two mobile robots Pioneer 3-DX, and several
additional devises like cameras, and laser scanner SICK LD-
OEM1000. The system is too small to verify the proposed
technology; however, it may serve as its explanation. For
a demo of the impementation see the movie at (Robo-enT
2007).

The next section is devoted to sketch a robot and multi-
robot architecture based on SOA. In the Section 3, the idea
of a generic representation of the environment is presented.
In the Section 4 a working example, i.e., prototype imple-
mentation of the infrastructure for the small system is pre-
sented. The last section is devoted to a discussion on the
limitation of the proposed approach and related work. More
details on our ongoing project will be available shortly at
(Robo-enT 2007).

25

Architecture of robot and multi-robot system
based on SOA

There are four kinds of software components, that is, ser-
vice, client, registry, and broker in a system built according
to the SOA paradigm. Each of them is autonomous so that it
may be called agent. Hence, there are four kinds of agents:
service-agent representing service, task-agent representing
client having a (complex) task to perform, info-agent repre-
senting registry, and broker-agent representing broker. Since
the interactions between agents are only roughly described
in SOA, there must be a communication protocols that im-
plement the interactions.

Usually, robot is considered as an autonomous system that
can play the following roles:

e A robot may be seen as a collection of service-agents cor-
responding to its internal services. Some of these services
may be exposed to other robots. Since they are controlled
by the robot, it must act as a special broker-agent, that is,
from the internal point of view it acts as a task-agent to-
wards its services. From the external point of view (i.e., in
the multi-robot system) the robot is viewed as a collection
of service-agents performing complex services. Robot au-
tonomy is realized by managing these service-agents.

e A robot is responsible to accomplish a task. Then it acts
as a client-agent towards services implemented on other
robots and devices in order to perform the task.

e If a robot has sufficient computing capabilities, it may act
as a typical broker-agent performing a special complex
service composed from services available in the multi-
robot system. It may act even as an info-agent.

One single robot may play all the above roles, however, only
the first role is essential for it. The remaining roles require
rather computing capabilities and connection to the network,
than physical services installed on the robot. Since the sys-
tem components are supposed to be connected into network,
it is reasonable to perform these remaining roles on dedi-
cated computers.

Architecture of open system consisting of heterogeneous
devices (also robots) is defined as a dynamic collection of
service-agents (corresponding to the services performed by
these devices), info-agents, broker-agents, and task-agents.
Each of the service-agents exposes the interface of its ser-
vice to an info-agent, and is obliged to converse (according
to the common protocol) with any task-agent interested in
using the service. A task-agent discovers appropriate service
interfaces by communication with an info-agent. Broker-
agent is viewed as a service-agent by task-agent, and as a
task-agent by the service-agents. In order to define precisely
the above architecture, the protocols, the language for defin-
ing service interfaces and the tasks must be specified. The
basis for these specifications is the representation of envi-
ronment presented below.

A generic representation of environment

The basic component of the proposed representation is ob-
ject. An instance of the representation is a collection of ob-
jects having a hierarchical structure of the form of tree. The

leaves of the tree are elementary objects that can be directly
perceived via their physical features (attributes) like shape,
color, size, etc. The tree nodes correspond to complex ob-
Jjects having internal structure consisting of subobjects (im-
mediate child nodes in the tree) related in some way to each
other. A room may serve as an example of a complex ob-
ject. Its subobjects are walls, ceiling, floor, windows, door,
and some equipment like chairs, table, computers etc. These
subobjects are in special relations to each other, for example,
the relations of adjacency between the walls, floor and ceil-
ing. Only elementary object (e.g., a door in a building) can
be perceived directly by recognizing, for example, its shape,
and location relatively to walls. Actually, a complex object
is an abstract entity, and can be identified only by its ele-
mentary subobjects and their mutual relations. Although a
complex object may also have some features like shape, this
feature is composed from the shapes of its subobjects and
their mutual relations. The extensive example in the next
Section illustrates our concept of object hierarchy.

