
Light propagation simulation for the

Wavelength-shifting Optical Module on CUDA GPUs

Florian Thomas

Johannes Gutenberg University Mainz

Faculty 08 - Physics, Mathematics and Computer Science
Institute of Physics

ETAP

Master Thesis - Master of Science in Computer Science

Light propagation simulation for the
Wavelength-shifting Optical Module on CUDA

GPUs

Florian Thomas

Primary Reviewer Prof. Dr. Elmar Schömer
Institute of Computer Science
Johannes Gutenberg University Mainz

Secondary Reviewer Prof. Dr. Sebastian Böser
Institute of Physics
Johannes Gutenberg University Mainz

October 25, 2019

Florian Thomas

Light propagation simulation for the Wavelength-shifting Optical Module on CUDA GPUs

Master Thesis - Master of Science in Computer Science, October 25, 2019

Reviewers: Prof. Dr. Elmar Schömer and Prof. Dr. Sebastian Böser

Johannes Gutenberg University Mainz

ETAP

Institute of Physics

Faculty 08 - Physics, Mathematics and Computer Science

Staudingerweg 7

55128 Mainz

Acknowledgements

First, I would like to thank Sebastian Böser and Elmar Schömer for giving me the
opportunity to work on this project, for regular meetings, discussions and their
sincere interest in my work. Furthermore, I would like to thank my supervisor
Anna Steuer for helping me out whenever possible and reviewing an almost endless
number of pages. Moreover, I would like to thank my group and the people in
my office for the very nice atmosphere. Special thanks go to John Rack-Helleis for
fruitful discussions, coffee breaks, classic cases of "angry looks" and the occasional
"much more sophisticated".
Additionally, I would like to thank my friends Kati and Fabio, for enduring my
constant complaints at times when my studies were tough. I would also like to thank
my family and parents, not least because of the very important financial support that
was willingly given for several years.
Finally, I would like to thank Sara for her endless support, her confidence in my
abilities and all the patience during these final months when I was absent due to
long working nights.

v

Abstract

This thesis presents the development, optimization and evaluation of a dedicated
simulation tool for the Wavelength-shifting Optical Module (WOM). The WOM
consists of a cylindrical quartz or plastic tube coated with wavelength shifting paint,
light concentrators and photomultiplier tubes (PMTs). UV light striking the surface
of the tube is absorbed, shifted towards longer wavelengths and guided to the PMT
by total internal reflection within the tube wall. The PMTs convert the light signal
into an electric signal, which is digitized and analyzed afterwards. The simulation
presented in this thesis models the photon propagation within the tube wall and
light concentrator and includes the simulation of photon interactions within the
tube material, such as scattering and absorption. The simulation algorithm is based
on a ray tracing approach and has been implemented for CUDA-enabled GPUs. It
reaches a throughput of several million photons per second, which is three orders of
magnitude faster than previous attempts using commercial software. The completed
simulation has been used to analyze various properties of the WOM, which has
confirmed theoretical models, such as a simplified model for the light capturing and
guiding efficiency of the tube. Furthermore, the excellent performance enabled the
application in a fit to experimental data.

Abstract (German)

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung, Optimierung und Aus-
wertung eines dedizierten Simulationsprogramms für das Wellenlängenschiebende
Optische Modul (WOM). Dieses besteht aus einem mit wellenlängenschiebender
Farbe beschichteten zylindrischen Rohr aus Quartz oder Plastik, Lichtkonzentra-
toren und Photomultipliern. Die beschichtete Oberfläche absorbiert UV Licht und
verschiebt dessen Wellenlänge in den sichtbaren Bereich. Das wellenlängengescho-
bene Licht wird anschließend durch Totalreflexion innerhalb der Rohrwand zu den
Photomultipliern geleitet. Letztere konvertieren das Lichtsignal in ein elektrisches

vii

Signal, welches digitalisiert und danach ausgewertet wird. Die Simulation, die in
dieser Arbeit vorgestellt wird, modelliert die Propagation von Photonen innerhalb
der Rohrwand und innerhalb des Lichtkonzentrators. Sie beinhaltet auch die Si-
mulierung von Wechselwirkungen der Photonen mit dem Rohrmaterial, wie etwa
Streuung oder Absorption. Der Simulationsalgorithmus basiert auf einem Raytracing
Ansatz und wurde auf CUDA unterstützenden Grafikprozessoren implementiert. Der
Algorithmus erreicht eine Verarbeitungsmenge von mehreren Millionen Photonen
pro Sekunde und ist damit drei Größenordnungen schneller als frühere Simulationen
mit kommerzieller Software. Die fertiggestellte Simulation wurde verwendet um
mehrere Eigenschaften des WOMs zu untersuchen, unter Anderem ein vereinfachtes
Modell zur Beschreibung der Effizienz von Lichteinfang und Lichtleitung des Rohres.
Des Weiteren hat die hohe Verarbeitungsmenge der Simulation einen Einsatz in einer
Routine zur Kurvenanpassung an experimentelle Daten ermöglicht.

viii

Contents

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Neutrino experiments . 2

1.2.1 Cherenkov radiation . 2

1.2.2 IceCube . 3

1.3 The Wavelength-shifting Optical Module 4

1.3.1 Wavelength-shifting paint . 5

1.3.2 Light guiding tube . 6

1.4 Thesis Structure . 7

2 Theory 9

2.1 Simulation of light propagation . 9

2.1.1 Ray tracing . 10

2.1.2 Reflection and transmission at interfaces 11

2.1.3 Light attenuation . 12

2.2 Processing on GPUs . 13

2.2.1 GPU hardware design . 13

2.2.2 CUDA . 15

3 Simulation geometry 19

3.1 Quadric surfaces . 19

3.1.1 Intersection of ray and quadric 20

3.1.2 Coordinate transformations 21

3.1.3 Normal vectors . 22

3.2 Surfaces of revolution . 22

3.2.1 Spline interpolation . 23

3.2.2 Quadric approximation of surfaces of revolution 24

3.3 Geometry of the WOM . 26

3.3.1 Intersection of the elliptic cylinder 27

3.4 Geometry of the adiabatic lightguide 28

3.5 Theoretical properties of the tube . 31

3.5.1 Reflection angles . 31

3.5.2 Condition for capturing light 34

3.5.3 Light capture efficiency . 35

ix

4 Implementation and validation of the simulation algorithm 39

4.1 Initialization . 39

4.1.1 Light source . 39

4.1.2 Isotropically distributed light directions 40

4.2 Main simulation loop . 41

4.2.1 Applying interactions with the medium 42

4.2.2 Applying surface interactions 45

4.3 Validation of the implementation . 46

4.3.1 Verification of the isotropic light distribution 47

4.3.2 Visual inspection . 47

4.3.3 Verification of the reflection angles 48

4.3.4 Verification of the theoretical capture efficiency 49

4.3.5 Verification of the Beer-Lambert law 52

5 Parallelization and optimization on the GPU 55

5.1 Parallelization . 55

5.1.1 Random number generation 55

5.1.2 Initialization and main loop 56

5.2 Performance optimization . 58

5.2.1 Evaluation of the performance 58

5.2.2 Optimization of the initialization 59

5.2.3 Further performance issues 61

5.2.4 Optimization of the branch divergence 65

5.2.5 Final performance . 69

6 Simulation results 71

6.1 Light distribution in detection plane 71

6.2 Tube detection efficiency . 75

6.2.1 Comparison to flattened model 78

6.2.2 Fit to experimental data . 81

6.3 Light exit angles . 84

6.4 ALG detection efficiency . 89

6.4.1 A possible alternative for the Falke ALG 92

6.5 Detection time resolution . 93

7 Conclusion and outlook 97

Appendices 99

A Equations 101

A.1 Scalar results of the coefficients from the quadric-ray-intersection . . 101

A.2 Full quadric matrix of the elliptic cylinder with arbitrary position and
rotation . 101

x

A.3 Full quadric matrix of the spline surface of revolution with arbitrary
position . 102

B Details for extensions 103
B.1 Transmission and refraction . 103

C Additional plots and pictures 105
C.1 Number of reflections depending on the initial direction 105
C.2 Light attenuation . 107
C.3 Light distributions at detection plane 108
C.4 Fit . 112

List of Figures 113

Acronyms 121

Bibliography 123

xi

1Introduction

1.1 Motivation and Problem Statement

The Wavelength-shifting Optical Module (WOM) is a novel ultraviolet (UV) sensitive
single photon detector unit optimized for neutrino detection experiments. It has
been developed in the context of IceCube-Gen2, the next generation of the IceCube
Neutrino Observatory, which is a 1 km3 neutrino detector at the geographic South
Pole.
Although the WOM has a development history of several years, its measurements
have not yet been supplemented with extensive simulations. Therefore, this work
aims at the development of a suitable simulation software for the WOM.

The need for a new simulation software dedicated to a single sensor might not be
immediately apparent with other particle and photon tracking software – commer-
cial and non-commercial – already existing. For instance, Geant4 [1] is a scientific
toolkit commonly used for particle tracing. It provides a comprehensive simulation
framework for particle-matter interactions including optics, has a long standing
history since the 1970s and is one of the standard tools used in particle physics.
However, first attempts at implementing a simulation of the WOM with Geant4
revealed many pitfalls for setting up optical simulations and yielded inconsistent re-
sults [2]. Both can be attributed to Geant4 being mainly designed for the simulation
of charged particles. Besides, it does not meet the performance requirements for the
simulation of the WOM.
Apart from Geant4, efforts have been made [3] to simulate the WOM in the com-
mercial package Fred Optical Engineering Software (FRED) [4]. Since FRED models
much more sophisticated physical effects than needed in this specific use case, it
reaches a simulation throughput of only 3000 photons per second [5], and can thus
not provide the required statistics.

As Herb Sutter already pointed out in 2004, "The Free Lunch Is Over" [6], meaning
that the physical limit for single-core processing performance has been reached.
Instead, concurrency and parallelism of algorithms are crucial today in order to
fully exploit the performance in multi-core environments. In recent years, the best
possible parallel performance has been obtained with graphics processing units
(GPU) for many scientific applications.

1

Even though the latest versions of Geant4 now support multi-threading [7], it still
lacks GPU support and has a reputation for being the most time consuming part of
simulation chains in particle physics experiments [8]. Similarly, the version of FRED
used in previous attempts does not utilize the GPU.

A prototype simulation for the WOM implemented on GPUs was developed at JGU
Mainz [9] and resulted in a significantly better performance. This work starts from
scratch based on the knowledge gained from this prototype and aims at an overall
improvement of the simulated physics, performance, usability and maintainability.

1.2 Neutrino experiments

The neutrino is an electrically neutral elementary particle in the Standard Model
of particle physics. To date, there are many unanswered questions concerning
neutrinos, making them an active field of modern particle physics research. For
instance, the absolute mass and the mass ordering of the three flavors of neutrinos
still have to be determined. Moreover, massive neutrinos and neutrino oscillations
are not part of the Standard Model. Thus, their incorporation requires new theories,
which have to be experimentally verified.

As neutral leptons, neutrinos only interact via the weak force and gravity. Interac-
tions with matter have extremely small cross-sections, which makes them perfect
messenger particles from astrophysical sources.
At the same time, the low interaction rate imposes an extreme challenge for their
detection. As a result, acceptable event rates can only be achieved in large-volume
detectors such as IceCube.

1.2.1 Cherenkov radiation

Interactions of neutrinos with matter produce charged leptons. If those are energetic
enough, they can be detected via the so-called Cherenkov effect.
Cherenkov radiation is a result of highly energetic charged particles moving through
a dielectric medium. A moving charged particle polarizes atoms in a medium.
Subsequent de-excitation of atoms causes an emission of electromagnetic radiation
(EMR). The charged particle can move faster than the EMR in that medium, since
the phase velocity vph of EMR in a medium is reduced by the refractive index n of
the medium:

vph = c

n
. (1.1)

2 Chapter 1 Introduction

Here, c is the speed of light in vacuum. Hence, if the particle moves with v > vph, it
is able to outpace the emerging waves. As a consequence, the emitted EM waves
interfere constructively forming a conical wave front that can be detected.
The spectrum of Cherenkov radiation is given by the Frank-Tamm formula [10],
which gives the number of emitted photons N per differential wavelength interval
dλ and differential unit path length dx:

d2N

dxdλ = 2παz2

λ2

(
1− 1

(v/c)2n2(λ)

)
. (1.2)

Here, z · e denotes the charge of the particle, α denotes the fine-structure constant
and n(λ) is the wavelength dependent refractive index of the traversed medium.

1.2.2 IceCube

The IceCube Neutrino Observatory [11] uses 1 km3 of antarctic ice as detector
material. The clear ice provides a medium of high transparency for optical photons.
Figure 1.1 gives a schematic overview of the detector. It is instrumented with 5160

Fig. 1.1.: Overview of the IceCube Neutrino Observatory, including the DeepCore sub-array
and the IceTop surface array. Source of picture: [11].

optical modules on 86 strings, which are arranged on a hexagonal grid with a spacing
of 125 m between strings. On the strings, modules are deployed evenly spaced in
a depth of 1450–2450 m below the ice surface. Eight of the strings form the so-
called DeepCore subarray. These strings are more densely instrumented with optical
modules in the lower detector region, which results in a lower energy threshold, of

1.2 Neutrino experiments 3

around 10 GeV neutrino energy. Above the surface, the IceTop array sits at roughly
the same grid positions as the strings with two modules per point and serves as a
cosmic-ray detector.

