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Abstract

We took an innovative approach to service level man-
agement for network enterprise systems by using inte-
grated monitoring, diagnostics, and adaptation services
in a service-oriented architecture. The autonomous di-
agnosis for trouble-shooting of web service interrup-
tions is based on Bayesian network models. In this pa-
per, we present our methods for building the diagnostic
models. We focus on two types of Bayesian network
models of different structure complexity. Our result
shows that the two-layer model outperforms the three-
layer model in the applied domain. This challenges
the common belief that adding unnecessary nodes in a
Bayesian network and growing its structural complexity
does not deteriorate performance. Hence such practice
of building more complex models than necessary should
be approached cautiously within the context of the ap-
plied domain.

Introduction
Today as the Internet is used preferably as an information
delivery vehicle, more and more companies provide digi-
tal documents electronically to their customers through web
services. The reliability of web services is critical to the sat-
isfaction of customers, since it directly relates to timely de-
livery and affects overall system performance. If the web
service system is experiencing any problems and running
slowly, it is highly desirable to quickly find out the root
causes of the problem and take immediate actions to solve it
and return the system to normal status.

Traditionally, monitoring, diagnostics, and adaptation ser-
vices are isolated. Monitoring agents collect data on web
service transactions. Monitored events are logged into data-
bases for off-line analysis. If anything critical happens,
corresponding alerts are fired instantly to duty managers in
charge through pagers or emails. Human interaction is then
engaged to solve the problem in a timely fashion.

We take an innovative approach to service level manage-
ment using integrated monitoring, diagnostics, and adapta-
tion services for networked enterprise systems (Wanget al.
2004; 2005b). We implemented on-line analysis of monitor-
ing data for autonomous diagnosis. The diagnostics service
and the adaptation service are an integral part of the QoS
information management system. The diagnostics service

alerts QoS manager of a critical situation. The QoS manager
then automatically makes corresponding adaptation speci-
fied by the system policy as a rescue mechanism (Wanget
al. 2005a). Hence, system performance may downgrade
gracefully in emergency. In addition, less human interaction
is involved.

On the other hand, as one of the most widely used tech-
nologies for diagnostics, Bayesian networks (Pearl 1988)
are a compact yet powerful framework for knowledge rep-
resentation and reasoning. We applied Bayesian networks
in autonomous, real-time diagnosis of web services using
monitoring data. Two types of models are used to encode
the dependence relationships between web service entities.
The first type consists exclusively of nodes representing the
absolutely necessary components such as web applications,
monitoring entities, alert events and such. A node in this
kind of model is either a diagnosis target or an observable
variable. A diagnosis target is a web service component that
can possibly run into problems and trigger alert events. An
observable variable can be an indication or test result of the
health state of web service, e.g., an alert event. The second
type of model has some additional nodes between the diag-
nosis targets and the observable variables. These interme-
diate nodes aggregate the health status of possible causes.
They link the causes to the alert event nodes. In this pa-
per, we will refer to the first type of model as a two-layer
model and the second type of model as a three-layer model,
although the actual number of layers in the models may not
be exactly two or three.

The experimental results showed that the two models do
not have the same reasoning performance in terms of diag-
nosis. The two-layer model has better performance than its
three-layer counterpart. This suggests that making the struc-
ture of a Bayesian network more complex may deteriorate
its performance than using a simple structure. The addi-
tional layer of nodes does not serve as a faithful information
channel as assumed. Rather, the evidence message is diluted
or weakened somehow when passed through this layer from
upper to lower and vice versa.

The reason may be many-fold. One is that the additional
layer of nodes encode different independence relationships
between the upper layer nodes and the lower layer nodes.
And inappropriate independence assumptions result in lower
diagnostic accuracy than smaller models that do not include
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such assumptions(Fryback 1978). Another reason is the
different set of probability parameters used with different
model structures. Unless the two sets of probability distrib-
utions are equivalent, the reasoning results can be different.
This is known as sensitivity of Bayesian networks (Coupé &
van der Gaag 2002).

In the following sections, we first describe the web ser-
vice system and its monitoring and diagnostics architecture.
We then spend a large section on our modeling approach to
building the diagnostic Bayesian networks for adaptive and
reliable web services. We also present our experimental re-
sults showing the difference in diagnostics performance of
the two kinds of models. In addition, we explain why the
two-layer model outperforms the three-layer model. At the
end of the paper, we draw a brief conclusion.

