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Abstract

This paper presents a multimodal learning system that can
ground spoken names of objects in their physical referents
and learn to recognize those objects simultaneously from nat-
urally co-occurring multisensory input. There are two tech-
nical problems involved: (1) the correspondence problem
in symbol grounding – how to associate words (symbols)
with their perceptually grounded meanings from multiple co-
occurrences between words and objects in the physical en-
vironment. (2) object learning – how to recognize and cate-
gorize visual objects. We argue that those two problems can
be fundamentally simplified by considering them in a gen-
eral system and incorporating the spatio-temporal and cross-
modal constraints of multimodal data. The system collects
egocentric data including image sequences as well as speech
while users perform natural tasks. It is able to automatically
infer the meanings of object names from vision, and cate-
gorize objects based on teaching signals potentially encoded
in speech. The experimental results reported in this paper
reveal the effectiveness of using multimodal data and inte-
grating heterogeneous techniques in machine learning, natu-
ral language processing and computer vision.

Introduction
Intelligent machines, such as humanoid robots, are expected
to be situated in users’ everyday environments, communi-
cate with users using natural language and provide services.
To achieve this goal, machines must have the same percep-
tual and cognitive abilities as humans, such as visual object
recognition and language understanding. However, sensory
perception and knowledge acquisition of machines are quite
different from those of human counterparts. The first differ-
ence is about what to learn. Machine learning is most often
disembodied and focuses on manipulating symbols intelli-
gently, but humans develop and learn based on their sen-
sorimotor experiences with the physical environment. To
mimic human perceptual abilities and ultimately build ar-
tificial embodied systems, a challenge in machine intelli-
gence is how to establish a correspondence between internal
symbolic representations and external sensory data, which is
termed as the symbol grounding problem by Harnad (1990).
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The second difference lies in how to learn. Researchers
have tried different approaches to building intelligent ma-
chines (see a review in Weng et al.,2001). A knowledge-
based system uses logic rules to represent the knowledge
acquired from human experts and perform inference. A
learning-based approach applies probabilistic models and
then uses “spoon-fed” human-labeled sensory data to train
the parameters of those models. In this way, the machine
acquires some basic perceptual abilities, such as speech
recognition (converting speech to text) and object recogni-
tion (converting visual signals into pre-defined labels). A
relatively new approach termed autonomous development is
proposed by several scientists in different fields (Weng et al.
2001). In this approach, a brain-like artificial embodied sys-
tem develops based on real-time interactions with the envi-
ronments by using multiple sensors and effectors. Although
this approach shares many computational techniques with
the learning-based one, these two are fundamentally differ-
ent. In autonomous development, the machine continuously
develops and learns to simulate the lifelong process of devel-
opment and learning in humans (Thrun & Mitchell 1995).
Thus, it does not need human involvement for segmenting
and labeling data during the learning process. In contrast,
most learning-based systems apply one-time training on la-
beled data and are not able to acquire any new capabilities
after the training phase.

We report here on the first steps toward autonomous de-
velopment and learning while focusing on grounding spo-
ken language in sensory perception. People use words to
refer to objects in the physical environment. To communi-
cate with users and provide helps, a computational system
also needs to know how to categorize instances of objects
(visual object recognition) as well as map objects to linguis-
tic labels. Despite intensive research in computer vision,
the first problem is still an open issue due to practical rea-
sons, such as the variations in lighting conditions in the en-
vironment. The second problem, termed reference uncer-
tainty (Quine 1960), deals with finding the correspondence
between words and perceptually grounded meanings from
multiple co-occurrences of words and objects in a natural
environment. To tackle these two problems, we develop a
multimodal learning system that is situated in users’ every-
day environments wherein users introduce several objects to
machines using natural language just like teaching their chil-
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dren or familiarizing newcomers with the environment. The
system collects user-centric multisensory input consisting of
visual and speech data, and automatically learns to build a
word-world mapping in an unsupervised manner without hu-
man involvement. In addition, the system also learns to cat-
egorize objects based on the corresponding linguistic labels
in speech.

