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Abstract. Error distribution plays a central role in the security of encryption based

on the Learning with Errors (LWE) problem and its variants. In this paper, we inves-
tigate the error distribution of weak Poly-LWE instances. For this purpose, we derive

a closed-form formula to compute the mapped error distribution. With this algebraic
approach to evaluate the error, we examine the recently proposed attacks on Poly-LWE

and Ring-LWE and reassess their parameters in order to include more instances. No-

tably, our method can also be applied to non-Gaussian error. We conduct experiments
to investigate the shape of the mapped error distribution and confirm that in many cases

it is no longer Gaussian nor uniform; our experimental results from distinguishers also

validate our theoretical analysis.
Keywords: error distributuion, weak instances, Poly-LWE

1. Introduction

Since Regev proposed Learning with Errors (LWE) [Reg05, Reg09], it has found many
applications in cryptography. It is conceptually simple but also enjoys worst-case hardness
like some other lattice problems [Reg09, BLP+13]. Unfortunately, with the benefits of LWE
usually come large keys and ciphertexts that add to communication and storage overhead.
In the search of a better alternative that is more competitive in terms of key size, Ring-
LWE (RLWE) emerged [LPR10] as a promising candidate. RLWE accomplishes its higher
efficiency by exploiting additional algebraic structure of polynomial rings, but this approach
is followed by attacks that can find weak instances, for the same reason. Similar to LWE,
RLWE enjoys worst-case hardness, but only on ideal lattices.

Due to its efficiency, RLWE has been applied to many cryptographic constructions [BV11,
FV12, BLLN13]; therefore, it has become more urgent to understand its strengths and
weaknesses.

1.1. Related Work. Since RLWE can be reduced to lattice and LWE problems, all lattice
reduction attacks such as LLL and general decoding attacks such as BKW apply to RLWE.
However, people generally believe and the weak-instance attacks described below show that
the RLWE problem is potentially easier to tackle than the LWE problem because of the
additional algebraic structure.

Weak instances of RLWE are analogous to weak primes in factorization: their special
properties significantly reduce the difficulty of the problem so that specialized algorithms
can be designed to launch an attack. Weak RLWE instances usually involve some ring
homomorphism, under which the image of the error distribution can be distinguished from
a uniform distribution.

Generally, weak instance attacks involve three steps:

(1) Exploiting the algebraic property to reduce the search space for Step (2);
(2) Exhausting the secret s;
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(3) Testing if the samples agree with a certain distribution generated with the guessed
secret.

Considering different rings with special properties, leads to various weak instance attacks.

1.1.1. Algebraic Structures. The first such attack was developed by Eisenträger et al. [EHL14]
on Polynomial-LWE (Poly-LWE), which is a special case of RLWE. They consider polyno-
mial rings of the form Zp[x]/〈f(x)〉, where p is prime and f(x) is irreducible over Q but has
a low-order root α modulo p. Their attack exploits a ring homomorphism induced by α into
the finite field Fp. When p is small enough, it becomes feasible to search for the image of
secret s in Fp.

Similar attacks were soon carried out on more general RLWE cases [ELOS15, CIV16]. The
conditions for a possible attack are similar, but the attacker is faced with bigger distortions
introduced by the conversion from RLWE instances to Poly-LWE ones in order for the
original attack to work.

A more delicate attack was delivered by Chen et al. [CLS15, CLS16] on RLWE instances
based on families of Galois number fields whose ring of integers can be decomposed into
orthogonal subspaces, where their homomorphism will likely nullify a component of the
error drawn from a discrete Gaussian distribution.

1.1.2. Distinguishing Distributions. In Step (3) of the attack, we need to decide which dis-
tribution fits the one computed from the guessed secret and samples better: uniform or
the error distribution (under the homomorphism). All previous works achieve this by com-
paring the sampled distribution with uniform under the assumption that the mapped error
distribution will be far enough apart from uniform.

For this particular task, there are general purpose distinguishers available such as the
Chi-square test. Another distinguisher with dual lattices is considered by Peikert [Pei16]
and can be used in conjunction with all existing weak instance attacks.

1.2. Our Contribution. In this paper, we first review the conditions for the attack in
[ELOS15] to be launched. We show that the mapped error distribution can be precisely
computed and therefore the restriction in their work can be relaxed to allow a broader
range of instances to be attacked the same way. Then we show the mapped discrete Gaussian
distribution, with different widths, according to calculation based on our method. We believe
this work is the first to reveal the shape of exact mapped distributions, although estimations
have been made repeatedly.

