
The Shifting Terminological Space: 
An Impediment to Evolvability 

William Swartout 
Robert Neches 

USC/Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90292 

Abstract 

In an expert system, rules or methods interact by creating 
situations to which other rules or methods respond. We call the 
language in which these situations are represented the 
terminological space. In most expert systems, terms in this 
language often lack an independent definition, in which case they 
are implicitly defined by the way the rules or methods react to 
them. We argue that this hampers evolution, and argue for a 
separate, independently defined terminological space that is 
automatically maintained. 

1. Introduction 
Due to the experiential, incremental nature of expert system 

development, it is critical that an expert system shell support the 
addition, modification and deletion of knowledge with minimal 
perturbation of the rest of the knowledge base and that a 
developer be able to determine how a proposed change will affect 
the behavior of the system. 

What’s needed for evolvability? There seem to be two major 
factors. First, the expert system organization should be modular 
in the sense that it should be possible to change one part of the 
system independently of the rest of the system. Second, the 
expert system organization should be explicit so that the effect of 
a change can be readily understood. 

Advocates of rule-based expert system shells argue that this 
desired modularity arises inherently from the use of rules [6]. 
However, practical experience indicates that merely adopting a 
rule-based framework does not guarantee modularity and in some 
ways can impede it [3]. In this paper we will outline some of the 
more subtle factors that seem to affect evolvability. Focusing on 
one that we call the shifting terminological space, we will describe 
how we have addressed these issues in our the Explainable Expert 
Systems (EES) framework [ll]. The EES project is exploring a 
new paradigm of expert system development in which the role of 
knowledge engineers and domain experts is to develop a rich and 
detailed knowledge base that captures the factual knowledge and 
problem solving methods in a domain. Executable code for the 

expert system is then derived from the knowledge representation. 
Systems built in this fashion are expected to have a richer 
knowledge base from which to support machine-generated 
English explanations and justifications, as well as a more modular 
structure and principled organization that will facilitate the 
development and maintenance process. 

2. Impediments to Evolvability 
We begin by reviewing characteristics of current expert system 

frameworks that limit the modularity of expert systems. 

An overly specific representation for knowledge. 
Knowledge is stated at a low level and is very specific to a 
particular task [ll]. For example, MYCIN is sometimes able to 
determine the genus of the micro-organism infecting a patient but 
unable to determine its species. When this occurs, MYCIN just 
assumes that the species of the organism is the most likely one for 
the particular genus. This is a reasonable default rule, but 
unfortunately the general heuristic is not represented at all in 
MYCIN. Instead, it is captured by a set of rules, each one specific 
to one of the genera MYCIN knows about. For system evolvability 
this overly specific representation of knowledge is a major 
problem. From the standpoint of modularity, if one wanted to 
modify the general heuristic MYCIN employed, there is no single 
rule to modify. Instead, the system builder would have to locate 
and modify manually each of the rules that instantiated the general 
heuristic, with all the attendant possibilities for making a mistake. 
MYCIN also reduces explicitness, by forcing the system builder to 
express knowledge at an overly specific level that does not say 
what the system builder really intended to represent. 

Confounding of different kinds of know/edge. As 
Clancey [3] has pointed out, a single rule may combine a variety of 
different kinds of knowledge, such as domain facts, problem- 
solving knowledge, and terminology. This reduces the modularity 
of an expert system because the different kinds of knowledge 
cannot be modified independently. This compilation of knowledge 
also occurs, unrecorded, in the head of the system builder, 
reducing explicitness and tending to make machine-provided 
explanations difficult to understand. 

impoverished control structures. Rules do not cleanly 
support some higher-level control structures, such as iteration 
14,131. On those occasions when it is necessary to represent an 
iterative control structure within a rule-based architecture, the 
results are usually clumsy and introduce serious 
interdependencies among the rules. Modularity is reduced 
because of the interdependencies. Explicitness is also reduced 
because the interdependencies are artifacts of the architecture 
and not what the system builder really wanted to say. 