Related Work
The symbol grounding problem has been studied in the
context of language acquisition in a number of recent
works. The algorithm in Siskind (1995) was based on cross-
situational learning and can successfully recognize various
event types described by predicate logic. Regier (1996) pro-
posed a connectionist system encoding domain-motivated
structure, which was able to learn the meanings of prepo-
sitions (e.g., above, in, on and through). Steels & Vogt
(1997) reported the experiments in which autonomous vi-
sually grounded agents bootstrap meanings and language
through adaptive language games. They argued that lan-
guage is an autonomous evolving adaptive system main-
tained by a group of distributed agents without central con-
trol and a lexicon may adapt to cope with new meanings
that arise. Cohen et al. (2002) demonstrated that a robot
can learn the denotational meanings of words from sensory
data. Roy & Pentland (2002) used the correlation of speech
and vision to associate spoken utterances with a correspond-
ing object’s visual appearance. The learning algorithm was
based on cross-modal mutual information to discover words
and their visual associations.

A relatively new topic termed anchoring (Coradeschi &
Saffiotti 2003a) concerns grounding object names in sensory
data and maintaining the word-world mapping to take into
account the dynamic changes of sensory input. Different
from the symbol grounding problem that aims at consider-
ing all kinds of symbols, anchoring focuses on a practical
problem of connecting object names with visual objects in
a physical environment. The recent progresses in anchor-
ing can be found in the special issue of Robotics and Au-
tonomous Systems on perceptual anchoring (Coradeschi &
Saffiotti 2003b).

System Overview
Figure 1 shows an overview of our system. The multisen-
sory input consists of image sequences, each of which con-
tains several objects in the scene, and speech that contains
spoken names of objects. To achieve the goal of ground-
ing object names and learning to categorize visual objects
simultaneously, the system consists of the following three
modules:

• Natural language processing first converts acoustic sig-
nals into transcripts, and then extracts a list of object name
candidates using syntactic and semantic constraints.

• Visual processing detects scene changes in the video cap-
tured from a head-mounted camera. It then finds the ob-
jects from the scene. Next, visual features are extracted
from objects and those perceptual representations are la-
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Figure 1: Overview of the system. Speech processing provides
object name candidates based on speech recognition and natural
language processing. Visual processing obtains a set of visual
objects. The system associates object names with their visually
grounded meanings and uses these linguistic labels to guide the
categorization of objects in the visual feature space.

beled with temporally co-occurring object name candi-
dates to form many-to-many word-meaning pairs.

• Multimodal integration is the crucial step in which in-
formation from different modalities is integrated to dis-
cover word-object correspondences. In addition, linguis-
tic information provides teaching signals to guide the
grouping of visual features in their space. As a result,
the system obtains not only a mapping of words to their
grounded meanings extracted from visual perception, but
also a better categorization of visual objects compared
with unimodal clustering purely based on visual features.

The following sections provide technical descriptions of the
design and implementation of those subsystems in detail.
The overall system is evaluated using the data that is col-
lected when users perform natural tasks in everyday scenar-
ios. The experimental setup is described and results are dis-
cussed.

Natural Language Processing
Object name candidates are extracted from speech using lex-
ical and grammatical analysis shown in Figure 2. First, the
“Dragon Naturally Speaking” software is utilized for speech
recognition. Given a spoken utterance consisting of several
spoken words, the speech recognizer converts the continu-
ous wave pattern into a series of recognized words by con-
sidering phonetic likelihoods and grammars. In practice, the
recognition rate is above 90% in our experiments. We then
extract the nouns from transcripts, which will be used as ob-
ject name candidates. To do so, we first use the Link Gram-
mar Parser (Sleator & Temperley 1993), a syntactic parser,
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to assign an input sentence with a syntactic structure con-
sisting of a set of labeled links. The parser also labels the
syntactic categories of the words in the sentence if they be-
long to nouns, verbs, or adjectives in the dictionary used by
the parser. In this way, we discover a list of nouns from
each sentence. Next, we apply two filters to get object name
candidates as follows:

• The Oxford text archive text710 dictionary (Mitton 1992),
which includes more than 70,000 words, is applied to spot
proper nouns. A word is selected to be a name candidate
if it is annotated as a countable noun or both countable
and uncountable nouns in the dictionary.