Digital Optical Module

Cherenkov light produced in neutrino interactions is detected by the Digital Optical
Module (DOM). The DOM consists of a large PMT, its readout electronics and power
supply; all enclosed in a spherical glass housing. The used borosilicate glass of the
housing is only reasonably transparent (more than 50% transparency) for UV light
above 340 nm [11]. The used Hamamatsu R7081-02 PMT is specified for the range
of 300–650 nm, with peak quantum efficiency at around 420 nm [12].
However, the Cherenkov spectrum in ice (equation 1.2), which is shown in figure
1.2, has its peak photon yield far below that in the UV range. Therefore, the majority

200 400 600 800
 [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
2 N

dx
d

 [
1 m

2
]

1e 6
Cherenkov spectrum in ice
PMT peak quantum efficiency
Borosilicate 50% transparency

Fig. 1.2.: Cherenkov radiation photon yield per unit path length dx and per wavelength
interval dλ plotted in blue assuming high energetic charged leptons. Thus, z = 1
and v/c ≈ 1. n(λ) uses data for ice at a temperature of −7 ◦C [13]. The
wavelength-dependent photon attenuation length of the ice is not included here.
The orange point marks the PMT peak quantum efficiency. The green point marks
the border for 50% transparency of the borosilicate glass.

of Cherenkov photons in an event remains undetected.

1.3 The Wavelength-shifting Optical Module

The WOM [14] is schematically depicted in figure 1.3 . Its main component is a
hollow cylinder made of quartz glass or Polymethyl methacrylate (PMMA). The cylin-

4 Chapter 1 Introduction

substrate

matrix

wavelength-
shifter

small PMT

adiabatic
light guide

wavelength shifter
coated tube

quartz glass
pressure housing

housing

Fig. 1.3.: Schematic composition of the WOM. The closeup depicts the wall of the hollow
cylinder and photon paths inside it.

der – or tube – is coated with a wavelength-shifting (WLS) paint. Photomultiplier
tubes (PMTs) are attached at both ends via optical coupling. Optionally, so-called
adiabatic lightguides (ALG) can be included between tube and PMT in order to
concentrate the light for the utilization of smaller PMTs. The whole structure and
the readout electronics for the PMTs are enclosed in a UV transparent quartz glass
pressure vessel to provide protection in extreme conditions at possible deployment
sites (e.g. pressures up to 690 bar during refreezing at IceCube).

1.3.1 Wavelength-shifting paint

The paint has been developed at the University of Bonn [15]. It contains a mixture
of two wavelength-shifter molecules, where the wavelength-shift is a result of
fluorescence: WLS molecules absorb photons of energy equal to the energy gap to
an excited state Eabs = hc

λabs
, where h denotes Planck’s constant and λabs the photon

wavelength. After some delay time, the excited molecule reverts to a lower energy
state, emitting a photon with energy Eemit = Eabs −∆E. The energy difference ∆E
arises from energy dissipated as heat or vibrations. Hence, the emitted photon has a
wavelength λemit > λabs.
Figure 1.4 depicts the absorption and emission spectra of the paint used in the WOM.
It is designed to absorb UV light and emit visible blue light with minimal overlap of
both (large Stokes shift). The emission spectrum has its peak close to the peak of

1.3 The Wavelength-shifting Optical Module 5

250 300 350 400 450 500 550
Wavelength [nm]

0

20

40

60

80

100

A
b
so

rp
ti

o
n
 [

%
]

0

20

40

60

80

100

E
m

is
si

o
n
 [

A
U

]

Fig. 1.4.: Absorption and emission spectrum of the WLS paint for the WOM.

the quantum efficiency of IceCube PMTs at 420 nm. Therefore, employing this WLS
paint facilitates UV sensitivity of the sensor down to 250 nm wavelengths.

1.3.2 Light guiding tube

For a scenario of a surrounding material with small refractive index, photons can
be reflected at the quartz-air transition, the paint-air transition, or the paint-glass
transition if the refractive indices of glass and paint differ. The emission of shifted
photons is isotropic and photons have emission angle-dependent chance for total
internal reflection (see chapter 2.1). The photons are captured in the tube wall and
subsequently guided to the PMTs at both ends. More details on the tube geometry
and its light guiding properties are discussed in chapter 3.5.
The effective area of PMT-based sensors like the DOM scales solely with the photo-
cathode area of the PMT. However, the noise rate of a PMT is also proportional to
its photocathode area. As a result, such modules have a nearly constant signal-to-
noise-ratio (SNR). The WOM, on the other hand, increases the SNR by increasing
the effective area via increasing the radius or the length of the passive tube, while
keeping a small readout PMT. Due to the low event rate, a high SNR is an important
property for neutrino experiments, since it facilitates lower energy detection thresh-
olds with the same module density in the detector. A further increase in SNR can be
achieved by using an ALG, which enables the utilization of even smaller PMTs.

To conclude, the WOM is an ideal candidate for the next generation of IceCube or
other Cherenkov-based neutrino experiments due to its high SNR and the improved

6 Chapter 1 Introduction

UV sensitivity. Additionally, its small cylindric geometry allows for smaller drill
hole diameters in IceCube. This saves time and costs in the installation of IceCube-
Gen2.

1.4 Thesis Structure

Following this introduction, the thesis continues in chapter 2 with the theoretic
backgrounds that are required for the simulation of light propagation and GPU
computing. Next, chapter 3 covers the calculations for modelling the WOM geometry
in the simulation. In chapter 4, the simulation algorithm and its implementation are
discussed. Chapter 5 explains the performance optimization in order to maximize
simulation throughput. Subsequently, chapter 6 presents results obtained from the
final simulation. Last, Chapter 7 summarizes the thesis and provides an outlook to
future work.

1.4 Thesis Structure 7

2Theory

In this chapter we establish the theoretical background that is required for the
simulation of the WOM. Section 2.1 treats the physical aspects of light propagation
and its simulation, while section 2.2 deals with the technical aspects of computations
on the GPU.

2.1 Simulation of light propagation

In the classical limit light refers to electromagnetic (EM) radiation of all frequencies.
Visible light is thus only the small portion of light that can be perceived by humans
in the wavelength range 400–700 nm of the EM spectrum. As EM radiation, light
propagation is described by the electromagnetic wave equation(

v2
ph∇2 − ∂2

∂t2

)
F = 0 , (2.1)

which is derived from Maxwell’s equations. Here, F is either the vector of the electric
field E, or the vector of the magnetic field B. Hence, light propagation is the result
of oscillations of both fields forming a traverse wave.
The phase velocity of the wave vph = 1√

εµ depends on the permeability µ and
the permittivity ε of the traversed medium. In vacuum, the phase velocity is a
fundamental physical constant c ≈ 3× 108 m s−1. The refractive index n = √µrεr, is
defined via the relative permittivity and permeability of the medium and it relates
the speed of light in vacuum, to the propagation speed in a medium:

vph = c

n
.

In quantum theory, on the other hand, light is quantized into photons. Photons are
uncharged, massless particles which are the quanta of the electromagnetic field. The
photon can be associated with a wave packet of probability that propagates light in
discrete portions. The energy of a photon is determined by the light frequency ν and
the Planck constant h:

E = h · ν . (2.2)

9

Nevertheless, in order to simulate light propagation on a macroscopic level in a
geometry that has a size of many times the wavelength, we can use a simplified
model of light employing the ray tracing algorithm.

2.1.1 Ray tracing

The ray tracing algorithm originates in 3D computer graphics. It was first introduced
in 1968 [16] as a hidden-surface determination algorithm, which is required to
solve the visibility problem that arises in image rendering. It is based on geometrical
optics, thus describing light as lines that are perpendicular to the wavefronts of light
waves.
To render an image, light rays are sent from an imaginary viewer through the pixels
of an image plane (see figure 2.1). The pixel colors are determined by calculating

Fig. 2.1.: A viewer looking at a scene through a screen.

eventual intersection points of the rays and all objects in the scene. The closest
existing intersection point on a ray is the one that is actually visible for the viewer.
Compared to the real world, this is certainly the wrong way round. However, in
the realm of geometrical optics the direction of the ray does not matter. Therefore,
calculating only rays that can reach the viewer is a lot more efficient.
This simple core algorithm for solving the visibility problem can be extended to
simulate various additional effects. For instance, recursively repeating the algorithm
allows for the simulation of reflections, refractions and casting of shadows, which
are the foundation for realistic rendering. All these effects are difficult to simulate
using conventional rendering techniques. Thus, realistic renderers aiming at high
quality images are usually based on the ray tracing algorithm.

The simulation of the light propagation for the WOM is also based upon the recursive
ray tracing algorithm to simulate the paths of light. However, unlike renderers, it
emits the rays from the light source instead of the detector and it does not calculate

10 Chapter 2 Theory

pixel colors as result. Furthermore, the simulation uses extensions for physical
correctness beyond geometrical optics where necessary.

2.1.2 Reflection and transmission at interfaces

Interfaces of two media with distinct refractive indices partially reflect incident light
and partially transmit it. Both processes are quantitatively described by the Fresnel
equations [17]. They determine the reflectance R, which is the ratio between the
power of reflected light and the power of incident light depending on the incidence
and transmission angles relative to the normal of the interface (see figure 2.2(a)). For
the analogously defined transmittance it applies that T = 1−R due to conservation
of energy. Depending on the polarization of light, the Fresnel equations yield two
different expressions for the reflectance:

Rs =
∣∣∣∣n1 cos(θi)− n2 cos(θt)
n1 cos(θi) + n2 cos(θt)

∣∣∣∣2 (2.3)

Rp =
∣∣∣∣n1 cos(θt)− n2 cos(θi)
n1 cos(θt) + n2 cos(θi)

∣∣∣∣2 (2.4)

The transmitted part of light is refracted, causing a change of its angle relative to
the surface normal (see figure 2.2(a)). The transmission angle θt after refraction is
determined from the incidence angle θi and the refractive indices n1 and n2 of both
media via Snell’s law:

sin(θi)n1 = sin(θt)n2, (2.5)

The reflection angle θr, on the other hand, is the same as the incidence angle θi.

𝑛1

𝑛2
𝜃𝑡

𝜃𝑖 𝜃𝑟

(a) Incident light reflected and transmit-
ted at an interface with n1 > n2.

𝑛1

𝑛2

𝜃𝑐 𝜃𝑟
𝜃𝑖

(b) Total internal reflection at an inter-
face with n1 > n2.

Fig. 2.2.: Light reflection and transmission at an interface.

2.1 Simulation of light propagation 11

Figure 2.3 shows the reflectance of both polarizations according to equations 2.3 and
2.4 using Snell’s law for θt for transitions at a glass-air interface. For small angles,

0 1
8

1
4

3
8

1
2

i

0.0

0.2

0.4

0.6

0.8

1.0

R

s polarized
p polarized

(a) n1 = 1.0 and n2 = 1.5.

0 1
8

1
4

3
8

1
2

i

0.0

0.2

0.4

0.6

0.8

1.0

R

s polarized
p polarized

(b) n1 = 1.5 and n2 = 1.0.

Fig. 2.3.: Reflectance of both polarizations.

the reflectance is typically less than 0.1 for transparent media, but it drastically
increases shortly before the angle reaches a critical value. For angles above the
critical angle θc the reflectance reaches a theoretical value of 1.
This phenomenon is called Total Internal Reflection (TIR). It occurs if the angle of
the outgoing light θt is greater than π

2 (see figure 2.2(b)). In that case, the light
only enters the second medium in the form of an evanescent wave with rapidly
decreasing amplitude. Effectively, all the light has to return to medium one via
reflection. Therefore, the critical angle θcrit for total internal reflection is the value
of θi for the case θt = π

2 . From equation 2.5 we get:

θcrit = arcsin
(
n2
n1

)
. (2.6)

For transitions with n1 < n2 θt = π
2 cannot be reached. Consequently, TIR does not

exist in that case and a reflectance of 1 could only be reached for θi → π
2 .

2.1.3 Light attenuation

Whenever a collimated beam of light traverses a medium, it gradually loses intensity.
This is due to two effects, which are both caused by interactions of individual photons
with the medium.
On the one hand, the photon can be absorbed by an atom. In that case it passes its
energy on to the atom, which is in most cases converted to thermal energy of the
medium.
On the other hand, the photon could scatter off electrons, atoms or molecules by
one of several elastic or inelastic scattering types causing a change of direction of
its movement. In general, the distribution of scattering directions depends on the

12 Chapter 2 Theory

type of scattering. While the exact type of scattering in the WOM is unknown it is
reasonable to assume an isotropic distribution as approximation.
However, for both scattering and absorption the photon is lost for an initially
collimated beam. The Beer-Lambert law [17] describes the decrease of intensity in a
medium due to both attenuation effects on a macroscopic scale. It is based on the
assumption, that the intensity loss in the next differential segment dx is proportional
to the intensity at the current position. This yields a typical differential equation for
an exponential decay, dI

dx = −µx, with the solution:

I(x) = I0 e
−µx. (2.7)

In this equation, x is the travelled distance, I0 the initial light intensity of the beam
and µ the attenuation coefficient, which is a characteristic property of the medium.

2.2 Processing on GPUs

This section gives a brief overview over the key aspects of CUDA and GPU computing
that have to be considered in order to achieve high performance for the simulation.
It is by no means a comprehensive treatment of the features of CUDA and GPU
computing. References for further reading include: [18–20].

2.2.1 GPU hardware design

A graphics processing unit (GPU) is a processor specialized for images and 3D graph-
ics. Both tasks require the independent application of the same instructions on large
data sets (i.e. the pixels of a picture or vertices in a 3D scene) and are thus ideally
suited for parallelization but intensive on memory. As a result, GPUs are designed as
highly parallel manycore processors with high memory bandwidth.
Driven by the demands of the gaming industry and the recent advances in deep
learning, GPUs have become a very powerful piece of hardware. They have consis-
tently beaten central processing units (CPUs) in raw computing power and memory
bandwidth in the last decade making them superior for many tasks [18].