Having established the mapped distribution, we demonstrate how effective distinguishers
can be built for weak instances recognized by our method, with or without information of
the mapped distribution.

1.3. Organization. This paper is organized as follows: Section 2 summarizes the Poly-
LWE problem and other related background. Section 3 shows the image of error distribution
mapped under the homomorphism and introduces our method to compute it. Section 4
discusses different methods to distinguish distributions with samples and demonstrates our
simulation results.

2. Background

Let f(x) be a monic irreducible polynomial in Z[x] of degree n (not necessarily cyclo-
tomic). Let q ∈ Z (not necessarily prime). If we let p ∈ Z it will always denote a prime. For
the integers modulo q we use the notation Zq := Z/qZ. We will be working in the following
polynomial ring Zq[x]/〈f(x)〉 which we denote as

Rq := Zq[x]/〈f(x)〉.
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Observe that there are qn elements in Rq that are of the form

d0 + d1x+ d2x
2 + · · ·+ dn−1x

n−1 + 〈f(x)〉

where di ∈ Zq 0 ≤ i ≤ n− 1. Roots of f(x) mod q will be denoted as α1, ..., αi for as many
roots as there are. If only one root is being considered, it may be denoted as just α. Since
a root α is in Zq, we can talk about its order with respect to the multiplication in Zq,

ord(α) := min{m ∈ Z+|αm = 1}.

In general we will not assume that f(x) factors completely mod q; however, we will assume
that f(x) has at least one root α mod q.

On the ring Rq, we consider the following discrete probability distributions. Let URq de-
note the discrete uniform distribution on Rq, i.e. coefficients of the polynomials coming from
the discrete uniform distribution on Zq. Let DRq denote a discrete Gaussian distribution
on Rq, i.e. one that is the preimage of a discrete Gaussian distribution over a lattice in the
canonical embedding of a number field K when considering Rq is considered as isomorphic
to an ideal of K. Note this distribution DRq is the one considered in [ELOS15]. Let χRq
denote the discrete Gaussian distribution on Rq, i.e. coefficients of the polynomials coming
from a discrete Gaussian distribution on Zq. The precise formulation of a discrete Gaussian
on Zq is as follows where we try to keep the definitions consistent with [Reg09]. Let ŪRq
denote a bounded uniform distribution on Rq, i.e. the coefficients of the polynomials coming
from a bounded uniform distribution on Zq. Let ERq denote any distribution on Rq where
the coefficients are sampled from a given distribution E on Zq.

Definition 2.1. For β ∈ R+ the continuous distribution Ψβ on [0, 1) is obtained by sampling

from a normal distribution with mean 0 and standard deviation β√
2π

and reducing the result

mod 1. This probability distribution is given as

∀r ∈ [0, 1), Ψβ(r) :=

∞∑
k=−∞

1

β
· exp

(
−π
(
r − k
β

)2
)
.

Now using Ψβ , the discrete Gaussian distribution on Zq is defined as follows.

Definition 2.2. The discretization of a Gaussian distribution on Zq (we denote as Gq,β) is
obtained by sampling from Ψβ and multiplying by q. This probability distribution is give
by

Gq,β(i) =

∫ (i+ 1
2 )/q

(i− 1
2 )/q

Ψβ(x)dx.

Note that one can easily generate random values from Gq,β , and one can numerically
approximate the probability distribution of Gq,β by using approximations for the infinite
sum and the integral. We now introduce the two main problems of interest.

Problem 2.1 (Search Poly-LWE Problem). Let s(x) ∈ URq be secret. The Search Poly-
LWE Problem is that of finding s(x) given a poly(n) number of samples of the form

(aj(x), bj(x) := aj(x) · s(x) + ej(x)) ∈ Rq ×Rq
where aj(x) ∈ URq and ej(x) is sampled from an error distribution on Rq.

A related problem is to distinguish samples coming from a Search LWE Problem from
uniform samples on Rq × Rq, and our attack can be extended to work against this variant
as well.

Problem 2.2 (Decision Poly-LWE Problem). Given poly(n) samples from one of the fol-
lowing two distributions on Rq × Rq the Decision Poly-LWE Problem is to decide which
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distribution the samples are coming from:
(1) samples from a Search Poly-LWE Problem, i.e. of the form

(aj(x), bj(x) := aj(x) · s(x) + ej(x))

where aj(x) ∈ URq and ej(x) is sampled from an error distribution, or
(2) samples that are uniform, i.e. of the form

(aj(x), bj(x))

where aj(x), bj(x) ∈ URq.