• The WordNet (Fellbaum 1998), an electronic lexical
database, is used to obtain underlying lexical concepts of
candidate nouns. The system selects the nouns that be-
long to “physical object” or “entity”.

The final list of object name candidates contains the words
that satisfy both constraints.

speech recognition


transcripts:

-- basically, you will be answering customer calls on the phone.

-- and then they want you to do some financial calculation.

-- so there is a calculator there.

......


link grammar parser


parsing results:

-- basically, you will.v be.v answering.v customer.n calls.n on the phone.n
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-- so there is.v a calculator.n there.

......


object name candicates:

phone

calculator

stapler

glue stick

......


Oxford dictionary


WordNet


object name extraction


Figure 2: The acoustic signals are first converted into text. We
then use syntactic and semantic constraints to obtain a list of object
name candidates.

Object Detection and Description
Image sequences are captured from a head-mounted camera
to get a dynamic view of a speaker. We use a position sen-
sor to track the motion of the speaker’s head. At every time
point that the head is stable, we capture a snapshot of the
scene and label it with temporally co-occurring spoken utter-
ances. One of the most challenges in computer vision is the
segmentation of objects in a natural scene. This issue is eas-
ily handled in our experiment in which images have a simple
uniform background. Figure 3 shows a sample of snapshot
and the result of object segmentation using the method de-
scribed in (Comanicu & Meer 2002). Next, each extracted
object is represented by features including color, shape and
texture properties. Based on the work of Mel (1997), we
construct visual features of objects which are large in num-
ber, invariant to different viewpoints, and driven by multi-
ple visual cues. Specifically, 64-dimensional color features

are extracted by a color indexing method (Swain & Ballard
1991), and 48-dimensional shape features are represented by
calculating histograms of local shape properties (Schiele &
Crowley 2000). The Gabor filters with three scales and five
orientations are applied to the segmented image. It is as-
sumed that local texture regions are spatially homogeneous,
and the mean and the standard deviation of the magnitude
of the transform coefficients are used to represent an ob-
ject in a 48-dimensional texture feature vector. The fea-
ture representations consisting of a total of 160 dimensions
are formed by combining color, shape and texture features,
which provide fundamental advantages for fast, inexpen-
sive recognition. Most pattern recognition algorithms, how-
ever, do not work efficiently in high dimensional spaces be-
cause of the inherent sparsity of the data. This problem has
been traditionally referred to as the dimensionality curse. In
our system, we reduced the 160-dimensional feature vectors
into 15-dimensional vectors by principle component analy-
sis (PCA), which transforms the data in a lower dimensional
subspace that contains as much of the variance in the data as
possible.
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Figure 3: The overview of visual processing. Visual objects are
segmented from the background scene and then multiple features
are extracted to form perceptual representations.

Generative Correspondence Model
Now we have object name candidates from the audio
stream and perceptual representations of objects in the vi-
sual stream, which form many-to-many co-occurring word-
meaning pairs shown in Figure 4. Machine learning tech-
niques have been widely applied to process multimodal data.
Most works focus on either the correspondence problem or
the clustering problem. The correspondence problem deals
with building a map between items from acoustic and visual
data. In Duygulu et al. (2002), images were segmented into
regions that are then classified into region types. A map-
ping between region types and the keywords in captions sup-
plied with the images was then learned using a method based
on machine translation. Wachsmuth & Sagerer (2002) used
Bayesian networks to relate verbal and visual descriptions of
the same object. Satoh et al. (1997) developed a mathemat-
ical description of co-occurrence measurement to associate
names with faces that appear in televised news reports.