Architecture for Web Service Monitoring and
Diagnostics

Web services allow customers around the world to access
various e-documents over the Internet anywhere anytime.
Hence, web service components are required to be highly
reliable. For example, the web applications should run with-
out interruptions; the hosts of the web applications should be
robust; the proxy servers and routers should be fairly fast.
High reliability of a web service system also requires that
the system is constantly aware of its performance status, and
is able to diagnose on the fly and adapt whenever necessary.

Figure 1: An Integrated QoS Management Architecture for
QoS Service Providers.

Traditionally, a monitoring tool is an isolated process and
works merely as a data collector. In an integrated QoS man-
agement architecture for a web service framework, various
component services interact with external services such as
real-time host and network condition monitoring. Key com-
ponent services includeQoS manager, establishment ser-
vice, policy manager, resource manager, prediction service,
operation service, maintenance service, monitoring service,
adaptation service, and diagnostics service. Figure 1 shows
the interactions of these services. The interaction between
the monitoring service and the QoS diagnostics service fol-
lows a registration and notification style, while the interac-

tions among other services in the architecture are based on a
request and reply style.

Monitoring, diagnostics and adaptation services are an in-
tegral part of end-to-end QoS management. The role of the
monitoring service is to sample and aggregate QoS parame-
ter values. It registers condition predicates with the diagnos-
tics service, which returns with notifications when the predi-
cates become true due to changes in system conditions. The
diagnostics service is a vital service that uses formal reason-
ing models like Bayesian networks to aggregate low-level
system signals into attributes on system conditions. It takes
real-time inputs from monitoring tools, aggregates data on
the fly, and stores the data in a repository. It may also evalu-
ate any predicates on the attributes upon value changes and
trigger notifications to interested parties such as the mon-
itoring service. When the monitoring service receives the
notifications of the conditions of interest, it updates the cor-
responding data in maintenance service, which in turn ac-
tivates some adaptation mechanisms, defined in the policy,
to take care of the situation through the adaptation service.
Figure 2 shows a typical interface between the monitoring
and diagnostics services in a web service architecture.

Figure 2: An Architecture of The Monitoring and Diagnosis
in Web Service system.

The monitoring service is comprised of many distrib-
uted monitoring agents which periodically send simulated
web transaction requests to the servers. The transaction de-
lays are compared by the monitoring agents against the pre-
configured thresholds. Corresponding alerts are generated if
there is any threshold crossed over. These alerts are logged
into a relational database for further analysis. There is rich
knowledge embedded in the relational database tables that
can be extracted for intelligent diagnostics.

Modeling Diagnostic Bayesian Networks for
Web Services

We applied the Bayesian network technology for au-
tonomous, real-time diagnosis for web services based on the
monitoring data. The availability of domain experts is often
very limited for knowledge elicitation. So our major knowl-
edge resource for building Bayesian networks for diagnos-
tics of web services is the monitored database. Fortunately,
in our practice, there are many dependence relationships en-
coded in the database, which allows for automatic construc-
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tion of Bayesian network structures. Probability parameters
can be roughly estimated based on domain knowledge and
common sense. For instance, it is not hard to estimate how
likely the intranet is ok or slow.

Initially all the related entities recorded in the database
are added as nodes in the Bayesian network. As a result,
we built a three-layer Bayesian network model. However,
evaluation of this model showed that, in our application, the
three-layer model does not provide a good diagnostic results.
So we built a simple two-layer Bayesian network model. We
found that the two-layer model outperforms the three-layer
model in our evaluation. In this section, we introduce our
modeling process, and present evaluation of the two differ-
ent modeling patterns.

Three-layer Model and Evaluation
In a Bayesian network, nodes (variables) can be classified
into three categories based upon their roles in diagnostics:
target, observable, andintermediate.

The first type istarget variablesin diagnostics. These are
hypothesis variables that represent uncertain events. They
are unobservable but their certainties are of interest to get an
estimate. For example, a hypothesis can be the possible fail-
ure components in an airplane system (e.g., Line Replacable
Units) or diseases in a medical diagnostics system. In diag-
nostics of a web service, the web service component such
as web applications, their hosts, and the Internet or intranet
are the target variables. This kind of variable also includes
monitoring entities used to constantly monitor web services.
Failures (e.g., a slow response) of these components may
need immediate attention and corresponding correction.