The crucial notion of the proposed representation is 0b-
Jject type. It defines the generic structure of all the objects of
this very type. Except the types of elementary objects, this
structure consists of the tree expressing subobject hierarchy,
the relations between subobjects at the same level of hier-
archy, and object attributes that can be directly perceived or
composed from attributes of the subobjects. The definition
of type must be recursive because the subobjects are also of
some types, however, at lower level of the hierarchy. Ob-
ject is an instance of its type, so that the types determine the
general structure of the objects and in this way the general
structure of environment representation. It is important to
notice that the relations and attributes used to define a par-
ticular type are not specific and dedicated only to this very
type. Instead, they are generic and determine the representa-
tion, because they are the basic components of the type def-
initions. They are the most primitive notion in the proposed
representation, and correspond to the perception capabilities
of the system, that is, to the capabilities of cognitive services
that can recognize local situations of the environment. It is
important to note that the types that correspond to the ele-
mentary objects are defined using only attributes; relations
are not used because elementary object does not have sub-
objects that may be related to each other.

The attributes like color, weight, size, and shape, as well
as the relations between objects like being close, being adja-
cent, and being subobject may serve as example of the primi-
tive notions. Complex notions like shape of building may be
defined from the primitive ones. They are the basis for defin-
ing object types, as well as for recognizing objects; it means
that the object definition and its recognition are inseparable.
Hence, the primitive attributes and primitive relations con-
stitute the basis for environment representation and at the
same time the basis for recognition in the environment.

A complex object may represent a part of the environ-
ment, for example, a room, storey of a building, building,
street, and even a town. The type of this object determines
only the general structure of the corresponding part of the
environment, e.g., general structure of the type of building
consists of storeys connected by stairs and possible a lift,

26

however without specifying the number of storeys, rooms
in each of the storeys, objects in rooms like tables, chairs,
computers as well as and their relations to each other.

In order to define the type of a complex object, the types
of all its subobjects and possible relations between these
subobjects must be already defined. Some of the subob-
jects may be again complex objects so that the types of their
subobjects must be defined first, and so on down to the el-
ementary types. To define a type also some of the generic
attributes must be assigned to this type, for example, high,
width, shape, and color as well as the range of each of these
attributes.

Object is an instance of its type, so that values of its at-
tributes, and explicit relations between its subobjects should
be specified in the object. Sometimes there is no need
(sometimes it is impossible) to specify them completely like
in the case of a closed room with no access. Moreover, some
subobjects positions and their relations may be temporary,
like the position of a chair in a room. Hence, the type of
an object is recognized by the types of its subobjects, their
mutual relations, and attributes. It is important that this type
recognition must be computable from data coming from sen-
sors of the cognitive services.

It seems that the proposed representation is different than
the classic metric as well as topological representation and
its variations, see (Thrun 1998), and (Yeap & Jefferies
1999). Each of them has its own fixed general structure;
it is either the binary (occupancy) grid, or position of geo-
metric primitives in a global coordinate system, or Voronoi
diagram expressing connectivity (neighborhood) of places,
or a hybrid like a global topological map formed of local
metric maps. Actually, all of them are dedicated rather to
the problem of robot navigation which is usually seen only
as a subtask to be performed by a robot.

There is no global coordinate system in our representa-
tion. A local coordinate system is also not necessary; it
is important for robot navigation itself, so that a coordi-
nate system and a corresponding map (e.g., binary grid) can
be created dynamically (using methods like SLAM) by the
robot. Sometimes the precise position of the robot in the
map is not essential for task accomplishment; it is rather
its relative position to the object that is (for example) sup-
posed to be gripped. Although local coordinate system is
not necessary in our representation, it can be often created
for a complex object (like a room or corridor) on the basis
of the object features (like shape and size) and mutual re-
lations between its subobjects; actually this is done in our
implementation.

Recently, an interesting approach to environment repre-
sentation was proposed by (Mozos et al. 2007) and (Kruijff
et al. 2007); it is called multi-layered conceptual mapping
and consists of the four layers specified as metric map, navi-
gation map, topological, map, and conceptual map. The con-
ceptual map is strongly related to our approach; especially
the relation has-a corresponds to our relations subobject and
is-in defined in the next Section.

It seems that the main advantage of the proposed repre-
sentation over the classic ones as well as the multi-layer
conceptual mapping is the variety of generic relations and

attributes that can be defined in the representation, imple-
mented as cognitive services that can perceive them, and
then introduced online to the system preserving its seman-
tic interoperability. The following examples of the generic
relations explain somewhat our claim.