A GPU is usually introduced to a system as a coprocessor that can be used as an
accelerator to relieve the CPU of compute intensive tasks. It is not fit for entirely
replacing a CPU as a primary processor since it is designed for very specific kinds
of tasks. Figure 2.4 schematically compares the chip area usage of CPU and GPU
cores. The CPU only uses a few arithmetic logic units (ALU), which are the actual
execution units of calculations. The remaining chip area is taken by a sophisticated
control unit (CU) and a large cache. The CU acts as the director of all calculations

2.2 Processing on GPUs 13

DRAM

Cache

Control
Unit

ALU ALU

ALUALU

DRAM

CPU GPU

Fig. 2.4.: Schematic comparison of CPU and GPU chip area usage.

converting incoming external instructions into control signals for the ALUs. The
cache memory reduces memory access latencies of complex programs by keeping
frequently used data close by. A CPU is designed to be universal and as such its
individual cores are optimized for executing more complex sequential tasks with low
latency of a single thread.
A GPU on the other hand, accomplishes its goal by using a much larger chip area
for ALUs instead of a cache and CUs. Using a great quantity of parallel threads, the
long latencies due to the smaller caches can be accepted in individual threads, since
another thread that is ready for execution can almost always be found. Contrary to
the CPU, which minimizes the execution time of individual threads, the GPU design
maximizes the throughput of threads.
Additionally, the GPU has its own dedicated high bandwidth Dynamic Random Access
Memory (DRAM) separate from the CPU DRAM. Current high end models have
memory transfer rates exceeding 500 GB s−1 [21], contrary to up to 25 GB s−1 of
current DDR4 main memory available for the CPU [22]. However, in most cases the
GPU is connected to the CPU via the much slower Peripheral Component Interconnect
Express (PCIe) v3 expansion bus, providing transfer rates of at most 16 GB s−1 [23].
Hence, data transfers between CPU and GPU have to be reduced to a minimum.
Despite the high bandwidth, the GPU DRAM is still regarded as slow compared to
the GPU computing performance. Current high end GPUs like the NVIDIA Tesla
V100 reach a theoretical peak performance beyond 10 TFLOP/s [21]. Hence, such
a GPU could perform roughly 20 single precision floating point operations in the
time it has to wait for a single byte to be read from memory. That makes a high
compute-to-global-memory-access1 ratio important in GPU programming, hence
avoiding the "slow" DRAM as much as possible.

1The CUDA programming model calls the DRAM global memory since it is accessible by all threads on
the GPU unlike other types of memory in CUDA.

14 Chapter 2 Theory

2.2.2 CUDA

General-purpose computing on GPUs (GPGPU) first became possible in the early
2000s with the support of programmable shaders. This enabled the usage of the
rendering pipeline and its parallel processing capabilities for the data-heavy tasks
found in scientific computing. With the release of CUDA (Compute Unified Device
Architecture) in 2007, this became more practical as programmers were given direct
access to the GPU via an application programming interface (API) for Fortran and
C/C++. For the implementation of the simulation the CUDA C++ API is used with
CUDA 8.0.

Thread-blocks

In CUDA the GPU can be programmed by declaring so-called kernel functions. When
a kernel function is called the number of thread-blocks B and the block size T have
to be stated, resulting in the invocation of B · T threads.
Organizing the whole grid of threads in such blocks has a few advantages. A block
can comprise up to 1024 threads, which are able to cooperate with each other
via synchronization and via access to a faster but smaller shared memory. Blocks
themselves are independent of each other and there is no mechanism for grid-wide
synchronisation, since it would be too wasteful to have the whole GPU wait for
individual blocks.
The blocks are scheduled by the CUDA runtime for execution on the actual hardware
processors of the GPU, which are called Streaming Multiprocessors (SM) by NVIDIA.
In general each SM can run several thread-blocks in parallel. How many depends
on the block size and the resource consumption of the kernel function. The inde-
pendence of blocks allows the runtime scheduler to distribute blocks in any order
to all available SMs. Remaining blocks are queued up and get assigned to an SM
once another block finishes. In that way CUDA applications automatically scale with
the executing GPU models, which mostly differ in the number of SMs in the same
hardware generation.
Each block and each thread of a block has a builtin identifier, yielding a global id
number for the thread id = blockDim.x*blockIdx.x + threadIdx.x .

SIMT execution model

On an SM the threads of a block are executed in a model called Single Instruction
Multiple Thread (SIMT). In groups of 32, which are called warps, threads are
processed simultaneously in lockstep similar to Single Instruction Multiple Data

2.2 Processing on GPUs 15

(SIMD) vector units. That means that all threads in a warp generally have to perform
the exact same instruction. However, contrary to SIMD, it is possible to set individual
threads of a warp as inactive during an instruction. This allows threads inside a
warp to still take different branches of the code. Nevertheless, diverging branches
have to be processed serially, slowing down the computation. Therefore, branch
divergence should be prevented if possible.
Obviously, the block size should always be a multiple of the warp size. Usually it is
also beneficial to fit several warps into a block, even more than the SM can physically
process in one clock cycle. This helps hiding latency of memory accesses by switching
between warps resident on the SM while keeping the data of the threads in registers.
Ultimately, the size of the block should be chosen such that the number of warps
resident on an SM is maximized within the hardware limitations given the register
and shared memory consumption of the kernel function.

Due to the simultaneous execution of warps, each memory access in the code results
in 32 memory requests at once. Following a memory request, data from several
consecutive memory addresses is also loaded to the small cache. Subsequent memory
requests for one of the following data elements can then be served faster from the
cache. Therefore, the threads in a warp should always access contiguous memory
positions in order to avoid permanent cache misses. Memory access patterns that
allow threads in a warp to access contiguous memory are called coalesced and should
be employed whenever possible.
Coalesced memory access patterns on the GPU are different from their CPU counter-
parts since on the CPU contiguous memory is read by the same thread in subsequent
memory accesses rather than several threads in one access.

It is quite common that structured data has to be processed instead of simple one-
dimensional arrays. For instance, the data could be a set of N three-dimensional
vectors. Naturally, this leads to packing of data in an Array of Structures (AoS)
layout which is demonstrated in figure 2.5(a), contrary to a Structure of Arrays
layout in figure 2.5(b). The first one stores the three coordinates of each vector in

s t ruc t Vec3D {
f l o a t x ;
f l o a t y ;
f l o a t z ;

} ;
s t ruc t Vec3D p o s i t i o n s [N] ;
p o s i t i o n s [i] . x ;

(a) Array of Structures data layout.

s t ruc t Vec3DSoA {
f l o a t x[N] ;
f l o a t y [N] ;
f l o a t z [N] ;

} ;
s t ruc t Vec3DSoA p o s i t i o n s ;
p o s i t i o n s . x [i] ;

(b) Structure of Arrays data layout.

Fig. 2.5.: Data layouts written in C.

16 Chapter 2 Theory

the array contiguously in memory, which is the preferred layout on the CPU. The
second one has distinct arrays for each of the coordinates that are physically apart
in memory. For subsequent vectors, however, the respective coordinates are stored
contiguously. Hence, the SoA layout yields coalesced memory access on the GPU
and is the preferred one.

2.2 Processing on GPUs 17

3Simulation geometry

„Mathematics is fun!

— C. Hundt
(Deep Learning expert)

The most fundamental task for ray tracing is the determination of intersection points
of rays with the geometric objects in the simulated universe. Consequently, the ray
tracer needs to solve equations, which are derived from the mathematical description
of the geometries in use. For arbitrarily complex geometries, this is a non-trivial
task. A common practice is the approximation of complex geometries with simpler
surfaces (e.g. triangles and spheres), which can be solved easily. This chapter deals
with the derivation of solutions for the surface equations used to model the WOM in
the simulation and discusses theoretical properties of its geometry.

3.1 Quadric surfaces

A Quadric [24] is a (D-1)-dimensional hypersurface in a D-dimensional space. It is
defined as the set of points Q, with

Q = {(x1, . . . , xD) ∈ RD | q(x1, . . . , xD) = 0} , (3.1)

where

q(x1, . . . , xD) =
D∑

i,j=1
aijxixj + 2

D∑
i=1

bixi + c .

The parameters aij , bi and c are arbitrary real numbers and aij 6= 0 for at least one
pair of i and j. This defines the quadric surface as the solution set of a general
quadratic equation in multiple variables. Several well known geometric objects (e.g.
ellipsoids and cylinders) are examples of quadrics. Obviously, quadrics are very
useful for ray tracing due to the numeric simplicity of quadratic equations. Using
matrix vector multiplication, equation 3.1 can be written as:

Q = {x ∈ RD |xTAx + 2bTx + c = 0} ,

19

where A ∈ RD×D is a symmetric matrix, b ∈ RD is a vector and c ∈ R. Using
homogenous coordinates x̄ =

(
x
1
)

and a matrix Ā =
(A b

bT c

)
= (āij), this can be

written even more compactly:

Q = {x ∈ RD | x̄T Ā x̄ = 0} . (3.2)

3.1.1 Intersection of ray and quadric

Equation 3.2 is the starting point for the derivation of the ray-quadric intersection
points. Let D = 3 and let v̄(k) = v̄0 + k d̄, with k ∈ R and ‖d̄‖ = 1, define a
three-dimensional ray in homogeneous coordinates (i.e. v̄0 =

(v0
1
)

and d̄ =
(

d
0
)
).

The intersection points are the points of v̄(k), which fulfill the condition of equation
3.2. Thus, substituting v̄(k) and using ĀT = Ā, yields a quadratic equation of the
form αk2 + 2βk + γ = 0. For the coefficients we find:

α = d̄
T Ā d̄ (3.3)

β = d̄
T Ā v̄0 (3.4)

γ = v̄0
T Ā v̄0 (3.5)

Once the coefficients α, β and γ have been calculated from the ray and quadric
parameters, the two solutions k1 and k2 of the quadratic equation can be calculated
by:

k1,2 = −β
α
±

√(
β

α

)2
− γ

α
(3.6)

In conclusion, the intersection routine for a ray and any quadric works like this:

1. Calculation of equations 3.3, 3.4 and 3.5 for the given ray v̄(k) and quadric Ā.

2. Solving the corresponding quadratic equation yields two possible solutions for
k.

3. The actual intersection point of the ray is the closest one in forward direction.
Since ‖d̄‖ = 1, it follows the condition khit > ε and khit < kno_hit. 1

1Rays starting on the surface have k = 0 as one solution, which is not in forward direction. However,
due to floating point imprecision the actual number is likely a very small positive or negative
number. In the case of a positive result, the closest intersection in forward direction would wrongly
turn out to be the solution for k = 0. The addition of the small positive constant ε helps preventing
such errors.

20 Chapter 3 Simulation geometry

4. Return khit or return -1, if the quadratic equation has no real-valued solution,
which means that no intersection exists. If it exists, the intersection point can
be obtained by calculating the ray position v̄(khit).

For best performance, computational overheads from matrix multiplications are
avoided. Hence, the scalar results of equations 3.3, 3.4 and 3.5 are hard-coded in
coordinate form (see appendix A.1).
Additionally, for the use of specific quadrics, the results in coordinate form are
further simplified to avoid multiplications by zero from quadric parameters that are
always zero for that geometry.2

3.1.2 Coordinate transformations

Let Q be a quadric defined by a matrix Ā similar to equation 3.2. We apply a bijective
linear transformation to the set of points x̄ =

(
x
1
)

in homogeneous coordinates with
x ∈ Q. The bijective linear transformation can be written as x̄′ = M x̄, where
M ∈ R(D+1)×(D+1) is an invertible matrix and thus x̄ = M−1 x̄′. Starting from the
defining condition of Q:

0 = x̄T Ā x̄

= (M−1x̄′)T Ā (M−1x̄′)

= x̄′TM−1T Ā M−1x̄′,

we define the transformed matrix

Ā′ = M−1T Ā M−1. (3.7)

Obviously, Ā′T = Ā′ and Ā′ thus still defines a quadric Q′, which is the transforma-
tion of Q.
As a consequence, it is possible to describe a general coordinate transformation of a
specific quadric surface via an affine transformation applied as linear transformation
in homogeneous coordinates, using equation 3.7. Restricting the affine transforma-
tion to positions and orientations, the transformation matrix is a combination of a
rotation followed by a translation: M = Mtrans ·Mrot =

(R t
0 1
)
, where t ∈ RD is a

translation vector and R ∈ RD×D is an orthogonal matrix with det(R) = 1.

2The compiler will not optimize this on its own, since in floating point arithmetic 0 · x = 0 is not true
in general due to the existence of NaN , ±0 and ±inf .