Limifed (or no) representafion of Went. In most expert 
systems, rules are written at what Davis calls the “object level” [5], 
that is, at the level of domain phenomenon. For example, as 
Clancey points out [3], MYCIN’s higher-level strategies are 
implicitly encoded in the rules. There is no representation of how 
particular rules are involved in achieving these strategies, and in 
fact, the strategies aren’t even represented. Instead, strategies 
are carefully (and implicitly) encoded by mapping intentions to 
object level terms. For instance, MYCIN lacks any explicit 
representation of the diagnostic strategy it employs; instead, that 
strategy has been carefully encoded by the system builder in 
MYCIN’s rules and expressed at the object level. This mapping 

936 I ENGINEERING 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



hampers both explicitness and modularity because 
usually does not remain valid as the system grows. 

the mapping 

To the four problems above, we add a fifth: 

An ill-defined terminological space. Laird and Newell 
define the problem state as “the current state of knowledge of the 
task situation [that] exists in the agent in some representation” [9]. 
Rules interact by creating situations or problem states that will 
trigger other rules. Thus, the language in which the problem state 
is expressed (which we call the terminological space) is the 
“glue” that holds the whole expert system together. 
Unfortunately, some (if not most) expert systems lack any 
independent definition of terminology. Instead, the terms asserted 
by a rule acquire their meaning based solely on how other rules in 
the system will react to them. This is undesirable because the 
definition of terms is implicit; it can also seriously affect a system’s 
modularity, since it means that changing a rule can affect not only 
the behavior of that rule, but also the meaning of any terms that it 
employs. This, in turn, can implicitly affect the behavior of any 
rules that use or assert that term. 

We have described-elsewhere how we have dealt with the first 
four problems in the EES framework (see [ll] for more details). 
This paper will focus on our solution to the fifth problem: how we 
have chosen to represent the terminological state and how we 
express knowledge within that space. 

To deal with the problem of an ill-defined terminological space, 
we decided to adopt NIKL [lo], a descendant of KL-ONE [2], as 
our basic knowledge representation language. NIKL is a semantic 
network-based formalism and was designed to provide a 
semantics for concepts that is independent of how those concepts 
are used in a particular system. Thus, the way a concept is 
defined within NIKL itself gives it its meaning, rather than having 
the concept acquire its meaning based on how it is used within the 
expert system. Because NIKL provides an independent semantics 
for concepts, its designers were able to provide an automatic 
classifier [12] for NIKL. This classifier can determine subsumption 
relations among NIKL concepts based solely on their definitions. 

In the remainder of this report we will describe how we have 
represented intent and the terminofogical space within EES, and 
how we have made use of NIKL: what seems to be good about this 
sort of principled knowledge representation language, where the 
problems are, and what opportunities and challenges remain. 

3. Representing Intent in a Terminological 
Space 
Representing intent explicitly means providing an explicit 

representation for the goals the system is trying to achieve and the 
means for achieving those goals. As we have argued above, many 
expert systems are written at an object level and lack an explicit 
representation of the goals they are attacking. The lack of an 
explicit representation for goals reduces a system’s 
understandability and its modularity. 

However, it is insufficient just to provide a representation for 
goals: how the goals acquire their meaning is also cr,itical. 
Because this problem is generally not recognized, many systems 
let the goals acquire their meanings based on how those goals are 
achieved. This means, for example, that a plan for performing a 
diagnosis implicitly defines what performing a diagnosis means. 
The problem with this approach is that it confuses how the goal is 
achieved (that is, the plan) with what it means to achieve the goal. 

Following this approach can lead to real problems in evolvability 
because changing the way a goal is achieved implicitly changes 
the meaning of that goal. 

A possible objection to requiring that goals be represented 
explicitly is that it means that the system reacts to goals that have 
been posted rather than to object-level data. Thus, the system is 
not free to opportunistically react to novel situations, but rather is 
more tightly controlled and in a sense has to know what it’s doing. 
The ability of a system to opportunistically react to novel situations 
in ways unanticipated by the system builder is, of course, one of 
the oft-touted advantages of a rule-based expert system 
architecture, but it seems to work more in theory than in practice. 
The problem is that it is difficult to specify the condition part of a 
rule so that the action part is performed in just the right 
circumstances. The result is that the reaction of the system in 
unanticipated situations is likely to be wrong, and in fact, a large 
part of developing a rule-based expert system involves fixing the 
rule-base so the system does the right thing in unanticipated 
situations. Our approach is more conservative in that it gives us 
tighter control over both the situations our systems will handle and 
the results they will produce. 