Attack. In [ELOS15] they develop the following attack against the Decision Poly-LWE
Problem which we describe here with a couple of adjustments. For a polynomial f(x) that is
irreducible over Z let p ∈ Z be a prime such that f(x) has at least one root α mod p. Note
that in [ELOS15] the authors assume that f(x) factors completely mod p which is often
the case in practice so that fast multiplication can be done in the ring using the Chinese
Remainder Theorem, but we will not need this assumption for our attack.

Given access to L :=poly(n) samples from a Decision Poly-LWE Problem

(aj(x), bj(x)) ∈ Rp ×Rp
we want to transfer the problem to Zp. To do this, we will build a well defined ring
homomorphism

φ̄ :
Zp[x]

〈f(x)〉
→ Zp.

Since we are assuming we have a root α of f(x) mod p, we can consider the ring homomor-
phism

φ : Zp[x]→ Zp

y(x) 7→ y(α).

It is clearly well defined, and one can check it is a ring homomorphism. Moreover 〈f(x)〉 ⊆
Ker(φ) which gives that φ̄ is a well defined ring homomorphism defined as

φ̄ :
Zp[x]

〈f(x)〉
→ Zp

z(x) + 〈f(x)〉 7→ φ(z(x)) = z(α).

Now we take the samples and map them according to φ̄

(aj(x), bj(x)) 7→ (aj(α), bj(α)) .

If the samples are coming from the Search Poly-LWE distribution, s(α) will be some element
in Zp. For the attack we will guess s(α). For each g ∈ Zp we assume g is the correct guess
for s(α) and compute

bj(α)− aj(α)g.

Since the multiplication and addition is preserved by φ̄ this gives us

ej(α) = bj(α)− aj(α)g.

We can now analyze the distribution of ej(α) to decide which distribution the samples came
from. The error polynomial ej(x) can be written as

ej(x) =

n−1∑
i=0

eijx
i,

which, when evaluated at α, is

ej(α) =

n−1∑
i=0

eijα
i,
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From now on we will be considering ej(α) for a particular guess g and will drop the j
subscript and just write

e(α) =

n−1∑
i=0

eiα
i,

This can be simplified by considering the order of α, which we denote as r. For simplicity
of notation assume r divides n. This gives

e(α) =(e0 + er + · · ·+ en
r

) + (e1 + er+1 + · · ·+ en
r +1)α+ · · ·

+ (er−1 + e2r+(r−1) + · · ·+ en
r +(r−1))α

r−1.

This can be further simplified and written as

e(α) = v0 + v1α+ · · ·+ vr−1α
r−1,

where

v0 = e0 + er + · · ·+ en
r

v1 = e1 + er+1 + · · ·+ en
r +1

...

vr−1 = er−1 + e2r+(r−1) + · · ·+ en
r +(r−1).

If the errors are from DRq as in [ELOS15], then depending on the value of α and the order
of α, this distribution e(α) may be either a discrete Gaussian or a periodic distribution, and
depending on the parameters it may be very close to a uniform one. In [ELOS15, Section 3.2
Case 2] the authors state that when α has small order ≥ 3, e(α) will be Gaussian; however
this is not quite right as the distribution may be highly periodic as we will demonstrate.
Since the algorithms in [ELOS15] are stronly dependent on e(α) being Gaussian to distin-
guish we will need to introduce some other methods for algorithms to distinguish in this
case. We shall see that Chi-square test will work much better.

3. Error Distribution

3.1. Computing probability distributions. In the above attacks, we need to understand
the probability distribution of e(α). More generally, we consider

e = e0 + e1a1 + · · ·+ en−1an−1 ∈ Zp
where ai ∈ Zp are fixed and ei’s are chosen according to a given probability distribution
E on Zp. In the following, we derive the probability distribution of e. We first show how
to compute the exact distribution of e efficiently, and then demonstrate several possible
distributions of e on Zp, including distributions that are neither Gaussian nor uniform.

Lemma 3.1. Let u and v be independent random variables on Zp with probability distribu-
tions (a0, a1, . . . , ap−1) and (b0, b1, . . . , bp−1), respectively. Let

a(x) =
∑
i∈Zp

aix
i, b(x) =

∑
i∈Zp

bix
i.