3.1 Quadric surfaces 21

3.1.3 Normal vectors

The simulation of a reflection at a surface requires the surface’s normal vector at the
position of the reflection. In the derivation of the normal vector of a quadric, we use
the fact that gradients of scalar fields are always perpendicular to their isosurfaces.
Since the quadric defined by 3.1 is the isosurface of the scalar field q(x1, . . . , xD) for
the value 0, the gradient of q is a normal vector of the quadric. Starting from the
partial derivative for a single coordinate

∂

∂x̄l
(xT Āx) = ∂

∂x̄l

3∑
i=0

x̄i

3∑
j=0

āij x̄j

=
3∑
i=0

3∑
j=0

(δilāij x̄j + δjlx̄iāij)

=
3∑
j=0

ālj x̄j +
3∑
i=0

x̄iāil

=
3∑
j=0

ālj x̄j +
3∑
i=0

ālix̄i

= 2(Āx̄)l,

we find the gradient
∇x̄T Āx̄ = 2Āx̄ . (3.8)

3.2 Surfaces of revolution

A surface of revolution is a two-dimensional surface, constructed by the rotation
of a curve around a given axis. Let f [z0, zn] → R be an arbitrary function which
generates a surface of revolution via rotation around the z-axis. We define the
surface of revolution as the set of points with distance to the z-axis always equal to
the value of f(z):

SR = {(x, y, z) ∈ R3 | f2(z) = x2 + y2} . (3.9)

Unfortunately, we cannot find a general solution for the intersection point of SR
with an arbitrary function f and a ray v(k) = v0 + k d. For an exact solution, we
have to derive the solution individually for each given function f by solving

f2(v0z + kdz)− (v0x + kdx)2 − (v0y + kdy)2 = 0

22 Chapter 3 Simulation geometry

for k. Depending on the choice of f , an exact solution might or might not exist.
In this section, we derive a general solution for any choice of f , based on an
approximation using splines.

3.2.1 Spline interpolation

In numerical analysis, interpolation is a method for the determination of a function,
which describes a set of sample data points. This is useful e.g. for sampling new
data points inside the range of known data points. In contrast to a fit, interpolation
requires the function to exactly run through the data points.
The interpolation problem is the task of determining the n+ 1 parameters a0, . . . , an

of an interpolation function Θ(x, a0, . . . , an), given a set of n+ 1 sample data points
(xi, fi), such that Θ(xi, a0, . . . , an) = fi for all i = 0, . . . , n. Interpolation can also be
used to approximate a complicated function f by sampling data points (xi, f(xi)).
One of the simplest approaches is linear interpolation, which connects adjacent
data points by a straight line. This method yields rather poor accuracy, due to
the limited flexibility of the model. Additionally, the interpolation function is not
smooth. A smooth solution can be obtained from polynomial interpolation. Here,
the interpolation function Θ(x, a0, . . . , an) =

∑n
i=0 aix

i is a polynomial of degree n.
Using classical single polynomial interpolation has the disadvantage of the required
degree n for n+ 1 sample data points, as this makes the function very flexible for
high values of n. A polynomial of degree n can have up to n− 1 extrema and, as a
result, high degree polynomials tend to oscillate in between data points. Figure 3.1
exemplifies the shortcomings of the two approaches.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

(a) A linear interpolation function ex-
hibits significant deviations from the
real function.

-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

4

5

x

y

(b) A polynomial interpolation function
exhibits large oscillations between
data points.

Fig. 3.1.: Two examples of poor interpolations (orange) for function approximation. The
red data points are samples from the blue curve.

In spline interpolation the interpolating function is called a spline. The spline S, with
S : [x0, xn]→ R, is a piecewise-defined function of polynomials si : [xi, xi+1]→ R of
degree d for all i = 0 . . . n−1. Using low degree polynomials prevents the oscillations
seen in usual polynomial interpolation. If we want S to be smooth, it has to be

3.2 Surfaces of revolution 23

two times continuously differentiable. This requires that s′i(xi+1) = s′i+1(xi+1) and
s′′i (xi+1) = s′′i+1(xi+1). Additionally, we require S(xi) = fi to solve the interpolation
problem itself and thus si(xi) = fi and si(xi+1) = fi+1. This yields four unique
equations for all si but the last one, which is missing a partner for the two equations
from the derivative conditions. Adding appropriate boundary conditions, we can get
four equations in total per polynomial piece, now including the last one. Hence, a
smooth spline requires polynomials with d = 3, since polynomials with d ≤ 2 yield
an overdetermined system of equations. In conclusion, solving the whole system of
(n− 1) · (d+ 1) linear equations determines the spline.
Efficient solutions build upon a derivation of the equations, which already eliminates
some of the variables that are the same for all sets of data points. As a consequence,
the system is reduced to n+ 1 linear equations and parameters. Additionally, for the
cubic spline the system matrix is non-zero only on the main diagonal and the first
two minor diagonals [25].3

Using splines, d = 1 is equivalent to linear interpolation; d > 3 is an option if
conditions for higher order derivatives are included; although it is only continuously
differentiable once, d = 2 is of particular interest for us, because the spline is a
piecewise quadric.

3.2.2 Quadric approximation of surfaces of revolution

Using a sufficient number of spline pieces si : [zi, zi+1] → R, we approximate the
square of any function f2(z) with acceptable accuracy using quadratic splines. We
find f2(z) ≈ si(z) = αiz

2 + βiz + γi for z ∈ [zi, zi+1]. Similar to equation 3.9, we
define surfaces of revolution for the individual pieces of the spline via

αiz
2 + βiz + γi = x2 + y2

αiz
2 + βiz + γi − x2 − y2 = 0 , (3.10)

which is a quadric with

Āi =

−1 0 0 0
0 −1 0 0
0 0 αi

βi
2

0 0 βi
2 γi

 . (3.11)

As a result, any surface of revolution can be approximated by quadrics using this
approach as long as the spline describes the original function accurately enough and
the curvature does not have to be strictly continuous (the quadratic spline is not
smooth). Once again, we can utilize equation 3.7 to get a transformed quadric (At

3This can be solved efficiently by the tridiagonal matrix algorithm in O(n) instead of O(n3) for
Gaussian elimination.

24 Chapter 3 Simulation geometry

least arbitrary positions will be necessary in the simulation). For performance rea-
sons, the implementation uses the pre-calculated result matrix of this transformation
(see equation A.5 in the appendix).
Each of the approximating quadrics has two potential points of intersection, thus it
is important again to determine the correct intersection for the combined surface.
Earlier, the ray-quadric-intersection returned only the smallest positive solution k.
Now, when both solutions are positive, both have to be considered. It is not yet clear
if the smaller positive k is valid at all:
Consider a ray starting at the very left in figure 3.2 (dashed line). In that case,
the ray-quadric-intersection of the dashed line and the orange line s0 gives two
valid solutions with 0 < k01 < k02. Substituting into the ray equation yields
z(k01), z(k02) /∈ [z0, z1]. Likewise, the intersection of the dashed and green line
s1 yields solutions with 0 < k11 < k12. This time, we have z(k11) /∈ [z1, z2], but
z(k12) ∈ [z1, z2]. Therefore, z(k01) and z(k11) would indeed be the correct inter-
section points on the respective quadrics, but the quadrics would not be a valid
approximation of the surface at these points. The correct intersection with the
surface is z(k12) on the green line. In conclusion, for all quadrics both potential
points of intersection have to be examined. The correct one then is the closest one
to the starting point from those, which are located inside the valid approximation
range of their respective quadric.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
z

0

5

10

15

20

25

r2 (
z)

sample points
s0
s1
s2
s3
s4
ray

Fig. 3.2.: A ray intersecting the polynomial pieces of a spline. The spline approximates
a function from the blue sample points. Each spline piece si approximates
the function on the interval [zi, zi+1]. The intersection routine has to find the
intersection with the correct spline piece.

The simulation program utilizes pre-calculated splines. For this, the Python li-
brary SciPy [26] is used to approximate the generating function f2(z) using n+ 1

3.2 Surfaces of revolution 25

sample points
(
zsample
i , f2(zsample

i)
)

and the splrep function from the module
scipy.interpolate. Additionally, the piecewise polynomial object PPoly is required
to obtain the actual polynomial coefficients.
The function splrep employs algorithms [27–30] that differ from the approach
discussed in section 3.2.1. Most importantly, for quadratic splines these algorithms
use only n− 1 pieces si instead of n. Therefore no boundary conditions are required
in order to obtain the spline. This is accomplished by determining n transition points
zi that differ from the actual sample points zsample

i . Moreover, it is important that
the piecewise polynomial from SciPy defines a piece si between zi and zi+1 relative
to the transition points:

si(z) =
d∑
j=0

cij · (z − zi)(d−j) .

In other words, the individual pieces in each case have a shift of zi along the z-axis,
which we have to incorporate using equation A.5 in the appendix with x0 = 0, y0 = 0
and z0 = zi. The set of corrected coefficients from the matrices Āi

′ and the transition
points serve as the actual input for the simulation program.

3.3 Geometry of the WOM

In theory, the WOM tube is a hollow cylinder, with a cross section described by two
perfect concentric circles. In practice, however, a real manufactured WOM tube is
subject to imprecisions.
To model imprecisions to some extent, while keeping a simple setup, a cylinder with
elliptic cross section is a suitable model geometry. In that case, the hollow cylinder
features a cross section of two ellipses with arbitrary misalignment between each
other. The ellipses can be rotated against each other and do not necessarily share
the same center point. The case of only two ellipses models the scenario where
the refractive indices of tube and paint are identical, hence the outer surface is the
interface of the paint and the surrounding material.
For a more comprehensive model, additional cylinders can be used to model the
paint layer on the tube separately and even the other layers of the sensor. Thus, the
full WOM geometry should be considered as layers of n ≥ 2 non-overlapping elliptic
cylinders. The ray tracer has to calculate the intersection points with all layers and
find the correct one.

26 Chapter 3 Simulation geometry

3.3.1 Intersection of the elliptic cylinder

The elliptic cylinder is a special case of a quadric surface with D = 3, which is
defined by

E =
{

(x y z)T ∈ R3 | x
2

a2 + y2

b2 − 1 = 0
}
. (3.12)

Equation 3.12 corresponds to the following matrix for the quadric representation:

Ā =

1
a2 0 0 0
0 1

b2 0 0
0 0 0 0
0 0 0 −1

 . (3.13)

In this definition, the two semi-axes are aligned with the x- and y-axis, the cylinder
axis is aligned with the z-axis and the ellipse center sits in the origin of the coordinate
system. Thus, rotations of the cylinder about the z-axis can be used to rotate
the parts of the WOM against each other. The shift of the center is obtained by
applying a translation t in the x-y-plane: t = (x0 y0 0)T . This yields the combined
transformation matrix

M =

cos(α) − sin(α) 0 x0

sin(α) cos(α) 0 y0

0 0 1 0
0 0 0 1

 . (3.14)

The matrix Ā′ of the quadric describing a general elliptic cylinder with its axis aligned
to the z-axis can then be obtained using equation 3.7. Again, the implementation
uses the pre-calculated result matrix of this transformation for better performance
(see equation A.4 in the appendix). Using matrix Ā′ of the elliptic cylinder in the
ray-quadric intersection routine described in section 3.1.1 gives the intersection
point.
For the actual point of intersection with the entire WOM geometry with n ≥ 2
elliptic cylinders, the correct surface has to be determined. If ki is the result of the
intersection with the i-th surface, ki ≤ 0 means the i-th surface was not hit and the
correct solution is:

hit = arg min
i

({ki | i ∈ [0, n], ki > 0}) . (3.15)

Substituting the solution khit into v̄(k) yields the intersection point. Figure 3.3
illustrates the choice of the point.

3.3 Geometry of the WOM 27

Fig. 3.3.: Intersections of rays with the WOM geometry: A ray starting at G returns no
real-valued k for E1. For E2 both kA and kB are positive, but the correct hit point
is A, since kA is the smaller one. A ray starting at D returns the solution kE for
E1, since kD ≈ 0. For E2 the solution kF is returned, since kC is negative. Since
kE < kF the correct point is E.

3.4 Geometry of the adiabatic lightguide

The manufactured adiabatic lightguide (ALG) has been developed by Falke [31]
in a semi-analytical approach. The shape of the lightguide was derived by a ray
tracing simulation, which implements two common techniques for the development
of light concentrators from nonimaging optics [32], namely the string method and
conservation of etendue. The conservation of etendue ensures that all light stays
captured in total internal reflection and does not travel back. This approach yields
a curve for the cross section along the symmetry axis, which is close to the lower
branch of the hyperbola defined by

(r − a− r0)2

a2 − z2

b2 = 1 . (3.16)

A hyperbola in these coordinates is a standard hyperbola with its conjugate axis
along the z-axis. Additionally, a shift of a + r0 in positive r-direction changes the
vertex of the lower branch from (−a, 0) to (r0, 0) (see figure 3.4(a)). Solving for r
yields a function of z for the curve of the lower branch

r(z) = r0 + a−

√
a2 + a2

b2 z
2 . (3.17)

28 Chapter 3 Simulation geometry

Using the eccentricity ε and the semi-latus rectum p as hyperbola parameters with
a = p

ε2−1 and b = p√
ε2−1 the equation becomes

r(z) = r0 + p

ε2 − 1 −

√(
p

ε2 − 1

)2
+ 1
ε2 − 1z

2 . (3.18)

Figure 3.4(b) shows a fit of equation 3.18 to the simulated curve.

-10 -5 0 5 10

0

5

10

15

z[a.u.]

r[a.u.]

(a) Hyperbola from equation 3.16. The red
dashed line is the shifted symmetry axis
at r = a+ r0. The green part of the hy-
perbola resembles the curve of the ALG.

(b) Cross section of the simulated shape with
a hyperbola fit. p = RWOM

outer and the offset
r0 = RWOM

outer are given by the outer WOM
radius. The fit yields ε = 1.4502.

Fig. 3.4.: Hyperbolic cross section of the ALG.

The shape of the ALG in three dimensions is the surface of revolution obtained by
rotating r(z) around the z-axis on the interval [0, z0]. Here z0 is either the positive
root of r(z) or a smaller desired cutoff length.

In general, hyperbolas in two dimensions are quadrics.4 We will now show, however,
that the ALG surface is not a quadric.
For the surface of revolution around the z-axis the property r(z) =

√
x2 + y2 holds

for all possible values of x, y and z. Rearranging and squaring equation 3.17 yields

a2
(

1 + 1
b2 z

2
)

= (r − r0 − a)2

⇔ a2
(

1 + 1
b2 z

2
)

= r2 − 2(r0 + a)r + (r0 + a)2.