The multimodal clustering problem studies the influence
of the data in one modality on another one based on the as-
sumption that multisensory input is perfectly synchronized
in time. de Sa & Ballard (1998) related this idea mathe-
matically to the optimal goal of minimizing the number of
misclassifications in each modality and applied it to derive
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an algorithm for two piecewise linear classifiers, in which
one uses the output of the other as supervisory signals. Hof-
mann & Puzicha (1998) proposed several statistical models
for analyzing the data that are joint occurrences of pairs of
abstract objects from two finite sets.

Different from previous studies, we consider the corre-
spondence and the clustering problems simultaneously. To
build explicit correspondences between visual objects and
words, we take a view of the data in term of a generative
process. It first generates a latent variable, and then visual
objects are generated based on the latent variable. Finally,
words are generated conditioned on visual objects. This is
because verbal descriptions are produced based on visual
objects in the scene.
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Figure 4: Word learning. The object name candidates in speech
and co-occurring perceptual representations of objects are tempo-
rally associated to build possible lexical items.

Formally, we collect multiple pairs of co-occurring
speech and visual data that can be represented by a
set S = {S1, S2, ..., SL}. Each Si(1 ≤ i ≤ L)
consists of several linguistic items and visual features
{wi

1
, wi

2
, ..., wi

mi
, vi

1
, vi

2
, ..., vi

ni
}, where wi

mi
represents a

spoken word and vi
ni

is a visual feature vector extracted from
an object’s appearance. Given the data S, we need to maxi-
mize the log-likelihood expressed as follows:

log P (S) =

L∑

i=1

log P (Si)

where

logP (Si) = logP (wi
1
, wi

2
, ..., wi

mi
, vi

1
, vi

2
, ..., vi

ni
)

≈ log

ni∏

n=1

p(vi
n)

mi∏

m=1

ni∑

n=1

p(wi
m|vi

n)

Two assumptions are made here. The first is that each in-
dividual object in a scene is generated independently. The
second one claims that the influence of each object on a
word is independent. Thus, the generative probability of a
word given a visual scene equals to the sum of the condition
probabilities of the word given each individual object in the
scene. Now let us assume that the visual data is generated
by a mixture model that consists of K components. Specif-
ically, a visual feature is generated by first selecting a mix-
ture component according to the mixture weights p(α) (class
prior probabilities), then having this selected mixture com-
ponent to generate the visual feature according to its own
parameters with the distribution p(vi

n|α). In addition, we
assume that vi

n and wi
m are independent given the latent la-

bel α. Based on that, the log-likelihood can be expressed

as:

log

ni∏

n=1

p(vi
n) + log

mi∏

m=1

ni∑

n=1

K∑

α=1

p(wi
m|α)p(α|vi

n) (1)

To overcome the difficulties in maximizing a log of a
sum, we introduce a set of latent variables and use
the Expectation-Maximization (EM) algorithm (Dempster,
Laird, & Rubin 1977) that will iteratively increase the like-
lihood and make it converge to a local maximum.

Let Ri
nα be an indicator variable to represent the unknown

class α from which the observation vi
n is generated. A set

of latent labels form a Boolean matrix {Ri
nα}ni×K where∑K

α=1
Ri

nα = 1, which indicates that only one item in each
row is 1 and all others are 0. In this way, latent variables
partition the visual data into K clusters and can treated as
additional unobserved data. We also need to introduce the
other set of latent labels {Z1, Z2, ..., ZL}, each of which is
a Boolean matrix {Zi

nm}ni×mi
indicating whether a word

is generated by a specific visual feature in ith data pair with
the constraint

∑ni

n=1
Zi

nm = 1. By treating R and Z as
additional unobserved data, the complete data of the second
item in Equation 1 is given by:

mi∑

m=1

ni∑

n=1

Zi
nm

K∑

α=1

Ri
nα log(p(wi

m|α)p(vi
n|α)p(α))

As a result of introducing new latent variables, we decouple
the parameters we want to estimate. In the E-step, the ex-
pected values of the posterior probabilities of Ri

nα and Zi
nm

can be estimated as follows:

Ri
nα =

p(vi
n|α)p(α)