Then the probability distribution of u+v can be computed as the coefficients of the polynomial
a(x)b(x) (mod xp − 1).

The proof is simple since, for any k ∈ Zp, the probability

P (u+ v = k) =
∑
i∈Zp

P (u = i)P (v = k − i mod p) =
∑
i∈Zp

aibk−i,

where the subscript k − i of b is computed modulo p.
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Theorem 3.2. Suppose e0, e1, . . . , en−1 are independent random variables on Zp with the
same probability distribution (c0, c1, . . . , cp−1). Let c(x) =

∑
i∈Zp

cix
i. Then, for any

a1, . . . , an−1 ∈ Zp, the probability distribution of e = e0 + e1a1 + · · · + en−1an−1 mod p
can be computed as the coefficients of the polynomial

c(x)c(xa1) · · · c(xan−1) (mod xp − 1).

The theorem follows from the above lemma, since the random variables e0, e1a1, . . . , en−1an−1

are independent and c(xai) represents the probability distribution of eiai. Also, the prod-
uct can be computed by a simple loop: t := c(x); and for i from 1 to n − 1 do t :=
t · c(xai) mod xp − 1. This takes at most O(np2) operations in Zp.

3.2. Intuition for the error distribution. In this subsection we give several examples
of the mapped error distribution

a0e0 + a1e1 + · · ·+ an−1en−1 mod p

where ei, 0 ≤ i < n, are independent identically distributed Gp,β distributions on Zp and
ai ∈ Zp, 0 ≤ i < n, are fixed constants. The number of terms n and the sizes of the ai’s
greatly affects the shape of the above distribution. To get an idea of what one should expect,
we look at three general cases.

3.2.1. Case 1: small coefficients. The first case we consider is when all the a0, ..., an−1

coefficients are 1 and the standard deviation is fixed; in this case we consider how varying
n affects the shape of the distribution. As n grows large, the distribution remains Gaussian
but approaches uniform.

Example 3.3. Let β = 0.01, p = 331. The distribution e1+e2+· · ·+en for n = 1, 20, 40, 100
with ej iid Gp,β is shown in Figure 1.
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n=1
n=20
n=40
n=100

Figure 1. Sum of n iid discrete Gaussian distributions on Z331.
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3.2.2. Case 2: large coefficients. The second case we consider is when all the a0, ..., an−1

coefficients are large and the standard deviation is fixed; in this case we consider how varying
n affects the shape of the distribution. We want to answer the question of how large n needs
to be for the distribution to be almost uniform. In this case n can be quite small and the
distribution already be very close to uniform. However, note that the distributions in the
following example are neither Gaussian nor uniform.

Example 3.4. We consider the distributions of 23e0+45e1 and 23e0+45e1+43e2 and 23e0+
45e1 + 43e2 + 95e3 where β = 0.01 and p = 331 and ej iid Gp,β . For each additional term
in the sum the distributions gets considerably closer to uniform while remaining periodic.
The three graphs are shown in Figure 2.
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Figure 2. The distributions of 23e0 + 45e1 and 23e0 + 45e1 + 43e2 and
23e0 + 45e1 + 43e2 + 95e3 where ej are iid discrete Gaussians on Z331

3.2.3. Case 3: root of small order. In the third case we consider a situation that may
arise in the attack where the coefficients are all powers of a root α

e0 + αe1 + α2e2 + α3e3 + · · ·+ αn−1en−1

where ej are iid discrete Gaussian distributions. We want to specifically consider what effect
the order of α has on the distribution. We choose f = xn + ax + b to be an irreducible
polynomial over Z that has a root α mod p.

We want to specifically consider the case when α has small order mod p and n is not
too large. When α has low order, the distribution will be considerably farther from uniform
compared to when α has large order. Consider the following example where f has one root
of low order and another of high order.

Example 3.5. The polynomial f = x9 + 11x− 11 is irreducible over Z but has a two roots
α1 = 31, α2 = 82 mod 331 with α1 having order 3 and α2 having order 165. Consider the
following distribution which arises if α1 is used to define the homomorphism in the attack

e0 + α1e1 + α2
1e2 + α3

1e3 + · · ·+ α8
1e8.