Substituting r =
√
x2 + y2 gives the surface of revolution:

a2
(

1 + 1
b2 z

2
)

= (x2 + y2)− 2(r0 + a)
√
x2 + y2 + (r0 + a)2.

4Even in three dimensions the hyperboloids, which are surfaces of revolution of two dimensional
hyperbolas around their symmetry axes, are quadrics.

3.4 Geometry of the adiabatic lightguide 29

Rearranging and squaring again results in

4(r0 + a)2 (x2 + y2) = a4
((

1 + 1
b2 z

2
)
− (x2 + y2)− (r0 + a)2

)2
. (3.19)

This is obviously a 4-th order polynomial in x, y and z and thus not a quadric. This
is due to the existing offset r0 + a, which shifts the symmetry axis away from the
rotation axis. Indeed, with the choice r0 + a = 0 in equation 3.17 and after squaring
it, the surface of revolution is defined by

x2 + y2 = a2 + a2

b2 z
2,

which is a quadric as stated earlier. Yet, figure 3.4(a) shows that the offset is essential
for obtaining a narrowing surface after rotation.
In fact, there exist well known solution methods for equations like equation 3.19,
for instance Ferrari’s [33] or Euler’s solution [34]. Nevertheless, solely expanding
the equation after substituting a ray for (x, y, z) results in long equations for the
individual quartic coefficients which are tough to handle. Overall, the exact solution
requires more code and is less elegant than the previous solutions for quadrics. On
the other hand, the equation for the ALG never was an exact solution of the problem
in the first place. Instead, we could try to employ the approximation approach
with quadrics. This avoids the implementation of a general solver for 4-th order
equations.

Figure 3.5(a) shows an approximation of the square of equation 3.17 with a quadratic
spline. It works very well, as there is almost no visible difference between the actual
curve and its approximation. Figure 3.5(b) shows that only six sample points are
sufficient to get a maximum relative error of less than one percent.

0 2 4 6 8
z

0

5

10

15

20

r2 (
z)

r(z)2 hyperbola
Quadratic spline

(a) Approximation of r2(z) with a
quadratic spline.

2 4 6 8
sample points

10 2

10 1

100

m
ax

 re
la

tiv
e

er
ro

r

(b) Relative error of the spline approxi-
mation.

Fig. 3.5.: Quality of the spline approximation for the ALG curve.

The curve rinner(z) for the inner surface of the manufactured ALG is defined by two
conditions:

30 Chapter 3 Simulation geometry

• The inner surface connects to the inner surface of the WOM tube: rinner(0) =
RWOM

inner .

• The cross sectional area of the ALG is conserved along the z-axis: A(z) = A(0).

The two conditions yield

π
(
(RWOM

outer)2 − (RWOM
inner)2

)
= π

(
r2

outer(z)− r2
inner(z)

)
⇔ r2

inner(z) = r2
outer(z)− (RWOM

outer)2 + (RWOM
inner)2 .

Hence, the inner surface can use the same spline as the outer surface for a quadric
approximation according to equation 3.11, but we have to correct the respective
values for the γi of the inner quadrics to

γinneri = γouteri − (RWOM
outer)2 + (RWOM

inner)2 . (3.20)

3.5 Theoretical properties of the tube

In this section, we want to establish some theoretical expectations for the idealized
geometry of the WOM tube to compare the simulation against. Idealized means that
we consider the tube to consist of two perfect concentric cylinders with inner radius
Ri and outer radius Ro.

3.5.1 Reflection angles

Consider a ray that starts on the outer surface at Q at an angle α (see figure 3.6).
The inner surface reflects it at P and it reaches the outer surface again at Q′. Due

x

y

Fig. 3.6.: Light reflection inside the geometry of a perfectly circular WOM with inner radius
Ri and outer radius Ro.

3.5 Theoretical properties of the tube 31

to rotational symmetry, we can always pick a coordinate system in which the y-
axis is aligned to n2 and the x-axis is perpendicular to that. In a two dimensional
orthogonal projection, we have Q = (−x0, y0) and P = (0, Ri). The reflection of Q
at the y-axis yields Q′ = (x0, y0). With the origin of the coordinate system at the
center of the circles, the position vector of each point on one of the circles also is a
normal vector to that circle (in two dimensions). Thus, we obtain for the vectors:

n1 =
(
x0

−y0

)
, n′

1 =
(
−x0

−y0

)
, n2 =

(
0
Ri

)
,

and

r1 = P −Q =
(

x0

Ri − y0

)
, r2 = P −Q′

(
−x0

Ri − y0

)
.

Since ‖n1‖ = ‖n′
1‖, ‖r1‖ = ‖r2‖ and n1

Tr1 = n′
1
Tr2, it follows that both the

angles](n1, r1) and](n′
1, r2) are the same angle α with

cos(α) = R2
o −Riy0
‖r1‖Ro

.

For the angle β =](−r1,n2) on the other hand, we find

cos(β) = y0 −Ri
‖r1‖

.

The proof that β is still the same after the reflection at Q′ is analogous. This result
also generalizes to the three dimensional case: the z component of the normal
vectors is 0 for the cylinders, hence the z components of rays do not contribute to
the scalar products and the angles α and β are the same in three dimensions.

Next, assuming that cos(β) ≤ cos(α), yields

y0 −Ri
‖r1‖Ri

≤ R2
o −Riy0
‖r1‖Ro

⇔ y0Ro −RiRo ≤ R2
o − y0Ri

⇔ y0(Ro +Ri) ≤ Ro(Ro +Ri).

In order to actually reach P , it is required that Ri ≤ y0 ≤ Ro, and therefore the last
inequality is true. That, in turn, confirms the assumption that cos(β) ≤ cos(α). Since
x1 ≤ x2 implies that arccos(x1) ≥ arccos(x2), we come to the conclusion that α ≤ β
in all cases.
In other words, they are indeed different angles, unless y0 = Ro (which yields
α = β = 0). The fact that α < β, implicates that one successful reflection at the
inner surface does not guarantee that light is reflected again at the outer surface.
After a successful reflection at the outer surface, however, a successful reflection at

32 Chapter 3 Simulation geometry

the inner surface is certain.
In summary, this result clarifies that – for a circular WOM – all light, which is
reflected via total internal reflection at least twice, remains captured inside the
wall.

Finally, there is another case to discuss. Under certain emission angles it is possible
that rays do not hit the inner surface at all and circulate around the tube being
only reflected at the outer surface. Figure 3.7 illustrates the borderline case with
rays that are tangential to the inner surface. Consider a ray starting at Q under an
angle α, which reaches the outer surface again at P . Due to the symmetry (dashed
symmetry axis s) the angle of incidence at P has to be the same angle α. Therefore,
the reflection angle never changes if reflections only occur at the outer surface.
Let now Y0 = (0, y0) define the light emission point. Via trigonometry we find for the
angle enclosed between the dotted line and a ray from Y0 to P that γ = arccos

(
Ri
y0

)
.

Due to the symmetry, it is clear that all rays, which have an enclosed angle of γ
with the dotted line yield a similar border case, even those which reflect at the outer
surface first before touching the inner surface. Thus, a ray reflects only at the outer
surface when the following condition for the x-y-plane polar angle of its direction is
fulfilled:

ϕ ∈ [0, γ] ∪ [π − γ, π + γ] ∪ [2π − γ, 2π) (3.21)

Fig. 3.7.: Light being reflected only at the outer surface of the tube.

3.5 Theoretical properties of the tube 33

3.5.2 Condition for capturing light

Next, we want to exploit the geometry to work out the exact starting conditions
which result in rays being captured via total internal reflection.
Let v0 = (0, y0, 0) define the light emission point, with Ri < y0 < Ro and let
d = (dx, dy, dz) define a random direction, with ‖d‖ = 1. The intersection point of
the ray v(k) = v0 + k d and the outer surface can be found by inserting it into the
equation of a circle and solving for k:

R2
o = x2 + y2

⇔ R2
o = k2d2

x + (y0 + k dy)2.

For the solution in forward direction (the positive solution) this yields:

k1 =
−dyy0 +

√
R2
o(d2

x + d2
y)− d2

xy
2
0

d2
x + d2

y

.

A normal at a point r on the outer surface is given by:

n(r) = 1
Ro

rx

ry

0

 .
Thus, the angle of incidence of the ray on the outer surface is determined by:

cos(α) = dTn(v0 + k1d) = k1d
2
x + dy(k1dy + y0)

Ro

=
k1(d2

x + d2
y) + dyy0

Ro
.

Subistituting k1 yields:

cos(α) =

√
R2
o(d2

x + d2
y)− d2

xy
2
0

Ro
. (3.22)

Using spherical coordinates for d in equation 3.22 yields:

cos(α) =

√
R2
o(cos2(ϕ) sin2(θ) + sin2(ϕ) sin2(θ))− cos2(ϕ) sin2(θ)y2

0

Ro

⇔ cos(α) =
sin(θ)

√
R2
o − cos2(ϕ)y2

0

Ro
. (3.23)

A visualization of the resulting reflection angle depending on the two starting angles
is given in figure 3.8 as contour plots for different values of y0. In these plots, the

34 Chapter 3 Simulation geometry

critical angle for total internal reflection appears as a single isoline. As an example,
the isoline for a common glass-air transition (n = 1.5 to n = 1.0) is marked in red.
Total internal reflection occurs if cos(α) < cos(θc). Therefore, according to these
plots, the majority of emission angles is captured by the WOM, except for two areas
inside the red isoline, which are centered at

(
1
2π,

1
2π
)

and
(

3
2π,

1
2π
)
.

0

1
4

1
2

3
4

0 1
2

3
2

0

1
4

1
2

3
4

0.0

0.2

0.4

0.6

0.8

1.0

co
s(

)
Fig. 3.8.: Two contour plots for equation 3.23. Both plots use Ro = 4.5. The top one uses

y0 = 4.49, while the bottom one uses y0 = 3.5

3.5.3 Light capture efficiency

The bottom plot in figure 3.8 shows that moving the emission point y0 away from
the outer surface results in a deformation and increased size of the transmission
area, which is caused only by the ϕ angle.
This can be explained by figure 3.9: Moving y0 towards the origin along the y-axis,
while still maintaining the same emission angle ϕ, gives the ray more space to travel
before reaching the surface. This results in the intersection point moving away from
the y-axis. Thus, the inclination of the normal vector increases and the angle between
ray and normal vector gets smaller. In the extreme case of y0 = 0, the normal vectors
are perfectly aligned with all possible directions and total internal reflection becomes
impossible. Overall, this means that we expect the highest capture efficiency with an
emission point as close to the outer surface as possible.

3.5 Theoretical properties of the tube 35

Fig. 3.9.: Light emission under angle ϕ for two different emission points.

For a WOM coated with paint, we can assume that the isotropic emission indeed
takes place at y0 ≈ Ro5. In that case, equation 3.22 simplifies to

cos(α) = dy. (3.24)

For the critical angle, the intersection of the associated plane dy = cos(θc) and the
unit sphere is a small circle of the sphere that is perpendicular to the y-axis. All
rays emitted to points of the unit sphere above that plane are lost and form a loss
cone through that circle (see figure 3.10). Using any point d′ on the circle, the half
opening angle γ of this cone can be calculated via

cos(γ) = ŷTd′ =
(
0 1 0

)
d′x

cos(θc)
d′z

 = cos(θc).

θC

Fig. 3.10.: Illustration of the loss cone defined by the critical angle θc. Rays emitted inside
the loss cone reach the outer wall at an angle smaller than the critical angle.

We can use this information to get a theoretical maximum capture efficiency of the
circular WOM geometry. Correctly, this also should include reflections outside of
total internal reflection, but the detection probability of such photons decreases

5It is not y0 = Ro, because the paint does not absorb all light immediately at the boundary.

36 Chapter 3 Simulation geometry

exponentially with the number of reflections. Therefore, we give a lower bound
instead, which only includes total internal reflection. It can be derived from the solid
angle covered by the loss cone:

Ω = 2
∫ 2π′

0
dϕ′

∫ θc

0
sin(θ′)dθ′ = 4π(1− cos(θc)) . 6

Light travelling towards the inner surface forms a second loss cone. Its opening
angle is the same as the other one, since we have proven earlier that the reflection
at the outer surface is more conservative. For this, consider figure 3.6 again and
imagine the starting point on r1 somewhere close to the outer surface. If α = θc at Q,
then it is the same at Q′, even with a successful reflection in between. Considering
both loss cones then yields as lower bound of the maximum capture efficiency:

εc = 1− 2Ω
4π = cos(θc) . (3.25)

Remarkably, the thickness of the tube wall and the radius of the tube are irrelevant
for this result. In fact, the inner surface has no effect on the efficiency at all and
it would be the same for a solid cylinder. y0 ≈ Ro is the only assumption that was
made in order to use the approximation in equation 3.24, which is viable as long as
the distance of the light emission point to the outer surface is small compared to the
radius.

6Breaking with earlier conventions, the spherical coordinate system used for the integral measures
the angle θ′ to the y-axis.

3.5 Theoretical properties of the tube 37

4Implementation and validation of
the simulation algorithm

The simulation is implemented in CUDA C++ in order to run it on GPUs. Thus, all
the main functionality of the simulation is implemented in a number of CUDA kernel
functions, while the rest of the simulation program only serves as a wrapper to these
functions which provides a user interface. This chapter discusses the simulation
algorithm for a single photon, its basic implementation and validations. All aspects
of the actual parallel GPU implementation and performance optimizations are topic
of chapter 5. The user interface is documented in a public Git repository [35].