The intuitive relation being an element (subobject) aggre-
gates two different generic relations. The first one concerns
the subobjects that are necessary elements of the object like
the walls in a room; this relation is embedded in the generic
hierarchical structure of the proposed representation. The
second generic relation expresses the fact that an object A
is-in object B, however the presence of A in B is not neces-
sary like in the case of a chair in a room.

The next intuitive relation adjacency of two objects is also
a conglomerate of two generic relations. The first one con-
cerns two objects that are sufficiently close to each other like
chair and table, however it is not necessary for these objects,
that is, it is possible that they are far away from each other.
The second generic relation expresses the fact that two ob-
jects have a common subobject. For example, a room and
a corridor have a door (a wall) as its common subobject.
Then this relation may be viewed also as the neighborhood,
however, not always as the connectivity in the context of
topological representation.

Relations between subobjects are qualitative so that it may
be seen as a limitation. For example, the adjacency rela-
tion does not tell how close the two objects are. However,
it is supposed that there is a cognitive service (for example,
implemented on a robot) that can recognize the objects and
measure the distance between them. Exact parameters and
values of the environments are not always needed especially
if they are subject of change. The question is how precise
the map of the environment should be. If the effort to con-
struct such precise map is large, then there is no sense to
construct it unless it is necessary for task accomplishment.
The concept of rough skeleton maps is reasonable, because
such maps give general information about the environment
usually only with some permanent details. They can be up-
dated and detailed only if it is needed.

The approach consisting in computing exact parameters
of the environment, like positions of the robot arm, and
of the object to be manipulated, was inherited from the
classic robotics. It is inefficient in the open and a pri-
ori unknown environment. There is alternative approach
in robotics called impedance control (Hogan 1985) where
robots are supposed to dynamically interact with an un-
known environment. Since robots are no longer confined
to the fixed environments to work on well-designed automa-
tion tasks, there is no need for precise estimation of envi-
ronment parameters. Some of these parameters, like robot
position relatively to other objects, can be estimated on line
during dynamic interactions. It seems that the concept of
the environment representation based on the hierarchy of
object types, generic relations and attributes may be useful
for this approach. The key problem is availability of cogni-
tive services that are able to find out objects, and recognize
their mutual relations according to the generic structure de-
termined by the representation. The proposed representation
is an extension of our previous work (on environment rep-

27

resentation for navigation and orientation by blind people)
done within the framework of the project Blind-enT (Am-
broszkiewicz et al. 2006).

The new environment representation allows defining tasks
in different manner than the classic one. Instead of specify-
ing a sequence of actions to be performed and exact param-
eters of these actions, a task may be defined in declarative
and/or qualitative way in terms of relations and attributes. It
means that only the final effect of the task is specified, like
red small object of type Box is adjacent to a green object
of type Door being a subobject of corridorl. This idea is
explored in the next Section.

Language for task and interface definition,
universal protocol for task accomplishment

As already mentioned in the Introduction there are three
kinds of services: software services that process data, phys-
ical services that change a local state of the environment,
and so called cognitive services. The cognitive services de-
serve special attention because they perceive local states of
the environment. However, any act of perception done by
a cognitive service is restricted to some fixed relations, at-
tributes, and to some fixed places; it means that the service
can evaluate (only in these fixed places) formulas contain-
ing the names of these relations and attributes. The cog-
nitive services and physical services are strongly related to
each other, because physical service changes local state to
another one whereas cognitive service perceives (to some
extend) these two local states.

If the system consists of only software services, then envi-
ronment is called Cyberspace, its representation is relatively
simple, and consists of data types and functions that process
data. This case was extensively elaborated in our previous
work resulted in the experimental technology (enTish 2003)
for integrating software services in order to automatically
accomplish complex tasks. Our current work is based on
enTish and, in fact, extends it.

In order to describe a physical service, a representation of
the real environment is needed. The initial situation (called
precondition) necessary to invoke the physical service as
well as the situation after invocation (usually called effect or
postcondition) is expressed in terms of this representation.

The generic structure of environment representation, that
is, the type hierarchy, as well as object examples are con-
structed in XML. A part of them is presented at www site of
the (Robo-enT 2007).