The second type isobservable variables. Theobservable
variablesprovide evidence and information that may reveal
some clue about the hypothesis events and help to identify
the certainties of the hypothesis events. This type of vari-
ables includes observable symptoms and achievable tests. In
web service diagnostics, event alerts, which describe the sta-
tus of web service transactions, belong to this category. The
alerts are generated by the monitoring entities when moni-
toring web transactions. They describe in detail what kind of
failures happened at what time on which web service com-
ponent.

The third type isauxiliary variables. Auxiliary variables
help to establish the information channel from causes to ef-
fects. They are the intermediate nodes between the hypothe-
sis nodes and the information nodes in a Bayesian network.
The auxiliary variables are usually not of interest in reason-
ing or diagnosis. Except as a mediating function when build-
ing a Bayesian network model, the existence of auxiliary
variables does not increase the accuracy of reasoning results
(Provan 1995; Wang 2005). Therefore, it is not surprising to
see some Bayesian network models are bi-partite graphs and
only consist of target nodes and observable nodes.

In web service diagnostics,auxiliary variablescan be
component health variables, which describe the aggregated
health status of web service components. The component
health nodes are intermediate nodes between the service-
related components and the alert nodes. They serve as an in-
formation transferrer. They are designed to have three states,

i.e., good, warning, or critical, to reflect the possible status
of web services, i.e., ok, slow, and very slow. The compo-
nent health nodes usually have multiple parents including
web applications, monitoring entities, and intranet.

A full quantification of the conditional probability table
(CPT) for a node usually requires many entries. Since a large
number of probability values is difficult to obtain, the leaky
noisy-max model is applied and greatly reduces the quantifi-
cation parameters. For instance, a node with three parents
requiring 243 probability entries for its CPT now only needs
30 probability entries using the leaky noisy-max model.

Figure 3: A Fragment of A Three-layer Bayesian Network
Model For A Web Service Diagnosis

Figure 3 shows a fragment of a three-layer network model
built for our web service diagnostics. In the figure, the green
nodes are alert nodes, the light blue nodes are component
health nodes, and the rest of the nodes are web service re-
lated components.

Usually, use of intermediate nodes helps make the struc-
ture of a Bayesian network model easier to manage. Some-
times, it can also help make the elicitation of probabilities
less expensive because it may reduce the number of parents
of a single node if used properly. The major reason that we
have these additional nodes in the network models is that
they exist in the monitoring database as a monitoring enti-
ties.

Figure 4: A Diagnosis Example Based on a Fragment of the
Three-layer Model

But when we test the three-layer model, the diagnosis re-
sults are not very encouraging. See Figure 4 for an example
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of the diagnosis results with a small fragment of the three-
layer Bayesian network model. Note that the structural lay-
out is rearranged manually for a better visualization of the
Bayesian network structure. In this setting, the evidence
contains two alert events, i.e.,Sample 9404 is critical and
Sample 13699 is warning. But the posterior probabilities
of the corresponding web application, host, monitor and the
intranet running ok are still close to or above 80%, which
indicate a decent working mode of the whole system.

Two-layer Model and Evaluation

Figure 5: A Diagnosis Example Based on a Fragment of the
Two-layer Model

Simply tuning the probability parameters did not work
very well to improve the reasoning performance of this net-
work model, so we built a two-layer model. The two-layer
model is basically the same as the three-layer model, with
the difference that there are no intermediate nodes repre-
senting the aggregated component health, i.e., the light blue
nodes in Figure 3. Changing the three-layer model to the
two-layer model can be done by linking the parents of a
component health node directly to its children. Also, the
alert event nodes were changed from CPT model to noisy-
max model, because their number of parents grows from,
typically, 1 (the component health node) in the three-layer
network, to at least 3 in the two-layer network.

Figure 5 shows an example of the diagnosis result with
a small fragment of the two-layer Bayesian network model.
This network fragment is the counterpart of the three-layer
network fragment in Figure 4. Again, the structural lay-
out is rearranged manually for a better visualization of the
Bayesian network structure. With the same evidence setting,
the posterior probabilities of the corresponding web applica-
tion and the related part of the intranet running ok are very
low (6% and 9% respectively). Other related web service
components also have a low probability (lower than 50%) of
running ok given the evidence. This diagnosis result is much
more reasonable and the scenario explanation is much more
easily accepted. And it differentiates the possible failures
more clearly, with the posterior probabilities of the top two
failures being higher than 40% verses the posterior proba-
bilities of other suspects being lower than 10%.