∑K

k=1
p(vi

n|k)p(k)
Zi

nm =
p(vi

n|w
i
m)∑ni

γ=1
p(vi

γ |w
i
m)

(2)

In the M-step, we calculate the derivative of Equation 1
using the estimated hidden variables and adding the normal-
ization constraints by Lagrange multipliers. The class prior
probability becomes as follow:

p(α) =

∑L

i=1

∑ni

n=1
Ri

nα(
∑mi

m=1
Zi

nm + 1)
∑K

k=1

∑L

i=1

∑ni

n=1
Ri

nk(
∑mi

m=1
Zi

nm + 1)
(3)

For p(vi
n|α), we use multidimensional Gaussian distribu-

tions over a number of visual features. We also assume the
independence of the features and then enforce a block diag-
onal structure for the covariance matrix to capture the most
important dependencies. Then the estimates of new param-
eters are as follows:

mα =

∑L

i=1

∑ni

n=1
Ri

nα(
∑mi

m=1
Zi

nm + 1)vi
n∑L

i=1

∑ni

n=1
Ri

nα(
∑mi

m=1
Zi

nm + 1)
(4)

σ2

α =

∑L

i=1

∑ni

n=1
Ri

nα(
∑mi

m=1
Zi

nm + 1)(vi
n − mα)2

∑L

i=1

∑ni

n=1
Ri

nα(
∑mi

m=1
Zi

nm + 1)

For linguistic data, p(α|wi
m) is given by:

p(wi
m|α) =

L∑

i=1

mi∑

j=1

ni∑

n=1

Zi
nmRi

nαδ(wi
m, wi

j)

K∑

k=1

L∑

i=1

mi∑

j=1

ni∑

n=1

Zi
nmRi

nkδ(wi
m, wi

j)

(5)
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where δ is the Kronecker delta function that equals to one
if two arguments are the same or zero otherwise. p(α|wi

m)
indicates the probability of the word wi

m generated by the
component α. In the initialization, we use k-mean to clus-
ter visual features and each cluster is assigned to one Gaus-
sian. The mean and variance were computed based on the
clustering results as well as the initial Ri

nα. In addition, we
calculate the co-occurrence of visual clusters and words and
set the initial values of Zi

nm. Then the EM-based algorithm
performs the E-step and the M-step successively until con-
vergence. In E-step, we compute the parameters of p(vi

n|α)
and p(wi

m|α) by Equation (4) and (5). In M-step, we reesti-
mate Ri

nα and Zi
nm using Equation (2).

Experiment
Nine users participated in the experiments. They wore a
head-mounted CCD camera to capture a first-person point
of view. Visual data were collected at the resolution of
320 columns by 240 rows of pixels. Acoustic signals were
recorded using a headset microphone at a rate of 22 kHz
with 16-bit resolution. A Polhemus 3D tracker was utilized
to acquire 6-DOF head positions at 40Hz to detect scene
change. Users were seated at a desk on which there were
nine office objects shown in Figure 3. They were given
two tasks of introducing those objects to a newcomer (e.g.
a human agent or a service robot recently purchased): (1)
what are those objects and where are they located. (2) how
to use those objects to accomplish the office task of writ-
ing down phone orders and maintaining purchasing records.
They were asked to perform each task three times. Table
1 shows sample transcripts of these two tasks. Before the
start of each trial, we randomly arranged the positions of
objects and rotated them by 20o to obtain images contain-
ing different sets of objects from different views. The sys-
tem collected audio-visual pairs consisting of verbal descrip-
tions and image sequences. The average length of the first
task was 129 seconds and the second task was 186 seconds.
The data collected from the first task formed Dataset 1 and
Dataset 2 was made up of the data collected from the second
task.

Task 1
– I see on the table a glue stick.
– then in the front of me is a pink pencil sharpener.
that you can use to shape the pencil.
– in the back is a white stapler that is used to
put pieces of paper together.
......
Task 2
– welcome to your first day of work.
– this is your desk and your job is to answer the phone
and take the orders.
– when taking orders over the phone, you write it down
on the pad of paper over there.
......