Example of a simple hierarchy of types is described below
in some details. The most complex type is Building, it
has shape, and size as its attributes. The types of its
subobjects are: Storey, Lift, and Stairway. They are
also complex types, i.e., types of complex objects.

e The type Stairway has one
number—-of-steps, and one relation called
adjacency between its subobjects. The types of
its subobjects (actually being elementary objects) are
Stairs, UpStair, and DownStair. These last two
types correspond to the beginning of the first step and the
last step of the stairs. There is permanent adjacency

attribute called

relation between object of type UpStair (DownStair)
and object of type Stairs.

e The type Lift has attribute number-of-levels cor-
responding to the number of storey in the building, and at-
tribute cabin-position corresponding to the current
position of the lift cabin. Its subobject types are Cabin
and Level; however, there is only one object of type Cabin
and several objects of type Level. The type Cabin has at-
tribute size and subobject of type Door as its elemen-
tary subobject. The type Level has attribute number
corresponding to the identifier of the appropriate storey,
and subobject of type Door being also elementary sub-
object of object of type Corridor defined below. Actu-
ally, the attribute cabin-position is an abstraction of
the adjacency relations between the door of the cabin
and the door of a level.

e The type Storey has two optional subobjects of type
UpStair, and DownStair being elementary objects
(they are also subobjects of Stairway), and obligatory
subobjects of type Room, and of type Corridor. The
type Corridor has two attributes width, high, and
length. It has also several subobjects of type Door be-
ing elementary objects. The type Room has the following
attributes number, width, length, and high. It has
also subobjects of type Door.

For the sake of presentation most of the above types are
oversimplified (like Door that should have several at-
tributes), or may be seen as questionable like UpStair, and
DownStair. Also the types Room, and Corridor should
have more subobject types like Wall, Ceiling, Floor,
and Window. The objects of types Room, Corridor,
and Cabin are places where objects of types Box, and
Robot may be located; this is expressed by the relation
is-in (x,y) with intuitive meaning that object x is in ob-
ject y. The type Box is elementary and is defined by the
attributes color, size and shape. It is supposed that ob-
ject v of type Box can be gripped (if it is sufficiently small)
by an object x of type Robot; this relation is denoted by
grip (x,y).

The simple environment representation presented above
gives rise to construct a simple language for describing local
situation in the environment. The same language is used to
define service interfaces and tasks. The language consists
of the following names of notions introduced in the above
representation:

e names of types, variables denoting objects of a fixed type,
constants denoting fixed objects;

e names of attributes (functions): number, width, length,
high, number-of-steps, number-of-levels, and cabin-
position,

e names of relations:

— neighbor(x,y) for denoting that objects have a common
elementary subobject,

— subobject(x,y) to express the immediate hierarchy rela-
tion that object x is a subobject of object y.

— is-in(x,y)

28

— adjacency(x,y)

- grip(x.y)

Along with standard logical operators (negation, disjunc-
tion, conjunction, implication, and equality) as well as spe-
cial types Agent and Service the language is a simple version
of first order logic without quantifiers. The terms and formu-
las are constructed in the usual way. The precise syntax of
this language is expressed in XML and available in the en-
Tish www site (enTish 2003). It is important to note that
although the language (called Entish) was created for sys-
tems consisting of software services, its syntax is universal
and can be applied successfully for physical and cognitive
services. In this presentation a semi formal version of the
language is used. Service interfaces are defined in the fol-
lowing way.

Interface of software service, processing data according
to abstract function f, is defined as the pair of formulas:
(precondition, postcondition). Precondition formula con-
tains input parameters (say, variable x of type Typ1, and vari-
able y of type Typ2 with some constrains) of the function f,
whereas postconditions contains term f{x,y) also with some
constrains. Let the name of the service be servicel. Exam-
ple of such interface is the following:

o The precondition formula: (is-in(x, servicel) and is-in(y,
serl) and less(x,y)); where the variables x, and y are re-
spectively of type Typl and Typ2. The meaning of the
formula is that the data of these types are delivered to the
servicel, and these data satisfy some constrains; in this
case, x is less than y.

e The postcondition formula: (z = f{x,y) and is-in(z, v)).
The variable z denotes the result of processing the input
data x and y by the service servicel. This result may be
sent to any service denoted by v; v is variable of type Ser-
vice.