In EES, we have partially addressed the need for independent 
and explicit goal definitions by representing goals as NIKL 
concepts. The goals thus acquire their meaning from the 
semantics of NIKL, rather than from the methods that are used to 
achieve them. Although we feel this is the right approach to take, 
we feel we have only partially addressed the problem because 
NIKL does not allow us to represent everything we would like to be 
able to represent about’s goal. 

For our purposes, NIKL can be summarized as having a small 
set of basic capabilities. (The true set of capabilities, although still 
manageably small from the standpoint of maintaining fully-defined 
semantics, is somewhat broader than the simplified picture 
presented here. For more details, see [12].) New NIKL concepts 
are created from other concepts through modification of or 
addition to the roles associated with a concept. Roles in NIKL 
correspond roughly to slots in frame-based representation 
languages. When a role is associated with a concept, a value 
restriction may also be given that specifies possible fillers for that 
role at that concept. Number restrictions are also associated with 
roles at concepts and specify how many objects may fill that role 
at that concept. Specializations of a concept are created either by 
further restricting an existing role on a concept, or by adding an 
additional role. Roughly, a concept A subsumes a concept B if all 
the roles on A are present on B and the number and value 
restrictions on B are at least as tight as on A’. 

‘This 

see L-1 
simplified view ignores having to do with primitive concepts 

AUTOMATED REASONING / 937 



Each goal represented in an EES knowledge base has three 
major NIKL roles: a requirements description, inputs, and outputs. 
We can represent this as follows: GOAL = [OBJECT: 

requirement-description ACTION, input (arbitrary) 

OBJECT, output (arbirrary)OBJECT].* 

The filler of the requirement description role is a NIKL concept 
which is subsumed by the NIKL concept action. It represents the 
intention of the goal, that is, what the goal is intended to 
accomplish. For example, English paraphrases of the 
requirements of some of the goals we have modelled (from several 
different domains) are: “compensate digitalis dose for digitalis 

sensitivities”, “locate cause of fault within ground-system” and 
“scan program for opportunity to apply readability-enhancing 
transformations”. An important point is that these requirements 
are not atomic, but are themselves structured NIKL concepts 
composed of more primitive concepts. The structured nature of 
the requirements is important because it eases the process of 
producing natural language paraphrases and because it allows 
the classifier to infer subsumption relations among the concepts, 
something that would have to be manually inserted if the concepts 
were atomic. 

The requirements description can be thought of as specifying 
the problem to be solved. The inputs and outputs of a goal specify 
respectively the data that is available in solving the problem 
(inputs) and the data that is expected to be returned as part of the 
solution (outputs). 

Plans in EES are also represented as NIKL concepts, in a 
similar way to goals: PLAN = [OBJECT: capability- 
description ACTION, inputs (arbitrary) OBJECT, ourpurs 
(arbitrary) OBJECT, method <sequence of goals>]. 

The capability description of a plan describes what it can do. 
The inputs and outputs describe the data it expects to receive and 
provide respectively. The method is a sequence of subgoals that 
accomplish the action referred to in the capability description. 

Automatic classification is important in the context of EES 
because we use subsumption relations in finding plans that can 
achieve goals. When a new concept is specified information is 
given about restrictions on its roles. The NIKL classifier can 
reason about those restrictions to decide about the actual 
placement of the concept in the hierarchy. It may find that the 
user-supplied initial description of the object places it higher than 
it actually belongs. It may find that the concept is subsumed by 
additional concepts that were not stated in the initial description. 
It may also find that the new concept has restrictions that make it 
more general than existing concepts, and interpose the new 
concept between those concepts and their former parents. For an 
example designed to illustrate many of the capabilities of the 
classifier, see [ll]. The NIKL classifier automatically maintains 

2 
Our notation for concepts is as follows: concepts appear in upper-case. Roles 

on concepts appear in lower-case. Value restrictions on the possible fillers of a 

role appear as concepts following the role. Number restrictions on the number of 

objects that may fill a role appear in parentheses preceding the value restriction. 