Table 1: Examples of natural descriptions

After learning, the system obtained grounded lexical

items including the clusters of visual objects with their
corresponding linguistic labels. To evaluate experimental
results, we defined the following two measures for sym-
bol grounding: (1) symbol grounding accuracy measures
the percentage of the perceptual representations of ob-
jects which are correctly associated with linguistic labels.
(2) symbol spotting accuracy measures the percentage of
word-object pairs that are spotted by the computational sys-
tem. This measure provides a quantitative indication about
the percentage of grounded lexical items that can be success-
fully found. Table 2 shows the results of symbol grounding.

Dataset 1 Dataset 2
symbol grounding 83.6% 86.2%
symbol spotting 81.9% 82.5%

Table 2: Results of symbol grounding

To evaluate the performance of categorizing visual ob-
jects, we compared our multimodal learning algorithm with
several unimodal supervised and unsupervised methods that
we ran on the same data set. The experiments were con-
ducted using visual-only and audio-visual multimodal cat-
egorizations. For visual features, the clustering method
based on Gaussian Mixture Model (GMM) was run which
gave average accuracy of 66%. Moreover, Support Vector
Machine (SVM) (Burges 1998) and Self-Organizing Map
(SOM)(Vesanto & Alhoniemi 2000) were applied to visual
data as supervised classification methods. Table 3 shows
the comparison of all those methods. As we can see, the
multimodal learning method yielded significantly better re-
sults than the performances achieved by the unsupervised
learning methods. Moreover, the results showed that only
using the multimodal information co-occurring in the envi-
ronment is enough to give the categorization accuracy better
than that of supervised SOM and within 7% of supervised
SVM results. Considering the fact that our method deals
with the correspondence and clustering problems simulta-
neously, these results are impressive. Note that the super-
vised methods provide benchmarks for evaluation and com-
parison, and we understand that more advanced classifica-
tion methods could achieve better results for the same data
set. However, the purpose of the experiments is to demon-
strate the role of co-occurring data from multiple modalities
in multimodal clustering. Specifically, we are interested in
the possible improvement of performance in a fully unsu-
pervised way by integrating more information at the sen-
sory level. The limitation of this method is that a visual
object and the corresponding spoken name are supposed to
share the same latent node. Since some spoken words do not
have visual correspondences, the algorithm tries to distribute
them into several other nodes, which biases the estimates of
parameters of those nodes. Thus, the algorithm has to fit
some irrelevant data in this uniform structure.

Conclusion
This paper presents a multimodal learning system that is able
to not only ground spoken names of objects in visual percep-
tion but also learn to categorize visual objects using teaching
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Dataset 1 Dataset 2
SOM (supervised) 68.9% 69.6%
SVM (supervised) 85.5% 87.2%
GMM (unsupervised) 67.3% 65.2%
multimodal 79.9% 80.9%

Table 3: Results of categorization of visual objects

signals encoded in co-occurring speech. Our main motiva-
tion is to endow an autonomous system with the learning
ability by being situated in user’s everyday environments
and processing multisensory data in an unsupervised mode.

The principal technical contribution of this paper is to
explore the possibility of utilizing the spatio-temporal and
cross-modal constraints of unlabeled multimodal data in the
symbol grounding and clustering problems. Clustering is a
descriptive task that seeks to identify homogeneous groups
of objects based on the values of their attributes, which could
be very difficult in dealing with sensory data. We show that
the unimodal clustering problem can be fundamentally sim-
plified by incorporating cross-modal cues. Also, we show
that the EM algorithm extends readily to multimodal clas-
sification and that, importantly, the parametric forms of the
individual modalities can be arbitrarily different in a gen-
eral framework. Although the experiments reported in this
paper focus on processing audio-visual data to ground lan-
guage in visual perception, both the general principle and
the specific algorithm are applicable to various applications
in autonomous robot, multimodal interface, wearable com-
puting, and multimedia index.
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