Interface of physical service performing an action in the en-
vironment (that is, changing local situation (state) of the en-
vironment) is defined also as the pair of formulas: (precon-
dition, postcondition). The service performs abstract action
in order to change the local situation described by precondi-
tion formula to the situation described by the postcondition;
that is, the postcondition expresses the effect of action per-
formed by the service. The postcondition formula contains
also the name of the abstract action. Simple example of such
interface is as follows:

e Precondition formula: (less(width(x), 20cm) and
less(weight(x),5kg) and is-in(x, rooml03c)). It means
that object x is small (of limited size) not too heavy and is
in romm103c.

e Postcondition formula: (adjacent(x,y) and subobject(y,
rooml03c) and action(service2) = move). It means that
the object x is close to any subobject of room103c. Al-
though the action name seems to be not essential in the
post condition formula, it specifies the way the post con-
dition is realized. Actually, the post condition may be
realized in many ways, i.e., performing different actions,
one of them is the action move. Let us notice that this ac-
tion can be decomposed into the sequence of more primi-

tive actions: grip, go to, put down; however, for the class
of tasks considered in the paper, it is convenient to have
such composite action.

The interface specifies that the service can move a small,
not too heavy object x within the range of roomi03c. The
pre and postcondition formulas are general so that during
the negotiation phase of service composition into workflow,
more specific conditions may be added to these formulas.
For example, that the object is red and of type Box in the
precondition, whereas in the post condition that the object is
close to the door of the room.

Due to special operation performed by cognitive service,
consisting in evaluation of formulas, its interface is differ-
ent than the interfaces of software and physical services de-
scribed above. The interface is defined as follows:

e The list of names of relations, and names of attributes that
can be evaluated by this cognitive service.

o The range of the service expressed as object of some type,
like Room, Building, etc.

Any formula containing only these relation names and at-
tribute names can be evaluated by this cognitive service,
however, only within the object determined by the range.
Hence, the input of this service is a formula, whereas the
output is evaluated formula in special form called signedInfo
(see Documentation, and XML-sources of (enTish 2003)).

Let us consider a cognitive service implemented on the
device consisting of a camera and 3D scanner (connected to
a computer), and operating in room103c of the storeyl
in the building. Interface of the service of this device con-
sists of the following items:

e List of attribute names: color, size, shape.
e List of relation names: is-in, adjacent.
e Range: rooml103c.

The three kinds of services described above may be com-
posed in the following way:

e Cognitive service is responsible for finding object z,
that is, to evaluate the formula (is-in(z, rooml103c) and
type(z)=Box and color(z)= red). The service returns that
the following formula is true: (is-in(z, rooml103c) and
type(z)=Box and color(z)=red and adjacent(z, widnowl)
and coordinate(windowl) = x). Note that the service
added one relation, and one attribute coordinate that cor-
responds to the local coordinate system of the room103c.

e Software service is responsible for computing direction
and distance between points x and y that is, the data (di-
rection, distance) = f{x,y), where y is the coordinates of
the current robot position.

e Physical services on a mobile robot are responsible for:
g0 to x, move object z to the door of rommlI03c.

e Suppose that another physical service (on a different
robot) also performs action move, however, its range is
corridorl. Since the object doorl03c is the common ele-
mentary subobject of corridorl and room103c, the robot
operating in the corridor can take the object z and move it
to the door of the lift and in this way satisfy the formula (

29

adjacent(z, liftdoorl) and type(z)=Box and color(z)= red
). Note that this very formula defines the task that has
been already accomplished.

In order to do so a task-agent must be created and dedi-
cated to this very task accomplishment. The agent is re-
sponsible for making a rough plan how the task formula
can be satisfied. The plan consists of actions that once
composed and executed may make the formula true. Any
action corresponds to service interface. So that the agent
must discover services having such interfaces, negotiate
with service-agents the conditions to invoke them, arrange
them into workflow, and finally execute the workflow and
control the execution. In the case of a failure there must be
recovery mechanisms that allow the task-agent to continue
the process of task accomplishment.

It is important to note that a task is defined as an inten-
tional formula. It means that the situation of the environ-
ment described by this formula is desired by the client who
has created the task. Usually, the formula is not satisfied,
i.e., no such situation occurs in the environment.

In order to automate task accomplishment by the task-
agents, several linguistic constructions have been introduced
the language that violate its first order property. They are
necessary to express in the language the following notions:
intensions of task-agent, commitments of service-agent, and
pre and post condition of the interface of a service, see (en-
Tish 2003) for more details.