We tested with many scenarios from the monitoring data,
and found similar performance difference in the two models.
Overall, compared with the three-layer Bayesian network
model, the two-layer model is more powerful in diagnosing
the probable failures, in differentiating the possible suspects,
and in explaining the most likely scenarios. In the diagno-
sis application for web services, the two-layer Bayesian net-
work is clearly the winner over the three-layer model.

Discussion

As we see in the previous section, the two-layer model and
the three-layer model do not have the same diagnosis re-
sults given the same evidence settings. The simpler model
can outperform the more complex one in our application for
web service diagnosis. This is not consistent with the com-
mon belief that a more complex Bayesian network tends to
produce better reasoning results than a simpler counterpart.
It seems that the additional layer of the nodes do not serve
as a faithful information channel as assumed. Rather, the
evidence message is diluted or weakened somehow when
passed through this layer from upper layer to lower layer
and vice versa.

Independence Relationship One possible reason is that
the additional layer of nodes actually changes the condi-
tional dependence relationships between the upper layer
nodes and the lower layer nodes. In the three-layer net-
work, the upper layer nodes and the lower layer nodes are
d-separated given the state of the component health nodes
that connect them. But in the two-layer network, they are
always dependent. The jointree of the three-layer network
in Figure 4 has only one 4-node clique, but the jointree of
the two-layer network in Figure 5 has almost all the cliques
of size 4.

This coincides with Fryback’s findings in performance
comparisons between complex Bayesian network models
and their simple counterparts. With a Bayesian network
framework for medical diagnosis, Fryback(Fryback 1978)
showed empirically that large models with many inappro-
priate independence assumptions can have lower diagnostic
accuracy than smaller models that do not include such inap-
propriate independence assumptions. Unfortunately, build-
ing complex Bayesian networks usually makes more inde-
pendence assumptions than building simple networks, and
therefore is liable to make more mistakes.

Probability Parameter Another possible reason for the
performance difference is due to the use of different sets
of probability parameters in the two types of models. In
the three-layer network, the childless nodes are modeled as
CPT nodes and need to have their full CPTs specified. But
in the two-layer network, the same variables are modeled
as noisy-max nodes, and inherit the probability distributions
of the corresponding component health nodes in the three-
layer network. Maybe there is a set of CPTs for the child-
less nodes in the three-layer network that can make the two
networks equivalent with regard to their reasoning perfor-
mance. However, it is not yet discovered in our practice of
tuning and validating the networks built. And if the hypothe-
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sis holds true, the three-layer network must be very sensitive
to its probability parameters. This is not a good property for
a Bayesian network which is often desired to have high ro-
bustness, reliability, and tolerance of noises.

But having the intermediate nodes in a three-layer net-
work makes the model vulnerable to wrong probability es-
timates. As the intermediate nodes are inheritly implicit
and hidden, estimating their probability distributions is more
difficult and error-prone, especially when the estimation is
based on human being’s judgement. Therefore, it is not sur-
prising to see that a three-layer network performs worse than
its two-layer network counterpart.

Other research work also investigated the influence of in-
termediate nodes on the performance of Bayesian networks.
Provan(Provan 1995) conducted a series of experiments on
some simplified Bayesian networks generated by converting
the CPCS network (Parker & Miller 1988) into two-layer
models. The original CPCS Bayesian network is built for
medical diagnosis in liver and bile disease and consists of
448 nodes and over 900 arcs. In his experiments, Provan
used the reduced CPCS networks which consist of, respec-
tively, 42 nodes, 143 nodes and 245 nodes. The comparison
criterion is the average of the posterior probabilities of the
true positives over the test sets. The results indicate that
the intermediate nodes do not make a statistically significant
difference in the domain studied.

Other Related Work Effort has been made to make the
modeling of simple Bayesian networks easier with graph-
ical user interface support. GENIERATE(Kraaijeveld &
Druzdzel 2005) is such a tool that allows users to quickly
build Bayesian network models under constraint where fault
or disease nodes are linked directly to finding or observa-
tion nodes without intermediate nodes. Optionally, context
nodes, which represent variables of the faults’ context prop-
erties that may influence the risk of causing the faults, can be
added as parents of the fault nodes. Examples of the context
variables are the age of a device, the gender of a patient, and
the smoking history of a patient. Overall, the network mod-
els built using the GENIERATE do not exceed three layers:
one layer for fault nodes, one layer for observation nodes,
and one layer for context nodes. Note that in our application
for web service diagnosis, there are no context nodes. So us-
ing GENIERATE to build our models will generate two-layer
models, which are preferred by our empirical validation re-
sults.