“arbitrary” indicates 0 to infinity fillers. If no number restriction is explicitly stated, 

the default is 1 or (number 1). A specialization of a concept is formed by further 

restricting or adding additional roles to an existing concept. In our notation, this is 

denoted by placing the concept to be specialized within brackets, followed by the 

modified or added roles. If the concept is to be given a name, that is denoted by an 

equal sign preceding the left bracket. Thus, in the example of the definition of 

GOAL above, we see that a GOAL is a specialization of OBJECT with a 

requirements-description role filled by an ACTION, and input and output roles filled 

by OBJECTS. 

938 / ENGINEERING 

subsumption relations, so it is possible for the system to 
“discover” plans that can be applied to a particular goal without 
the need for the system builder to anticipate that case in advance. 
The classifier provides an independent criteria for the meaning Of 

goals and plans. 

The process by which the program writer finds candidate 
plans for achieving a goal is as follows. When a goal is posted, the 
system retrieves the action represented as the goal’s requirement- 
description. It then examines all actions which subsume that 
action, to see if any of them are the capability description of some 
plan. All such plans are checked to see if their inputs and outputs 
are compatible with the goal. Those which satisfy that constraint 
become candidate plans for achieving the goal. If several plans 
are found, they are tried in order, most specific first, until one 
succeeds. 

We feel there are two ways this approach aids the evolvability 
of expert systems. First, intention is explicitly represented. We do 
not rely on the intention-to-object level mapping referred to earlier 
that is implicit in many expert systems. As a result, we don’t have 
to worry about that mapping becoming invalid as the system 
expands. This makes the system more modular, and hence 
evolvable. 

Second, since intention is expressed in terminology that has 
an independent semantics, the meanings of terms remains 
Iconstant as the system’s problem-solving knowledge expands or 
is modified. The meaning of the terms only changes if we choose 
to explicitly modify the terminological space itself. If it is 
necessary to do so, we can at least see what will be affefted, 
because the NIKL knowledge base is cross-referenced so that all 
uses of a term can be found. This organization also increases 
modularity and evolvability. 

3.1. Describing Actions: A Closer Look 
Actions are the “glue” in our system that link goals and plans. 

In this section we look at them in detail. As we use actions in 
goals and plans, they are essentially descriptors of a transition the 
system builder intends to take place. We represent the action 
concepts as verb clauses. The main verb (e.g. “compensate”, 
“locate”, or “scan” in the above examples) has roles associated 
with it that correspond to the slots one would find in a case-frame 
representation of a verb clause in a case grammar. For example, 
the internal representation for the requirement “locate cause of 
fault within ground-system” is: LOCATE-I = [LOCATE: obj 
[CAUSE of [FAULT within GROUND-SYSTEM]]]. 

This requirement is a specialization of the LOCATE concept, 
where the “obj” role (corresponding to an object slot in a case 
frame) is filled by “cause of fault within ground-system”. We also 
represent prepositions that modify concepts as roles, so “of” and 
“within” are used to form specializations of the concepts CAUSE 
and FAULT in the above example. 

3.2. An Example 
Let’s consider a simple example of the addition of new 

problem-solving knowledge from the domain of diagnosis of a 
space telemetry system. In this domain, we represent as domain 

descriptive knowledge3 the structure of the telemetry system (i.e. 
the systems and subsystems and how things are interconnected.) 