The representation of the environment, language for inter-
face and task definition constitutes the basis that allows the
automation of the process of task accomplishment. To re-
alize this automation, specifications the following protocols
are needed:

e Registration: Service-agent registers the interface of its
service to an info-agent (service registry).

e Planning: Task-agent constructs possible plans and
adopts one of them. To simplify our implementation it
is supposed that plans are given to the task-agent.

e Discovery: Task-agent discovers appropriate services
with interfaces corresponding to the actions in the adopted
plan, and checks if the ranges of these services are appro-
priate for the task accomplishment.

e Service composition: Task-agent communicates with
service-agents to arrange the services into workflow. Gen-
erally, there is backward and forward method to do so.
The backward method starts composing the workflow
from the last service in the order of execution, whereas the
forward method starts with the first services. The back-
ward method was applied in the original protocol (called
entish 1.0) for the system consisting only of software ser-
vices. However, even for this case it is possible to con-
struct different (perhaps more efficient) protocols. For the
multirobot system, the forward method was applied to ar-
range services into workflow.

o Workflow execution: Task-agent starts the workflow ex-
ecution, by invoking the first services, and then the con-
secutive services in the workflow. In the case of a failure
of one of the services, the task-agent must rearrange the

workflow using a special case of service composition pro-
tocol.

The example presented above was implemented in the sys-
tem consisting of 2 robots Pioneer 3- DX with grippers, 1
laser scanner SICK OEM-1000, and several cameras. The
environment consists of our laboratory (romm103c) and the
corridor. The robot operating in more complex environment,
i.e., in the laboratory, was equipped with the scanner that al-
lowed precise local mapping. The second robot operating in
the corridor was equipped only with standard sonar suite to
perform local mapping. The cameras connected to comput-
ers implemented cognitive services. Since the recognition
of object shape is hard (actually we work on this subject
within a separate project), the cameras recognized special
landmarks (labels in the form of barcode) attached to ele-
mentary objects like box, door, wall, chair, table, and so on.
Each of the robots can grip an object and move it to any place
within its range; so that service corresponding to the action
move was implemented on any of the robots. The range of
the first robot was romm103c, whereas the second robot op-
erated only in the corridor. Any robot has also a camera that
was used to recognize object (in fact, its label), so that it has
a cognitive service implemented on its board.

Since there was only two types of services in the imple-
mented system, the class of tasks had to be limited to the
following tasks:

e Searching for an object given its attributes and type.
e Moving an object from one place to another.

e Mapping that consists in updating and detailing a complex
object like a building.

Since the ranges of the robots overlap at the doorway be-
tween the lab and the corridor, the physical services, as well
as the cognitive services of the two robots can be composed.
The mapping service deserves special attention because it
concerns only cognitive services. It was implemented as a
broker-agent (taking care of the map of the whole building)
that evaluated formulas on the requests from the task-agent.
Actually, a request was forwarded to appropriate cognitive
services, the evaluations were returned to the broker-agent,
and then forwarded to a task-agent. So that the broker-agent
acted as a central aggregated cognitive service responsible
for mapping.

Limitations of the proposed approach and
related work

The main goal of our work is to propose an experimental
information technology that may allow automatic task ac-
complishment in the systems consisting of heterogeneous
devices, robots, and computers. The technology is in the
form of environment representation, language for task and
service interface definition, and communication protocols.
The technology should be implemented as a multi-agent sys-
tem (consisting of service-agents, task-agents, info- agents,
and broker-agents) on these devices and computers. In the
paper only the idea of the proposed technology was intro-
duced. The implementation was done on a small system, too

30

small to verify the technology, however enough to explain
how the main components of the technology work together.

The most related work was done by (Parker & Tang 2006).
In their approach there are crucial notions that strongly cor-
respond to the notions used in our approach. The first and
most fundamental notion is information type that is sup-
posed to have semantic meaning and defines the specific
sensing or computational data of a schema or a sensor. How-
ever, this semantic meaning is not defined in (Parker & Tang
2006). It seems that our environment representation and
the language may provide a semantic for such information
types. The notions of perceptual schemas (PS), and motor
schemas (MS), as well as communication schemas (CS) in
(Parker & Tang 2006) correspond to our notions of cogni-
tive services, physical services, and software services. So
that it is possible to define interfaces of these schemas. It
seems that the ASyMTRe approach can be reformulated in
the terms of our approach.