4.1 Initialization

The simulation starts with a separate kernel function dedicated to the initialization
process. This includes all the work which has to be done before the simulation enters
the main simulation loop. From the given starting parameters, it generates initial
light rays, which hit the WOM geometry for the first time. Subsequently, it executes
the wavelength-shift and the isotropic redistribution of light. It was desirable to have
the initialization in its own kernel function to enable different kinds of initialization
separate from the main simulation loop. For example, another kind of initialization
takes light from a file as input without performing the wavelength-shift. This can
be used to run simulations with light that was generated as output from a previous
simulation run. Currently, this is the approach to analyze the efficiency of the ALG.

4.1.1 Light source

In the first kind of initialization, we implement an extended light source positioned
somewhere outside the WOM geometry with a given orientation to the surface. From
there, it draws starting positions and directions from two exchangeable probability
distributions, which can be useful to model the shape of the light source in the
experiment and its light output.
Despite the possibility of having different distributions, so far only one is included
in the implementation. It is a symmetrical 2D Gaussian distribution for the starting
positions in a plane above the WOM and parallel to the x-y-plane together with

39

a constant distribution of light directions which are only facing downwards onto
the surface. A single parameter σ controls the width of the light source in both x
and y. Setting σ = 0 results in a point light source, which was used in most of the
simulations.

4.1.2 Isotropically distributed light directions

The WLS paint emits shifted light isotropically. For the simulation, this means that
it generates rays in random directions where each possible direction has the same
probability. This section demonstrates how to algorithmically generate a three-
dimensional isotropic distribution. We look on ray directions as points on the unit
sphere in spherical coordinates with ϕ ∈ [0, 2π] and θ ∈ [0, π]:

d(ϕ, θ) =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (4.1)

We need a sampling scheme for ϕ and θ that uniformly covers the sphere surface.
The naive approach would be to uniformly sample both in their respective domain
of definition, which unfortunately is incorrect. To comprehend this, we consider
uniformly sampling n values of ϕ for a fixed value θ = π

2 . We end up with n points
spread over a full great circle of the sphere. Now we do the same for values of θ
which are closer to 0 or π. Those are still n points on circles, but the circles are
getting smaller and thus the point density on a circle increases. Therefore, uniformly
sampling θ as well, results in an overall higher point density (i.e. a higher probability
density of the distribution) towards the upper and lower bounds of θ. If we keep a
uniform distribution of ϕ, then we have to sample θ from a distribution which has
maximum probability density at θ = π

2 and symmetrically decreases towards both
bounds.
We assert that the correct distribution is uniform for z ∈ [−1, 1]. To prove this,
consider the unit sphere being cut in m slices of equal thickness along the z-axis. For
the i-th slice we have z ∈ [2i

m − 1, 2(i+1)
m − 1]. We can calculate the outer surface area

of the i-th slice (excluding the area of the slice planes) by solving the surface integral
with z constrained within the slice. In spherical coordinates we have z = cos(θ) and
thus the integral becomes:

Ai =
∫ 2π

0
dϕ
∫ arccos(2i

m
−1)

arccos
(2(i+1)

m
−1
) sin(θ)dθ

= 2π
(

cos
(

arccos
(2(i+ 1)

m
− 1

))
− cos

(
arccos

(2i
m
− 1

)))
= 4π
m

= A

m
.

40 Chapter 4 Implementation and validation of the simulation algorithm

In other words, each of the slices has a fraction 1
m of the total surface area of the

sphere. That means sampling n points on the outer surfaces results in equal point
densities for each slice and we get a uniform probability density for the whole sphere
surface by uniformly sampling ϕ ∈ [0, 2π] and z ∈ [−1, 1]. Actually, this means
we are calculating θ = arccos(1 − 2U) with U ∈ [0, 1] uniform. According to the
inverse transformation method [36], we are thus sampling θ from the distribution
Fθ(θ) = 1

2(1 − cos(θ)). The probability density function of this distribution is
fθ(θ) = 1

2 sin(θ), which has the above mentioned features.

Using sin(θ) =
√

1− cos2(θ), the actual vector of the direction is

d(ϕ, θ) =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 =

√

1− z2 cos(ϕ)√
1− z2 sin(ϕ)

z

 . (4.2)

4.2 Main simulation loop

The main part of the simulation contains a single loop for each photon, which is
implemented in a kernel function, to run for multiple photons in parallel on the GPU.
Algorithm 1 conceptually demonstrates the loop in pseudocode. With the procedure

Algorithm 1 Main simulation loop

1: procedure SIMULATE_PHOTON(pos, dir, ∗params)
2: out← false
3: dt ← 0
4: while not out do
5: dpart ← 0
6: INTERSECT_WOM(pos, out, normal, dpart, dir)
7: dt ← dt + dpart
8: interaction← false
9: APPLY_MEDIUM_INTERACTION(pos, dir, out, dt, interaction, ∗params)

10: if not out and not interaction then
11: APPLY_SURFACE_INTERACTION(dir, normal, out, ∗params)
12: end if
13: end while
14: end procedure

INTERSECT_WOM, the loop repeatedly propagates a photon from one surface to
the next one by determining the closest intersection point of its ray (chapter 3) and
updating the photon position accordingly. The procedure switches the loop control
parameter out to true, if the ray reaches the geometry specific detection area or if it
does not find an intersection. Additionally, it returns the normal of the surface at
the new position and the distance travelled dpart.

4.2 Main simulation loop 41

Afterwards, via APPLY_MEDIUM_INTERACTION, each step enables a belated in-
teraction of the photon with the medium before reaching the next surface. These
processes depend on the distance travelled dpart and other interaction parameters.
Interactions with the medium can cause an update of the position and the direction,
which means the procedure can also overwrite the previous outcome of out.
Finally and only if the photon has not left the simulation geometry and did not
interact with the medium before reaching the surface, it gets an interaction with the
surface. APPLY_SURFACE_INTERACTION then changes the direction depending
on the surface normal.

Due to the logical separation of intersection, interaction with the medium and in-
teraction with the surface, we can extend or exchange the individual parts without
breaking the main simulation structure.
INTERSECT_WOM, for instance, is an abstract intersection procedure to calculate
the correct intersection point of the ray and the entirety of all simulated surfaces.
At this position in the loop, it only requires the ray parameters and is completely
independent of the actual geometry. In the kernel function, this abstract function
is implemented as a C++ template parameter. This has the advantage that we can
use the same unmodified code for the main loop to simulate different assemblies
of geometries via template specialization with the appropriate intersection routine.
We have to pass this template parameter as a lambda function, which captures
the required geometry parameters and exposes the specific intersection routine to
the main loop. The compiler is able to optimize the loop entirely during template
specialization, which results in an abstraction without performance penalty.
APPLY_MEDIUM_INTERACTION implements absorption and scattering of photons,
while APPLY_SURFACE_INTERACTION currently only applys total internal reflec-
tion at the surface. An extension to simulate, for example, correct reflection and
transmission behaviour outside of total internal reflection should be straight forward
using equations 2.3 and 2.4 for the decision.

4.2.1 Applying interactions with the medium

To model interactions with the medium, we have to implement the Beer-Lambert
law, which describes the intensity loss of a light beam in a medium. The intensity
is given by equation 2.7, but we have to translate it to a probability for individual
photons.
The intensity I is the energy transfer E of the light beam per unit area A and unit
time t and is given by:

I = E

A t
.

42 Chapter 4 Implementation and validation of the simulation algorithm

Substituting the energy contributions of N individual photons for the total energy E
yields:

I =
∑N−1
i=0 hνi
A t

,

where h is Planck’s constant and ν is the photon energy. In the case of monochromatic
light this simplifies to:

I = hνN

A t
.

Therefore, we find that I ∼ N . As a consequence, we can write for the probability
that a single photon is still part of the beam at a distance x:

Pr(I;x) = N(x)
N(0) = exp

(
−x
λ

)
. (4.3)

It follows that Pr(I;x) = 1− exp
(
−x
λ

)
, which is the cumulative distribution function

(CDF) for the probability distribution of photon interaction distances in the medium.
Here we use the more convenient parameter λ = 1

µ , which is often called mean free
path because it is the expectation value 〈x〉 of the distribution. Using the inverse
transform method [36] and a uniformly sampled y ∈ [0, 1), we can sample from this
distribution by calculating

x = −λ log(1− y).1 (4.4)

Since attenuation includes absorption and scattering, which are independent events,
the relationship

Pr(I;x) = Pr(A ∩ S;x) = Pr(A;x) · Pr(S;x)

holds. Substituting this into equation 4.3, we can deduce that

1
λ

= 1
λa

+ 1
λs
, (4.5)

Pr(A;x) = exp
(
− x

λa

)
and

Pr(S;x) = exp
(
− x

λs

)
.

Hence, the individual, independent probabilities for absorption or scattering are
similar to the probability of attenuation itself, but with their own interaction lengths
λa and λs.

To conclude, we simulate absorption and scattering by sampling two distances xa
and xs for a photon using equation 4.4 with the respective interaction lengths λa and
λs. From those, we calculate an absorption and a scattering distance da/s = xa/s+dt.

1The actual implementation calculates the equivalent version x = − 1
µ

log(y) to avoid log(0) due to
the used uniform sampling in the interval (0, 1].

4.2 Main simulation loop 43

Here, dt is the absolute accumulated travel distance of the photon up to that point.
Every time the photon transitions to another medium, da and ds have to be updated.
Right now, this only happens once before the main loop as transmission at a surface
is not yet implemented (see section 4.2.2). With proper simulation of transmission,
da and ds will be updated in APPLY_SURFACE_INTERACTION.
The actual interaction is simulated in APPLY_MEDIUM_INTERACTION, if the total
travel distance of the photon exceeds da or ds. Algorithm 2 demonstrates the pro-
cedure. At this point in the main loop, the position has already been updated by

Algorithm 2 Interaction with the medium

1: procedure APPLY_MEDIUM_INTERACTION(pos, dir, out, dt, interaction, da, ds, λs)
2: if dt ≥ ds then
3: out← false
4: interaction← true
5: pos← pos− (dt − ds) · dir
6: dt ← ds
7: end if
8: if dt ≥ da then
9: out← true

10: interaction← true
11: pos← pos− (dt − da) · dir
12: dt ← da
13: end if
14: if not out and interaction then
15: ds ← ds + SAMPLE_INTERACTION_DISTANCE(λs)
16: dir ← SAMPLE_DIR

17: end if
18: end procedure

the intersection routine to the position on the next surface (see algorithm 1). That
means that if any interaction occurred on the way to this position, we have to correct
the position by travelling backwards on the ray (lines 5 and 11). Additionally, we
set the variable interaction to true (lines 4 and 10), which prevents the surface
interaction later, since the surface has not been reached yet.
The first two parts of the procedure test if scattering and absorption occurred in
the last segment. Scattering sets the loop control switch out to false in order to
reconsider the previous decision from the intersection routine. Absorption on the
other hand sets it to true, since the photon then definitely stops. In the first part,
scattering does not yet assign a new direction. This takes place in the last part (line
15) together with the calculation of a new scattering distance, but only if the photon
was not absorbed before.
The order of the three parts in algorithm 2 is essential to correctly handle the cases
ds < da < dt and da < ds < dt (the cases for dt < ds/a and ds/a < dt < da/s are
trivial). In the first one, the algorithm begins with correcting the photon position to
the distance ds, then the absorption fails, and finally the direction changes. Only

44 Chapter 4 Implementation and validation of the simulation algorithm

in the next iteration, it tries the absorption again and the correct order of events
is ensured. For the case that da < ds < dt on the other hand, the absorption does
not fail and the photon undergoes a second position update before stopping. If the
scattering assigned a new direction prior to that, the second update would end up at
the wrong position.
As a final remark, the implementation of SAMPLE_DIR samples from an isotropic
distribution (see section 4.1.2) to keep the model simple. This is reasonable, because
the exact scattering behaviour in the WOM is so far unknown. In principle, the
isotropic distribution in SAMPLE_DIR can be replaced by any other more sophisti-
cated scattering distribution.

4.2.2 Applying surface interactions

According to Fermat’s principle, the angle between surface normal and reflected
light ray is equal to the angle between surface normal and incident light ray. Using
this, figure 4.1 demonstrates the construction of the reflected ray’s direction dir′

from the incident ray’s direction dir, with ‖dir‖ = 1 and the surface normal n, with
‖n‖ = 1.

dir′ = dir + t

= dir + 2‖d‖ · n

= dir + 2 cos(α) · n

= dir + 2(−nTdir) · n

dir′ = dir − 2(nTdir) · n (4.6)

For this solution the orientation of the surface normal does not matter, since substitut-
ing n = −n in equation 4.6 does not change the result. The current implementation
of APPLY_SURFACE_INTERACTION first calculates the angle enclosed between n

and dir:
αe = arccos(nTdir).

Applying a correction for the orientation of the normal yields the reflection angle
α = max(αe, π − αe). Whether a ray is reflected or not is decided based on the
total internal reflection criterion in equation 2.6 (instead of considering the Fresnel
equations). A reflection occurs if α > θcrit. Then, the direction is changed according
to equation 4.6, otherwise the photon simulation terminates. The latter of course
is incorrect, but the simulation does not yet support transmission with correct
refraction, because it is expected to only have a minor effect on the properties
that are currently analyzed. It can be implemented by calculating a new direction
according to Snell’s law. This is demonstrated in appendix B.1.

4.2 Main simulation loop 45

OO

Fig. 4.1.: Reflection of a light ray dir at the point O of a surface with normal n and
construction of the reflected ray dir′.