3 Domain descriptive know/edge is the knowledge of the structure of the domain. 



Problem-solving knowledge is a set of plans for diagnosing 
potential problems with the system. The terminological 
knowledge characterizes and (through the classifier) induces a 
classification hierarchy on the different types of systems, and 
provides a means for linking goals and plans. As an example, 
consider a very simple diagnostic strategy, which locates a fault 
within a component by considering each of its subcomponents in 
tu rn4. Naturally, such a plan will only work if the component 
actually has subcomponents. The capability description for such 
a plan would be a NIKL concept such as, [LOCATE: obj 
[CAUSE of [FAULT within DECOMPOSABLE-SYSTEM]]], 
wtiere the concept DECOMPOSABLE-SYSTEM was defined as: 
DECOMPOSABLE-SYSTEM = [SYSTEM contains 1 
(minimum I) SYSTEM]. 

That is, a DECOMPOSABLE-SYSTEM is one that contains a 
system5. Now, let’s say that in the domain descriptive knowledge 
we describe one of the components of the system: 
SPACECRAFT = [SYSTEM: contains 12 TRANSMITTER, 
contains 7 3 SPACECRAFT-RECEWER]. 

That is, a spacecraft is a system that contains two sub- 
components: a transmitter and a spacecraft-receiver. The 
classifier will recognize that a spacecraft is a kind of 
decomposable-system, because it contains at least one system. 
Suppose a goal is posted whos., * requirements description is: 
[LOCATE: obj [CAUSE of [FAULT within SPACECRAFT]]]. 
The system will find the plan above because the classifier 
recognizes that a spacecraft is a kind of decomposable-system. 

Now, suppose we wanted to add a new problem-solving plan 
to the system that had specialized knowledge about how to locate 
faults in systems that contained transmitters. The capability 
description for this plan would be: [LOCATE obj [CAUSE of 
[FAULT within [SYSTEM contains47 TRANSMITTER]]]]. 

The terminological reasoning done by the classifier enables 
the system to determine that this plan is more specific. Therefore, 
the system will choose this plan in preference to the more general 

one for diagnosing decomposable systems, in those cases where 
it has to locate a fault in a system that contains a transmitter, such 
as “locate cause of fault within spacecraft”. Thus, we can add 
new problem-solving knowledge and have the system apply it 
automatically in appropriate circumstances. This provides us with 
a very clean mechanism for embedding special-case knowledge 
within a system. Furthermore, such special case knowledge does 
not replace the old problem-solving knowledge when added to the 
system. Whenever possible, the system will try to apply special- 
case knowledge first because it is more specific, but the general 
knowledge is still available as a backup in case the special case 
knowledge fails. 

Now, let’s consider what happens when we have to modify the 
terminological space to add a new kind of system, and a new kind 
of problem-solving knowledge. Suppose our informant describes 
certain kinds of systems where the inputs and outputs among the 

4We have constructed a demonstration system for this example, along with 

some of the other problem solving strategies in the domain. This system, while still 

small by expert system standards, begins to demonstrate the feasibility of this 

approach. 

?n our implemented system, there is a number restricfion placed on the 

contains role that indicates that there must be at least one system filling it. Also, 
“containsl” is a specialization of the “contains” role, necessary for reasons we 

won’t go into here. 

subcomponents are so tightly-coupled that a different diagnosis 
strategy is more appropriate: e.g., signal-tracing within the system 
rather than the tree search method we use on decomposable 
systems. Unfortunately, as so often happens in expert system 
construction, our informant can’t state precisely the defining 
characteristics of a tightly-coupled system, but can identify 
empirically which systems are tightly-coupled. Because we can’t 
give a precise definition for tightly-coupled systems, we can’t use 
the classifier to recognize which systems are tightly-coupled. 
Instead, we have to explicitly define systems as being tightly 
coupled. Thus, we define the concept “tightly-coupled-system” 
as a primitive specialization of system and, for example, explicitly 
define deep-space-receiver as a specialization of that: 
TIGHTL Y-COUPLED-SYSTEM [SYSTEM], and 
DEEP-SPACE-RECEIVER = [TIG”;L Y-COUPLED-SYSTEM: 
contains23 ANTENNA-SYSTEM, contains24 GROUND- 
RECEIVER, contZns25 SIGNAL-CONDITIONER]. 