There is an interesting approach in robotics that is
also based on software services; it is called Decentralized
Software Services Protocol (DSSP) (Nielsen & Chrysan-
thakopoulos 2007). It defines a software application as a
composition of services that are lightweight software com-
ponents created, manipulated, monitored, and destroyed re-
peatedly over the lifetime of the application. Most inter-
esting features of such service are its behavior, and internal
state. Any information that is to be retrieved, modified, or
monitored using DSSP must be expressed as part of the ser-
vice state. Service behavior specifies a way of message ex-
changes with other services in the composition, and related
change of the service state. Hence, it determines how this
very service can compose with other fixed services. Since
the internal state of service may be monitored and even mod-
ified by other services, the service can not be modular and
self contained. Moreover service invocation is specific and
determined by the behavior, so that it is tightly coupled to
the other services in the composition. Hence, DSSP does
not follow the SOA paradigm. It may be viewed rather as
an interesting programming platform for building complex
applications from simple components.

In order to conclude the paper, let us mention once again
that an approach to the problem of interoperability in open
and heterogeneous multirobot systems was presented. It
is based on the paradigm of Service Oriented Architecture
(SOA), and a generic representation of the environment. If
the approach deserves some attention, the proposed technol-
ogy should be implemented (by different programmers) on
a large number of heterogeneous devices providing a large
variety of cognitive and physical services; then, the imple-
mented system should be verified by automatic accomplish-
ment of a large number of different tasks.

Acknowledgment

The work was done within the framework of the project In-
teroperability of mobile and cognitive devices supported by
the grant MNiSzW No. 3 T11C 038 29.

References

Ambroszkiewicz, S., and Cetnarowicz, K. 2006. On the
concept of agent in multi-robot environment. In Hinchey,
M.; Rago, P; Rash, J.; Rouff, C.; Sterritt, R.; and
Truszkowski, W., eds., Innovative Concepts for Autonomic
and Agent-Based Systems, volume 3825 of Lecture Notes
in Artificial Intelligence. Springer-Verlag.

Ambroszkiewicz, S.; Bartyna, W.; Faderewski, M.;
Jakubowski, S.; Kocielinski, D.; Mikulowski, D.; and Ter-
likowski, G. 2006. Blind-enT: Making objects visible for
blind people. In Jones, S., and MacDonald, P., eds., Vi-
sion 2005—Proceedings of the International Congress, vol-
ume 19. Elsevier.

enTish. 2003. enTish project. Technical report, IPI PAN
and University of Podlasie, www.ipipan.waw.pl/mas/.

Hogan, N. 1985. Impedance control: An approach to ma-
nipulator, Part I - Theory, Part I - Implementation, Part III
- Application. Journal of Dynamic Systems, Measurement
and Control 107:1-24.

Kruijff, G.-J. M.; Zender, H.; Jensfelt, P.; and Chris-
tensen, H. I. 2007. Situated dialogue and spatial organi-
zation: What, where... and why? International Journal of
Advanced Robotic Systems, Special Issue on Human and
Robot Interactive Communication 4(2).

Mozos, O. M.; Jensfelt, P.; Zender, H.; Kruijff, G.-J. M.;
and Burgard, W. 2007. From labels to semantics: An
integrated system for conceptual spatial representations of
indoor environments for mobile robots. In ICRA-07 Work-
shop on Semantic Information in Robotics.

Nielsen, H. F., and Chrysanthakopoulos, G. 2007.
Decentralized Software Services Protocol - DSSP.
Technical monograph, Microsoft Robotics Studio,
http://msdn.microsoft.com/robotics/media/dssp.pdf.
Parker, L. E., and Tang, F. 2006. Building multirobot coali-
tions through automated task solution synthesis. Proceed-
ings of the IEEE 94(7).

Robo-enT. 2007. Robo-enT project. Technical report, IPI
PAN and University of Podlasie, ii4.ap.siedlce.pl.
SemanticWebServices. 2004. Web Services Activity.
Technical report, W3C, www.w3.0rg/2004/WS2/.

Thrun, S. 1998. Learning Maps for Indoor Mobile Robot
Navigation. Artificial Intelligence 99(1):21-71.
WebServices. 2002. Web Services Activity. Technical
report, W3C, www.w3.0rg/2002/ws/.

Yeap, W. K., and Jefferies, M. E. 1999. Representation of
the local environment. Artificial Intelligence 107(2):265—
301.

31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