Here we are assuming ej are iid Gp,β for β = 0.01. The graph of the distribution is show in
Figure 3. It is neither Gaussian nor uniform.
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When using the root α2 with larger order, we see that the distribution e0 +α2e1 +α2
2e2 +

α3
2e3 + · · ·+ α8

2e8 is much closer to uniform as seen in Figure 4.
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Figure 3. The distribution of e0 + α1e1 + α2
1e2 + α3

1e3 + · · · + α8
1e8 for

α = 31 of order 3 and ej iid discrete Gaussians on Z331.
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Figure 4. The distribution of e0 + α2e1 + α2
2e2 + α3

2e3 + · · · + α8
2e8 for

α2 = 84 of order 165 and ej iid discrete Gaussians on Z331.

3.2.4. Summarize Cases. Considering these three cases, we note that if the distribution
e(α) appears like Case 1 it can be fairly easily distinguished from the uniform for small n.
For Case 2 distinguishing from the uniform gets much harder because when adding a large
number terms with large coefficients, the distribution rapidly approaches uniform. For Case
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3 when α has small order this is similar to Case 2 with a small number of terms, but if
the order of α is small enough and n not too large, we can hope to be able to distinguish
this from uniform; we will consider this case further in the next section. In Case 3 when α
has large order, this is similar to Case 2 when there are a large number of terms, and it is
unlikely one would be able to distinguish this from uniform.

4. Statistical Tests and simulation

4.1. Distinguishing statistical tests. In this section we will discuss how one can decide
if a guess g in the attack is correct. If the guess g is correct, we have shown in the previous
section how we can compute what the distribution of the error will be; we denote this
computed error distribution as E . If the guess g is not correct then the samples will be
uniform, which we denote as U .

Assume that we have L samples of RLWE public keys:

(ai(x), bi(x)), bi(x) = ai(x)s(x) + ei(x), i = 1, . . . , L

where ai(x) ∈ URp, ei(x) ∈ χRp. Let A and B be two random variables taking samples

A ∈ {ai(α) | i = 1, . . . , L}
B ∈ {bi(α) | i = 1, . . . , L}.

In general, (A,B) cannot be distinguished from (A,B′), where B′ is uniform. But the
homomorphism attack lets us the consider the distribution

S(g) := B −Ag, g ∈ Zp.

Property 1. S(g) ∼ E if g = s(α); otherwise S(g) ∼ U if g 6= s(α).

Now if E is not too close to U , we will be able to decide which one S(g) matches by
considering a reasonable number of samples. There are several methods one might use to
decide which distribution S(g) fits.

4.1.1. Method 1: Chi-square Tests. First we will use a Chi-square goodness-of-fit test
to test the S(g) against a uniform distribution. For a description of this test see [K+99, pg
37]. Let ẽk denote the number of ej(α)’s equal to k mod p. Let L denote the total number
of samples. We set up our null hypothesis to be that S(g) is distributed according to a
uniform distribution

H0 : S(g) ∼ U
H1 : S(g) 6∼ U .

Then we compute the Chi-square statistic as

V =

p−1∑
k=1

(ẽk − L/p)2

L/p

where there are p− 1 degrees of freedom. If V is too large or too small based on our choice
of Type 1 error rate, we reject H0. For this test to be considered reliable we need L/p ≥ 5
samples, i.e. L ≥ 5p.

Second, we test S(g) against our computed distribution E using a Chi-squared test in a
non-traditional way.

H0 : S(g) ∼ E
H1 : S(g) 6∼ E .

Let Ek := Pr[E = k ∈ Zp]. Then we compute the Chi-square statistic as

V =

p−1∑
k=1

(ẽk − LEk)2

LEk
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where there are p − 1 degrees of freedom. We then reject or accept based on V and our
desired Type 1 error rate. In this setup, we are inverting the usual setup for a Chi-square
test. Note that the distribution in the null hypothesis has been switched. But this problem
is also unusual in that it is a promise problem, giving us that the S(g) must be one of two
known distributions, which is not an assumption generally considered for most statistical
tests like the Chi-square test.

4.1.2. Method 2: Statistical Distance. For another test making use of the computed
error distribution, we consider the statistical distance from S(g) to U and E for each guess
g and take the guess for which S(g) is closest to E . Let the distribution of S(g) be {ti(g) |
i ∈ Fp}, i.e.,

P [S(g) = i] = ti(g), i ∈ Fp.
Let

ε(g) =
∑
i

∣∣∣∣ti(g)− 1

p

∣∣∣∣ ,
δ(g) =

∑
i

|ti(g)− Ek| .