As one would expect, the capability description for the new 
plan for diagnosis by signal-tracing would be: [LOCATE obj 
[CAUSE of [FAULT within.T/GHTL Y-COUPLED-SYSTEM]]]. 
The interesting thing is that when the goal to “locate cause of fault 
within deep-space-receiver” is posted, one of the plans that is 
found is “locate cause of fault within decomposable-system”. 
This is because the classifier recognizes that a deep-space- 
receiver is a kind of decomposable-system. The system would try 
to apply the plan for tightly-coupled-systems first because it is 
more specific, but the plan for decomposable-systems would 
nevertheless still be available as a backup if the other plan failed. 

We have been pleasantly surprised more than once by this sort 
of behavior. This example illustrates how the classifier, by 
automatically maintaining subsumption relations in the 
terminological space, allows the system to make appropriate use 
of its knowledge in ways that may not have been anticipated by the 
system builder. 

3.3. Reformulation 
An additional capability of the EES framework that makes use 

of NIKL and the terminological space is its ability to reformulate a 
goal into a new goal or set of goals when searching up the 
subsumption hierarchy fails to yield an acceptable plan for 
acheiving the original goal. This capability enhances evolvability 
by further loosening the coupling between plans and goals, thus 
making the system more modular. Explicitness is also enhanced, 
since the system performs -- and records -- the reformulation, 
rather than having a human system builder perform it and fail to 
note having done so. The reformulation capability is discussed in 
detail elsewhere [ll, 141. 

4. Limitations 
Unfortunately, this approach is by no means without problems. 

For example, there is no way to construct a concept that 
denotes “the thing that is the value restriction of the b role of A”. 
Unfortunately, the need to do this arises frequently in our 
representation of method knowledge in plans. For example, if we 
decide to represent systems as having a role “component”, and 
we have a particular system, “systeml” that has a component 
“aystem2” there is no way in NIKL to represent something like 
“diagnose component of system1 ” and have NIKL recognize that 
that is equivalent to “diagnose system2”. This would be very 
useful in representing abstract steps for a plan. 

AUTOMATED REASONING / 939 



Another problem is that NIKL does not support transitive 
relations. This has made it difficult to represent some terms that 
involve causality, for example, and has forced us to handle some 
things with problem-solving kiowledge that ideally shouid be 
handled by the classifier. 

A third problem is that there are some conceptualizations 
where inherent ambiguities in the language make it impossible for 
the classifier to decide if one concept is subsumed under another 
without explicit guidance. For example, our diagnosis system has 
a concept of a “start of a component chain”: a sub-component 
whose input is the same as the input of the component containing 
it. We might like the classifier to recognize when a new concept is 
subsumed under this concept. However, it is not enough for the 
classifier to simply define that new concept so that its input 
happens to be the same as that of its containing component. 
Doing so only tells NIKL that inputs of the concept and its 
containing component are subsumed under a common parent; for 
the classifier to recognize that the new concept is a specialization 
of “start of a component chain”, we must explicitly indicate that 

the values of the two input roles are intended to be identical. This 
is an important limitation on the ability of the classifier to find 
relationships that the system builder failed to anticipate. 

While limitations such as these have hampered our efforts to 
completely separate terminological knowledge from other kinds of 
knowledge, nevertheless we feel we have gained significant 
leverage from NIKL. Furthermore, NIKL is under continued 
development [7]. 

5. Status 
The system has operated on reasonably large NIKL networks 

(approximately 500 concepts). The plan-finding and reformulation 
capabilities described in the preceding sections, as well as the 
NIKL knowledge base are all operational and support the 
examples given above. 

6. Aids for Constructing Models 
We have argued for a well-defined and independent 

terminological space and tried to show how that could ease the 
evolution of an expert system. However, the increased 
development time due to the demands of building the initial 
knowledge base is a severe potential problem. We are developing 
a knowledge acquisition aid to address this issue, which will help 
knowledge representation builders plan activities and keep track 
of status while developing knotiledge bases. It does so by 
maintaining an agenda of unfinished business that the knowledge 
base builder must deal with before the specification can be 
considered complete. The aid seeks to ensure that consistent 
conventions are followed throughout a knowledge base in terms 
of both what kinds of information are represented and what form is 
followed in representing them. 