4.3 Validation of the implementation

This section presents validation tests for the implementation, by comparing simula-
tion results to the theoretical expectations from chapter 3.5 and chapter 2.1.
This section and the following chapters will repeatedly mention simulation setups
for the WOM tube. Therefore, the relevant input parameters of the simulation are
introduced and defined here:

• Parameters for the tube geometry. These include the full set of quadric param-
eters of both cylinders. However, most relevant are the outer and inner radius
Ro and Ri and the length L.

• Number of simulated photons N .

• Refractive index of the tube n1 and its surrounding material n2.

• Absorption length λa and scattering length λs.

• Position of the light source and the light emission depth of the wavelength-
shifter. Usually, the effective light emission point inside the tube wall is the
listed input parameter for this defined by x0 = 0, y0 and z0.

46 Chapter 4 Implementation and validation of the simulation algorithm

4.3.1 Verification of the isotropic light distribution

At first, we test whether the isotropic distribution works as intended. Figure 4.2(a)
shows the two dimensional distribution of 107 rays generated as described in section
4.1.2. For illustration purposes, the histogram uses a Lambert azimuthal equal-
area projection [37]. This kind of projection applies the transformation (y′, z′) =(√

2
1−xy,

√
2

1−xz
)

to the points (x, y, z) on the unit sphere, which represent the three
dimensional rays. A Lambert projection portrays a sphere surface on a disk of radius
2, with the center representing the point (-1,0,0) and the entire circular boundary
representing the point (1,0,0). All points on the disk with r <

√
2 represent points

with x < 0, while those with r >
√

2 represent points with x > 0. Apart from small
expected random noise, the result is highly uniform across the whole surface of
the sphere. What looks like a low density corona at the edge is an artifact of the
projection, since the whole boundary represents a single point. The same projection
using for instance (x′, z′), does not reveal anything conspicuous for the point (1, 0, 0)
In contrast, figure 4.2(b) shows the result of uniform sampling of both angles with
the same projection. As expected, it features two areas of high density, which are
located around θ = 0 or (0, 0, 1) and θ = π or (0, 0,−1).

(a) Isotropic distribution. (b) Uniform distribution of both angles.

Fig. 4.2.: Comparison of distributions of 107 rays in a two-dimensional Lambertian projec-
tion.

4.3.2 Visual inspection

A first possible assessment can be made via simple visual inspection of photon tracks.
For this purpose, an OpenGL based tool has been developed to render the tracks
together with the simulation geometry in an interactive view. Since it would be
infeasible to save all intermediate positions of every photon, this has to be enabled
as an option for a set of photons.

4.3 Validation of the implementation 47

Figure 4.3 depicts a collage of screenshots from photon tracks in the rendering tool.
First, they show that the photons are always hitting the first surface in their path.
Thus, we can conclude that the intersection routines from chapter 3 indeed are
correct both for tubes with arbitrary elliptic geometry and the ALG. Second, the
change of direction at a surface appears as expected from a reflection. In addition
to this, some photon tracks prematurely end at surfaces, when the total internal
reflection criterion is not fulfilled (bottom left). Finally, some tracks prematurely
end or suddenly change their direction at random positions between surfaces, which
is the result of absorption (bottom middle) and scattering (bottom right).

Fig. 4.3.: Visualization of photon tracks for selected simulation geometries in an OpenGL
based renderer.

4.3.3 Verification of the reflection angles

Next, we examine the reflection angles. Figure 4.4(a) shows a measurement of
reflection angles for a single ray inside a circular WOM. The angles oscillate between
two discrete values, which meets our expectations from chapter 3.5.1.
Figure 4.4(b), on the other hand, depicts the measurement for the same ray in a
slightly different elliptic geometry. In that case, a deviation of only ±1% relative to
the circular geometry was applied to both radii in x and y direction together with a
shift of the center of 1% relative to the outer radius. This is already sufficient to cause
a significant deviation in the measured angles. This indicates that a more accurate
simulation of an elliptic geometry indeed requires the full reflection simulation
including the Fresnel equations. Otherwise photons with reflection angles close to
the critical angle drop out immediately after the first time they fall below the critical
angle, although there is a good chance they could survive a few reflections before
fulfilling the TIR criterion again.

48 Chapter 4 Implementation and validation of the simulation algorithm

0 5 10 15 20 25
reflection i

75.0

77.5

80.0

82.5

85.0

87.5

90.0

 [°
]

(a) Circular WOM geometry.

0 10 20 30
reflection i

75.0

77.5

80.0

82.5

85.0

87.5

90.0

 [°
]

(b) WOM with slightly elliptic cross section.

Fig. 4.4.: Reflection angles of a ray at the i-th reflection for different geometries.

4.3.4 Verification of the theoretical capture efficiency

In a next step, we investigate the capture behaviour of the idealized WOM geometry.
To do so, we track the number of reflections that each photon accomplishes and
their initial emission angles ϕ and θ in spherical coordinates (ϕ measured from the
positive x-axis and θ measured from the positive z-axis). We set up a simulation
based on the parameters in table 4.1.

Tab. 4.1.: Simulation parameters for the analysis of the number of reflections depending
on the emission angles.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

5× 106 4.5 3.5 40 1.5 1.0 5× 105 ∞ 20 y0

At this point, we are only interested in reproducing the geometric aspects, thus
scattering is turned off and only little absorption is used. 2

Figure 4.5 visualizes the result for y0 = 4.4955 cm. Each point (ϕ, θ) in the plot
represents the initial angles of a photon in the simulation and its color represents
the number of reflections it took the photon before it was terminated. The color
bar translates this number to a log scale. Photons without successful reflections are
excluded for better distinction from those with one reflection. The two circle-like
areas that stand out represent the photons that are not trapped by total internal
reflection. The left one corresponds to photons emitted in positive y-direction, hence
colliding with the outer surface first. The right one represents photons in the opposite
direction, which can reach the inner surface first. A fraction of them stands out with
exactly one successful reflection, which has to take place at the inner surface.
In parts, the plot resembles the contour plots for the angle of incidence in figure

2Entirely disabling absorption is technically impossible, since the implementation relies on it to
terminate photons without momentum in z-direction.

4.3 Validation of the implementation 49

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. 4.5.: Two-dimensional map of the number of reflections depending on the emission
angles ϕ and θ in spherical coordinates of the photon. Photons without successful
reflections are excluded.

3.8. This is understandable, as photons with larger angles of incidence travel larger
distances with each reflection and thus require less reflections to reach the end,
as long as the reflection takes place between both surfaces and unless θ → π

2 .
Furthermore, the green lines mark the pairs of angles that are on the isoline of
α = θc in equation 3.23 with the used simulation parameters. The line exactly
separates trapped photons from non-trapped photons.
The second feature that stands out is the uneven transition and the area around
ϕ = π and ϕ = 0, 2π. Those areas represent photons that are only reflected at
the outer surface. This is due to ϕ angles with starting directions that are nearly
tangential to the outer surface. The edge locations are exactly as predicted by
equation 3.21 at γ = 0.6784 ≈ π

5 . Certainly, the contours in these areas do not match
figure 3.8 at all. This is due to the fact that an increase of the angle of incidence
here actually results in a smaller travel distance. In that case the outer surface is
reached again even sooner, hence more reflections are required. The extreme case
occurs at exactly ϕ = 0, ϕ = π and ϕ = 2π, when the starting direction is tangential
to the outer surface. Nevertheless, such an extreme case only occurs for emission
close to the outer surface.
θ = π

2 is a similar case, because the photons start without any movement in z-
direction and therefore endlessly circle around in the x-y-plane. Those are the reason
why some small absorption is always required in the simulation.
Last, four other small triangular areas at the outer border in the right part stand out.
Those areas are missing a color because the photons actually reach the end on a
direct path without reflection. The areas only become substantial in size if the wall
thickness is not insignificant compared to the distance to the end in z-direction. In

50 Chapter 4 Implementation and validation of the simulation algorithm

this case, they appear in the right half because the light entry point y0 was very close
to the outer surface and thus only photons initially facing "down" had enough space
to travel prior to their first reflection.
In appendix C.1, more of these plots are included for different sets of parameters.
Most of the discussed areas appear there as well with varying shapes. They all have
in common that they agree with the theoretical considerations and the equations
from chapter 3.5.2. Moreover, as expected, the size of the loss area increases with y0

moving away from the outer surface.

Subsequently, we want to analyze the consequences for the capture efficiency of the
tube. For that purpose we set up a new simulation using the parameters in table 4.2

Tab. 4.2.: Paramters for the simulation of the capture efficiency.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

5× 106 4.5 0 60 1.5 1.0 5× 105 ∞ 30 y0

We define the two-sided efficiency εtwo = N ′

N , where N ′ is the number of photons,
which is detected by both ends of the tube. Figure 4.6 displays simulation results for
the efficiency with varying y0. The orange line in figure 4.6 marks the outer surface.

0 1 2 3 4
y0 [cm]

0.4

0.5

0.6

0.7

tw
o

Fig. 4.6.: Two-sided efficiency for varying light emission point. The orange line marks the
outer surface. The dashed line marks the theoretical maximum efficiency.

This is indeed where the efficiency reaches its maximum value. The dashed line
marks the theoretical value of the maximum capture efficiency according to equation
3.25. For the used simulation parameters the equation yields εc = 0.7454.
Overall, the implementation exactly reproduces all theoretical expectations for the
tube geometry. This indicates light propagation works correctly.

4.3 Validation of the implementation 51

4.3.5 Verification of the Beer-Lambert law

Last, we confirm the correct implementation of the Beer-Lambert law. This can be
done by counting the number of photons that neither have left the tube wall nor
have been absorbed or scattered before reaching a distance d. This means that the
distance d is compared to the individual photon path lengths since the photons do
not travel on a straight path in the tube geometry.
For the measurement, it is necessary to temporarily add the line out← false after
line 16 in algorithm 2. In that way, a scattered photon behaves like an absorbed
one and does not contribute to the intensity of a collimated light beam anymore.
Running the simulation with λa for absorption and λs for scattering then should
recreate the Beer-Lambert law with λ consistent with equation 4.5.
We record the total travel distances d[j] of each photon j in a simulation with the
parameters defined in table 4.3. The tube is long enough for all photons to interact

Tab. 4.3.: Simulation parameters for the verification of the Beer-Lambert law.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

107 4.5 4.3 105 1.58 1.0 λa λs 5× 104 4.499

before they reach the end. To get the measurement described above, all photons
that are not captured by TIR have to be filtered out. The remaining number then is
the initial number of photons N0 in the Beer-Lambert law.
We count the number of remaining photons at 100 distance sample points di ∈
[0, dmax], i.e. N(di) =

∑N0−1
j=0 Θ(d[j] − di).3 Figure 4.7 shows the result of such a

measurement and another one can be found in figure C.6 in the appendix. Addition-
ally, the plots display the theoretical curve according to Beer-Lambert.

That confirms, that algorithm 2 correctly applies absorption and scattering at dis-
tances compliant with the Beer-Lambert law. The actual scattering then uses the
sampling of isotropic directions from section 4.1.2.
In summary, this section demonstrated that the simulation algorithm reproduces all
expectations for light propagation in the implemented physical framework.

3Θ is the Heaviside function

52 Chapter 4 Implementation and validation of the simulation algorithm

0 200 400 600 800 1000 1200 1400
d [cm]

0.0

0.2

0.4

0.6

0.8

N

1e7
Law of Beer-Lambert - = 150.0cm
Simulation

Fig. 4.7.: Simulation of absorption and scattering and theoretical curve. The simulation
used the parameters N0 = 7 743 659, λa = 600 cm and λs = 200 cm, which
corresponds to λ = 150 cm for the theoretical curve. The statistic uncertainties of
the measurements with ∆N =

√
N are not displayed here, as they are too small.

4.3 Validation of the implementation 53

5Parallelization and optimization
on the GPU

„The Free Lunch Is Over.

— Herb Sutter
(ISO C++ committee convener)

The main objective of this work is to create a fast simulation software for light
propagation in the WOM geometry, aiming at a simulation throughput of several
millions of photons per second. To accomplish this goal the processing power
of modern GPUs is utilized. In this chapter, the parallelization and performance
optimization of the time consuming parts of the simulation for this hardware platform
are addressed.

5.1 Parallelization

5.1.1 Random number generation

We start with a discussion of the choice of a parallel pseudo-random number genera-
tor (PRNG), considering random number quality as well as generation performance.
The PRNG is an important part of the simulation, which can have a significant
impact on the simulation results. The prototype simulation [9], for instance, has
been reported to generate incorrect event distributions at the detection plane when
using GPU generated random numbers.
As a workaround the prototype instead uses pre-calculated random numbers from a
CPU implementation of the Mersenne Twister MT19937 [38], which is famous for
high-quality random numbers. However, the approach is rather slow compared to a
pure GPU solution, owing to the high level of parallelism on the GPU and the fact
that the CPU implementation involves data transfers over the slower PCIe to the
GPU. Hence, we prefer the pure GPU solution, but only if we can ensure that the
random numbers are of sufficient quality without patterns.

We use the cuRAND library [39], which provides several parallel PRNGs for the GPU.
The prototype uses the MTGP32 generator, a GPU variant of the Mersenne Twister

55

from the cuRAND library [40], which produces the faulty results mentioned above.
We employ the cuRAND implementation of Marsaglia’s XORWOW generator [41]
instead. An NVIDIA CUDA performance report [42] shows that it samples faster than
the MTGP32. Furthermore, being a Mersenne Twister, the MTGP32 requires a very
large state, while the XORWOW only requires five variables to maintain its state,
which reduces its memory footprint. It has a period length > 2190, which is less than
the MTGP32 with its enormous 211214, but still long enough for all our needs.
In order to properly use the parallel XORWOW generator with statistically uncorre-
lated values, it requires an individual state for each thread. Each state is based on
the same seed and therefore part of the same sequence of numbers. More precisely,
the individual states are set up by skipping ahead 267 entries in the whole sequence
defined by the seed. This results in yet again smaller subsequences per thread. How-
ever, even with billions of photons per thread, each of those photons can consume
1011 random numbers before subsequences of the threads start overlapping.