In summary, adding intermediate nodes in the three-layer
network model did not encode more domain knowledge in
our case. So it is not possible for this complex network
model to exceed the simpler model in reasoning power. And
the fact that the simpler Bayesian network model outperform
its complex counterpart is consistent with a general principle
of model selection called Occam’s Razor (Russell & Norvig
1995): The most likely hypothesis is the simplest one that
is consistent with all observations. Or in original Occam’s
statement:Entities are not to be multiplied without neces-
sity. In short, a simple model that is consistent with the
domain knowledge is more likely to be correct than a com-

plex one.

Diagnosis
After Bayesian network models are built as knowledge rep-
resentations, diagnostic reasoning for web service trouble-
shooting can be performed by using available inference
algorithms provided by many Bayesian network software
packages. We developed our diagnostics system based on
the SMILE inference engine, which has a jointree (also re-
ferred as clustering) algorithm implemented for exact infer-
ence in Bayesian networks.

The diagnostics procedure of our web service works as
below. First the relevant event data is read from the moni-
toring database (in offline working mode) or the event data
is obtained directly at the time of alert notification (in online
working mode). Then this event data is fed into the Bayesian
network model and the corresponding evidence is set. To set
a piece of evidence is to set the corresponding alert node
in the network to its state that represents the observed alert
event, i.e., good, warning or critical. After the evidence is
set in the Bayesian network model, the jointree inference al-
gorithm is called for exact belief update(Pearl 1988). Finally
the updated posterior beliefs are output for the possible fault
causes.

As we described in the previous section, not all of the
nodes in the Bayesian network model are of interest for di-
agnosis purposes. Only the web service components, such
as certain web applications and their respective hosts, local
intranet zones,et al., are considered possible fault causes.
These trouble-shooting targets are preset as diagnosis targets
in the Bayesian network model for efficient reasoning.

Although in our application, the monitoring service is
running constantly without interruption, the monitoring data
is collected periodically. Therefore, the diagnostics sys-
tem only considers the data relevant when its time stamp
is within the time window. There may be a delay in data
records that can possibly affect the time stamp of the alert
event data. However, it is likely that the delay is uniform
for all the alert data. Therefore, the delay can essentially be
ignored for the fixed time window under the assumption of
the uniform distribution.

Figure 6 shows a snippet for a diagnosis result. In the
figure, the red box on the top of the figure highlights the
event alerts; the green boxes highlight the top suspects of
the trouble causes. In this example, some critical failures
for accessing some web applications from Internet are de-
tected by the monitoring service, and the diagnostics service
found out that the Internet is the most probable cause. Note
that in our diagnostics models, the internet node represents
any network outside the enterprise security perimeter. It in-
cludes the problems of the security perimeter and firewall as
well. In the test scenario shown in Figure 6, the correspond-
ing web applications and the host are also likely to be the
suspects.

Conclusion
We took an innovative approach to service level manage-
ment for distributed enterprise systems by using monitoring,
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Figure 6: A Snippet of a Diagnosis Result

diagnostics, and adaptation services in an integrated archi-
tecture. Compared with the traditional approach that uses
monitoring as an isolated tool, our approach makes a web
service system more reliable, highly adaptive, and quickly
responsive.

In this paper, we presented our application of Bayesian
network technology as a knowledge representation and rea-
soning engine in autonomous diagnostics of web services.
We used two modeling patterns. One is a two-layer network
model. The other is a three-layer network model. Compared
with the three-layer Bayesian network model, the two-layer
model is more powerful in diagnosing the probable failures,
in differentiating the possible suspects, and in explaining the
most likely scenarios. In our application in diagnostics of
web services, the two-layer Bayesian network is clearly the
winner over the three-layer one.

This challenges the common belief that adding unneces-
sary nodes in a Bayesian network and growing its structure
complexity does not deteriorate its performance. A com-
plex network structure makes more independence assump-
tions that may introduce more errors if the assumptions are
not appropriate. Besides, building a network with complex
structure is often harder because estimating the probabilities
of the intermediate nodes is more difficult and error-prone
since these events are implicit and hidden.

In short, the use of additional nodes in a Bayesian network
may result in worse performance. Adding the extra nodes
is not always valid. Hence such practice of building more
complex models than necessary should be approached very
cautiously.
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