Our knowledge acquisition problem is partly defined by our 
representational concerns. We have to be concerned with 
eliciting not just a sufficient set of some type of concept, but with 
forming an abstraction hierarchy and placing concepts properly 
within it. Furthermore, unlike acquisition aids like MORE [8] and 
ROGET [l] which essentially have a schema for a particular kind 
of system that they are trying to instantiate for a new domain, we 
expect the problem solving knowledge to be part of what is 
acquired. Thus, one cannot know in advance what kind of system 
is to be acquired, and therefore cannot make the same 

assumptions about what kinds of concepts need to be elicited. 

The fundamental insight represented by the design of this 
knowledge acquisition aid is that the increased reliance on 
detailed representation of terminological knowledge creates an 
opportunity, and not just a problem. Because more concepts are 
explicitly represented, it becomes easier to communicate about 
how one intends to make use of them. In particular, we will allow 
the knowledge base builder to express intentions for the form and 
content of the evolving knowledge base. Those intentions can be 
stated in terms of relationships or predicates that are expected to 
hold for concepts that classify in some way with respect to existing 
concepts. We will then be able to check, as the knowledge base 
evolves, whether concepts have been specified that violate these 
expectations. These concepts then become the target for 
knowledge acquisition, as we try to bring them into line with the 
statements of intentions. 

An example of a problem in knowledge base construction that 
this could help with has to do with two distinct uses of inheritance 
of roles in a taxonomic knowledge base. One use is to represent 
some information at the most abstract concept for which it holds; 
we expect that instances subsumed beneath that concept will 
simply inherit the information. Another use is to represent an 
abstraction of the information itself; in that case, we expect that 
instances of the concept will not inherit the associated abstract 
information but will instead indicate a more specific version of the 
information related by that role. Knowledge base errors can arise 
because there is ordinarily no information to indicate which of 
these two uses is intended. Thus a new item can appear to be 
complete because it has some role it was intended to have, when 
in fact the value of the role is an inherited value that is actually less 
specific than is needed. Take for example, the notion of program 
transformations in our the Program Enhancement Advisor. 
Building this system requires that the EES program writer 
reformulate a general goal to enhance programs into 
specializations like, ENHANCE READABILITY OF PROGRAM and 
ENHANCE EFFICIENCY OF PROGRAM. Implementing these 
goals, in turn, requires the program writer to instantiate a plan that 
calls (among other things) for a goal to SCAN PROGRAM FOR 
TRANSFORMATIONS THAT ENHANCE CHARACTERISTIC OF 
PROGRAM. Thus, a keystone concept in the model is: 
ENHANCE- 7 = [ENHANCE: agent TRANSFORMATION, obj 
[CHARACTERISTIC of PROGRAM]]. 

In order to instantiate plans in the manner intended by the 
system-builders, there is an implicit requirement that the domain 
knowledge about transformations specifies, for each 
transformation, some particular CHARACTERISTIC of 
PROGRAMS which that transformation ENHANCES. That is, to be 
useful to the Program Enhancement Advisor, a transformation has 
to be described as enhancing something. This is the knowledge 
that, in the end, determines what transformations the resulting 
expert system program will make use of in trying to suggest 
program enhancements. Thus, although many specializations of 
ENHANCE-l are possible, certain specializations are crucial; the 
knowledge acquisition process must ensure that they are 

supplied. In particular, we expect to see specializations in which 
both the agent and the obj roles are further restricted, because 
we do not want inheritance to produce the spurious implication 
that all transformations enhance all characteristics of programs. 
In other words, the intention in specifying domain knowledge for 
this domain is to model which transformations enhance which 
characteristics. 

940 / ENGINEERING 



The knowledge acquisition aid we are now designing is 
centered around a language for stating intentions such as these in 
terms of how various concepts are expected to classify. The aid 
will be able to look at the results of classification to determine 
whether or not such intentions have been violated. We can use 
these intentions to guide us in deciding whether further 
information is needed pertaining to a concept, and also when the 
knowledge base is or is not consistent with respect to its intended 
use (which is a different question from that of whether it is 
internally consistent). 