Decode s(α) = g, where

(1) g = arg max
g∈Fp

ε(g)

or

(2) g = arg min
g∈Fp

δ(g).

This gives us a good idea of what the correct guess probably is if the samples are from
Poly-LWE. If no one guess differed from the rest by more than some threshold, we would
decide the samples were uniform. However, how this threshold should be chosen is unclear
at this moment. We will leave that as a future work.

4.1.3. Type 1 Errors. One further thing that must be considered when using any tests
like Methods 1 with a fixed Type 1 error probability is that using the test repeated for
each of the p guesses will result in a much higher overall Type 1 error probability. To see
this in detail, if γ is set to be the Type 1 error probability for a single test, then 1 − γ
is the probability of not having a Type 1 error on that test. If one runs p such tests, the
probability of no Type 1 errors in all p tests is (1−γ)p. Thus the probability of at least one
Type 1 error is 1− (1− γ)p. To be clear, this is an upper bound on probability of a Type 1
error and in practice a test may have a true Type 1 error rate much lower, but we may no
longer have a very good upper bound. To see how much the Type 1 error bound can grow,
consider that if γ = 0.02 and p = 331, then 1− (1− 0.02)331 ≈ 0.9987.

It is possible to keep the overall Type 1 error bound to an desired rate. One way is
to use a Bonferroni correction, which is a way of setting the Type 1 error rates on the
individual tests to guarantee a particular overall Type 1 error. In particular if we set the
new Type 1 error for each test at βγ := γ

p , the overall Type 1 error will still be bounded by

γ. However, this may result in an impractically high Type 2 error rate, so in practice we
would recommend using the tests at multiple levels and using a variety of tests as described
above.

4.2. Simulations. We simulate these Chi-square methods and look at the there true Type
1 and Type 2 error rates, the expected value of cosine test does not perform well on either
of these two examples.
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Example 4.1. Continuing with the earlier Example 3.5, we show how we can use Method
1 of the Chi-square tests to determine for which guess of g the distribution e(α) follows the
computed error distribution rather than a uniform distribution. With 2000 samples and
the individual Chi-Square tests’ Type 1 error rates set at 2%, the overall test is successful
at rejecting the null hypothesis that the error are from the uniform each time out of ten
independent simulations while only every giving two false rejections.

For those same ten simulations the Chi-square test against the uniform with Type 1 error
rates set at 1× 10−9 (corresponding to this tests Type 2 error rates because of the inverted
setup) it rejects all guesses correctly without giving any false rejections.

Example 4.2. Next we consider a new example. Let f = x15 + 125x − 334 which is
irreducible over Z but has a root α = 396 of order 3 mod 607. The distribution E is shown
in Figure 5. Clearly it is neither Gaussian nor uniform.

Using the Chi-square test against uniform with 5000 samples and having the individual
tests set at a Type 1 error rate of 2%, we are able to reject the correct the guess correctly
for every one of ten independent simulations while only every giving one false rejection.

For those same ten simulations the Chi-square test against the uniform with Type 1 error
rate set at 1× 10−9 (corresponding to this test’s Type 2 error rate because of the inverted
setup) is not helpful on this example as it never rejects anything.
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Figure 5. The distribution of e0 + αe1 + α2e2 + α3e3 + · · · + α12e12 for
α = 396 of order 3 and ej iid discrete Gaussians on Z607.

Example 4.3. We used Method 2 (statistical distance) on the following instance: f(x) =
xn+p−1, where n = 8, p = 257, and β = 0.2. In this setup, f(x) has root α = 1 mod p. With
1200 samples, the test is successful at finding the image of s in all of the ten independent
simulations, when either of (1) and (2) is used.

This instance has been attacked successfully by [EHL14], because of its simplicity. How-
ever, our method may be able to improve the efficiency of their attack by computing s(α)
directly from the error distribution under the homomorphism. We leave that as a future
work.
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5. Concluding Remarks

In this work, we provide a general algebraic method to derive the mapped error distribu-
tion with a formula. Analyzing Poly-LWE instances with our method will allow such attacks
to be applied to a broader range of parameters; in particular, those with non-Gaussian error
distribution can be included. As an extension to this work, we may consider adapting our
method to Ring-LWE or further investigating the characteristics of different statistic tests
in order to more accurately recover the secret.
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