7. Summary 
In this paper we have argued that evolution is a critical part of 

the expert system lifecycle and that expert system frameworks 
must support evolvability. We have identified several factors that 
limit the evolvability of many expert systems and focussed on two: 
limited representation of intent and an ill-defined terminological 
space. Additionally, we have shown how such an independent 
terminological space could be used to define goals and plans. 
Finally, we have argued that a mechanism such as the NIKL 
classifier can be a significant benefit by finding and maintaining 
subsumption relations in the terminological space automatically, 
allowing the system to make use of knowledge in ways that may 
not have been foreseen by the system builder. 

Acknowledgements 

We would like to thank R. Balzer, R. Bates, L. Friedman, 
L. Johnson, T. Kaczmarek, T. Lipkis, W. Mark, J. Moore, 
J. Mostow, and S. Smoliar for interesting discussions and 
comments that greatly facilitated the work described here. The 
EES project was supported under DARPA Grant #MDA 903-81- 
c-0335. 

References 

1. Bennett, J., “ROGET: acquiring the conceptual structure of a 
diagnostic expert system,” in Proceedings of the IEEE 
Workshop on Principles of Knowledge-based Systems, 1984. 

2. Brachman, R. J., and Schmolze, J. G., “An Overview of the 
KL-ONE Knowledge Representation System,” Cognitive 
Science 9, 1985, 171-216. 

3. Clancey, W., “The Epistemology of a Rule-Based Expert 
System: A Framework for Explanation ,‘I Artificial 
intelligence 20, (3), 1983,215251. 

4. Davis, R., Applications of meta-level knowledge to the 
construction, maintenance, and use of large knowledge 
bases, Ph.D. thesis, Stanford University, 1976. also available 
as SAIL AIM-283 

5. Davis, R. and Lenat D. B., Know/edge-based systems in 
artificial intelligence, McGraw-Hill, 1982. 

6. Davis, R., King, J., The Origin of Rule-Based Systems in A/, 
Addison-Wesley, 1984. 

7. Kaczmarek, T., Bates, R., and Robins, G., “Recent 
Developments in NIKL,” in Proceedings of the National 
Conference on Artificial Intelligence, American Association 
for Artificial Intelligence, 1986. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Kahn, G., Nowlan, S., McDermott, J., “A foundation for 
knowledge acquisition,” in Proceedings of the /EEE 
Workshop on Principles of Know/edge-based Systems, 1984. 

Laird, J. and Newell, A., A Universal Weak Method, Carnegie- 
Mellon University Department of Computer Science, 
Pittsburgh, PA, Technical Report CMU-CS-83-141, June 
1983. 

Moser, M.G., “An Overview of NIKL, the New Implementation 
of KL-ONE,” in Research in Natural Language 
Understanding, Bolt, Beranek, & Newman, Inc., Cambridge, 
MA, 1983. BBN Technical Report 5421 

Neches, R., W. Swat-tout, J. Moore, “Enhanced Maintenance 
and Explanation of Expert Systems through Explicit Models 
of Their Development,” Transactions On Software 
Engineering, November 1985. Revised version of article in 
Proceedings of the IEEE Workshop on Principles of 
Knowledge-Based Systems, December, 1984 

Schmolze, J.G. & T.A. Lipkis, “Classification in the KL-ONE 
Knowledge Representation System,” in Proceedings of the 
Eighth International Joint Conference on Artificial 
Intelligence, IJCAI, 1983. 

Swat-tout, W., “A digitalis therapy advisor with explanations,” 
in Proceedings of the Fifth International Conference on 
Artificial Intelligence, pp. 819-825, Cambridge, MA., 1977. 

Swartout, W., “Beyond XPLAIN: toward more explainable 
expert systems;” in Proceedings of the Congress of the 
American Association of Medical Systems and lnformatics, 
1986. 

AUTOMATED REASONING / 94 1 