The cuRAND documentation includes reports on rigorous statistical tests for the
randomness of the generators. Such tests are hypothesis tests for patterns in the
distributions generated from the PRNG with significance levels < 0.1%. XORWOW
has been tested with "BigCrush" from [43] and the full set of NIST tests [44]. It
passes all of those tests with occasional failures of individual tests in single runs.
Additionally, it has been tested in the context of the development of this simulation
with the "Dieharder" tests from [45], in which it passed 111 out of 114 tests.
Note that only very few generators pass all of those tests. For instance, the fa-
mous Mersenne Twister in its standard implementation consistently fails two of the
"BigCrush" tests, and also its MTGP32 variant from cuRAND occasionally fails some
of the tests.
To sum up, the quality of the random numbers from the chosen PRNG is mostly
excellent and is not expected to affect the results. It is likely that the flawed results
in the prototype were only due to an incorrect usage of the MTGP32 generator and
not a result of the PRNG quality itself.
In fact, all validations shown in the previous chapter that involve random numbers
used the XORWOW from cuRAND and no suspicious artifacts were observed.

5.1.2 Initialization and main loop

The parallelization of the initialization and the main loop can be handled in a straight
forward manner using data parallelism. Since the calculations for the individual
photons do not depend on other photons, each can be calculated from start to end in
any order. With data parallelism we distribute the data of N photons equally across
any available number p of compute nodes, which run through the calculations in
parallel.

56 Chapter 5 Parallelization and optimization on the GPU

For our case of a CUDA GPU, we can only specify the number of threads in each
block and the number of independent blocks while the CUDA runtime scheduler
takes care of distributing those to actual compute nodes. Due to the low overhead
for thread creation, achieving pure data parallelism is then as simple as creating in
total N threads for the N photons. Scaling the number of threads with the problem
size like this is a usual approach to CUDA, since this way the runtime scheduler
ensures the automatic scalability for different hardware.
Conceptually, using this simple parallelization scheme, the simulation structure is
given by:

1. Use T ∈ [0, 1024] 1 threads per block and B = N/T blocks2.

2. Allocate memory for the data arrays (positions, directions, results, ...) and
the array of PRNG states with each holding T ·B elements.

3. Setup the PRNG states with T ·B threads.

4. Call the initialization with T ·B threads.

5. Call the main loop with T ·B threads.

6. Copy the results to the CPU.

7. Write the results to an HDF5 file.

Steps 3, 4 and 5 call separate CUDA kernel functions with the specified number of
blocks and threads which are committed to the CUDA runtime scheduler. In each of
the kernel functions a thread uses its unique global id number to identify its piece
of data to work on. In step 3 each thread sets up its own PRNG state based on the
same global seed and saves it in global memory. In step 4 each thread initializes a
single photon and saves the starting position and direction after the wavelength shift
in global memory. In step 5 each thread loads the starting position and direction of
its photon, runs it through the main loop and saves the results in global memory.

The data arrays such as positions and results, which hold multi-dimensional values,
are implemented using a Structure of Arrays layout (see chapter 2.2.2). This is
sufficient to get coalesced memory accesses throughout all of the kernel functions.
Moreover, the kernel functions load data from global memory to registers only once
at the beginning and write it back once at the end. This results in a very good
compute-to-global-memory-access ratio for the algorithm. Finally, step 6 is the only
data transfer over the slow PCIe.

1T has to be tuned depending on the resource consumption of the code.
2Precautions for the case (N mod T) 6= 0 required.

5.1 Parallelization 57

5.2 Performance optimization

After establishing a simple parallelization in the previous section, this section investi-
gates performance issues and possible optimizations.

5.2.1 Evaluation of the performance

In order to evaluate the simulation performance, a benchmark setup is defined in
table 5.1.

Tab. 5.1.: Simulation setup for the benchmarks.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

N 4.5 4.3 100 1.5 1.0 600 600 90 4.4955

Ideally, the run time of the simulation scales linearly with the number of simulated
photons N . Apart from the number of photons, major factors for the run time are:
the thickness of the wall, since thinner walls increase the number of reflections;
the length of the tube L; and the absorption and scattering length λa and λs. The
parameters for the benchmark are chosen such that they are similar to the actual
experiment: with the latest measurements [46], attenuation lengths of λatt ≈ 300 cm
are expected and with L = 100 cm even the longest tubes are covered.
Using this setup, a benchmark consisting of 20 repetitions for a range of values N
was conducted. With timers inside the code, the run times of the individual parts
of the simulation are obtained by calculating the mean of all iterations. Figure 5.1
presents the benchmark result on a double logarithmic scale. All benchmarks are
executed on a system equipped with an Nvidia GeForce GTX 1050Ti GPU and an
Intel Core i7-3770 CPU. The individual lines correspond to the steps 3 to 7 above,
complemented by the total run time. However, it has to be noted that the total run
time is not the sum of all displayed run times. For example, overheads for program
startup, reading and interpreting the input file and cleanup are not measured by the
timers. Those overheads appear in the plot as initially smaller slope in the total run
time.
The result immediately reveals a major issue with this implementation: The setup
of the PRNG states does not scale linearly with N . Starting from N = 5× 105

photons it even dominates the total run time. The reason for this is that each thread
sets up a state using the same seed in order to avoid statistical correlations with
different seeds. As stated in section 5.1.1 this is achieved by each thread skipping to
a subsequence 267 entries ahead of its predecessor. This skipping is expensive and
using N threads, the last one has to skip N − 1 subsequences.

58 Chapter 5 Parallelization and optimization on the GPU

104 105 106 107

N
10 2

10 1

100

101

102

103

104

105

106

t [
m

s]

Setup
Init
Main
Copy
Write
Total

Fig. 5.1.: Benchmark result for the simple parallelization. The dashed black line serves as
optical guidance for linearity in the double log scale.

Apart from that, the remaining run times scale fairly linearly as expected. Moreover,
the performance of the main simulation loop is already very good with this simple
parallelization, as it achieves a throughput of more than one million photons per
second.

5.2.2 Optimization of the initialization

There are two possible solutions to optimize the initialization of the PRNG.
First, we could use a different seed for each thread, thus avoiding skipping of
subsequences. Unfortunately, this has the disadvantage that there is no guarantee
for obtaining statistically uncorrelated values if different seeds are used, while this
can be guaranteed for different subsequences of the same seed.
As a second solution, a constant number p of PRNG states with p � N can be
used. This seems reasonable, considering that when using arbitrarily big values of
N , the scheduler never assigns N threads simultaneously to the GPU’s Streaming
Multiprocessors (SMs) anyway. Hence, setting up only as many individual PRNG
states as there are threads assigned to SMs is sufficient. In that way, the initialization
time does not scale with N any more and becomes insignificant for small p. However,
since we have no control over the thread assignment of the runtime scheduler, we
could only safely share PRNG states between threads in a block using synchronization,
which is undesirable. Therefore, we have to use a constant number of threads as
well and assign the tasks manually to the threads.

Nonetheless, the second solution is the preferred one. Implementing this requires
so-called grid-stride-loops for the kernels of the initialization and the main loop.
Algorithm 3 demonstrates the structure of the kernels using a grid-stride-loop. The
function in line 3 represents the bodies of the previous kernel functions of step 4 and

5.2 Performance optimization 59

Algorithm 3 Grid-stride-loop kernel

1: PRNGState← states[thread_id]
2: for i← thread_id, i < N do
3: FUNCTION(PRNGState, i, ∗params)
4: i← i+ p
5: end for
6: states[thread_id]← PRNGState

5 with their respective parameters ∗params. This kernel is now launched with only
p threads and p PRNG states in the states array. Each thread starts with a different
loop index i, determined by its unique id, performs the simulation of the i-th photon
and continues in the loop with a stride of p. In this loop the j-th photon is processed
exactly once by thread (j mod p).
The only part left for this solution is the choice of p in order to get the full workload
on the GPU. The maximum number of active threads depends on the number of SMs
of the GPU model. Depending on the resource consumption of the kernel functions
(not the GPU model), all recent GPUs can have at maximum 2048 active threads
per SM. Roughly speaking, the blocksize T and the number of blocks B have to be
chosen such that each SM of the target GPU reaches at least the maximum possible
number of active threads for the kernel function. Using too many blocks is not a
problem, as the GPU can still queue up blocks.
That concludes the optimization. Conducting the benchmark again with the same
setup yields the run times shown in figure 5.2.

104 105 106 107

N
10 2

10 1

100

101

102

103

104

t [
m

s]

Setup
Init
Main
Copy
Write
Total

Fig. 5.2.: Benchmark result for the grid-stride-loop parallelization. The dashed black line
serves as optical guidance for linearity in the double log scale.

As expected, the initialization does not scale with N any more and the run time is
dominated by the main loop. Examining the simulation throughput of the benchmark
results in figure 5.3 shows that apart from the constant initialization all timed
components converge to a more or less constant rate for high N . For smaller values

60 Chapter 5 Parallelization and optimization on the GPU

104 105 106 107

N

105

106

107

108

109

ra
te

 [s
1]

Setup
Init
Main
Copy
Write
Total

Fig. 5.3.: Simulation throughput for the grid-stride-loop parallelization. Higher values are
more desirable.

of N the simulation is obviously less efficient, due to all overheads contributing to
the run time in a higher proportion.

5.2.3 Further performance issues

Although the simulation is already very fast after the optimization from the previous
section, there is still room for improvement.
The rather simple parallelization presented above suffers from branch divergence
as discussed in chapter 2.2.2 and perhaps also from load imbalance. The problem
arises from the irregular work load of the simulation of photons. Depending on
a photon’s initial direction of emission, the number of reflections it undergoes in
the tube wall can vary greatly. In addition to that, scattering and absorption also
influence the number of reflections. Figure 5.4 depicts a distribution for the number
of reflections of photons using the benchmark setup with N = 107. According to this
distribution, it is highly likely that most threads in one warp simulate only very few
reflections while very few threads in the same warp have to simulate many. This
causes the branch divergence of the threads during the main simulation loop. While
some threads are already done with the loop, they have to remain inactive due to
the nature of warps. Only when the last one is finished, all threads reunite, write
their results to global memory and load the next photon into registers in unison.
Considering that there are few photons in the distribution that take an order of
magnitude more reflections than others it can occur that only a single thread in a
warp is active for a long time.

In order to analyze the significance of branch divergence caused in that way, we
inspect the number of reflections ni of all photons i ∈ [0, N −1] using the benchmark
setup with N = 5× 106. Since algorithm 3 distributes the photons to threads and

5.2 Performance optimization 61

0 2500 5000 7500 10000
#reflections

101

103

105

107

#p
ho

to
ns

Fig. 5.4.: Distribution of the loop iterations for all photons on a log scale. Very few photons
accomplish more than 7000 reflections due to the low probability of long travel
distances caused by attenuation. This results in few bins being occupied by less
than ten photons or only one photon.

therefore warps in a deterministic way, we can easily identify photons that were
processed in the same warp by rearranging the ni in groups of 32.
The result njk is the number of reflections that a photon experienced, as calculated
by the k-th thread of warp j3 with k ∈ [0, 31]. Since all threads in a warp have to
wait for the last one to finish, the load of warp j is effectively determined by the
highest reflection count of all photons:

loadj = max
k

(njk) .

Using the load, we define the divergence of thread k from the load of warp j:

divjk = njk
loadj

. (5.1)

The number divjk ∈ [0, 1] can be interpreted as the fraction of time that thread k

in warp j is active compared to the longest running thread in warp j. Ideally, it
would be close to 1 for all j and k, which means that all threads in all warps execute
without branch divergence most of the time.
We can also count the number of threads that are inactive in a warp for at least a
fraction s of the total time:

Cj(s) =
31∑
k=0

Θ(s− divjk) . (5.2)

Figure 5.5 shows the flat distribution of divjk and the distribution of Cj
(

1
2

)
for the

benchmark. Unfortunately, the value of divjk is close to 0 for the majority of threads
in all warps. The rightmost bin is only slightly higher than N

32 , hence it almost purely

3For the sake of simplicity we will continuously refer to warp j. Correctly it would be the j-th group
of 32 and warp (j mod p

32), since there are only p threads and p
32 warps.

62 Chapter 5 Parallelization and optimization on the GPU

0.0 0.2 0.4 0.6 0.8 1.0
div

0

1

2

3

4

#t
hr

ea
ds

1e6

(a) Flat distribution of the div parameter of
all threads.

0 10 20 30
C

0.00

0.25

0.50

0.75

1.00

1.25

1.50

#w
ar

ps

1e5

(b) Distribution of the number C
(1

2
)

of inac-
tive threads in the warps.

Fig. 5.5.: Distributions to showcase branch divergence in the simulation.

consists of the maxima in the warps. In addition, figure 5.5(b) shows that in the
majority of cases almost the entire warp indeed is idle for at least half the time.
To summarize, the algorithm so far acts rather inefficiently concerning branch
divergence and needs improvement.

Simplified solution

Theoretically, the problem could be solved in a simple way by sorting the photons
according to their number of reflections. In that way, the threads in each warp
would always have a similar workload, reducing the idle time to a minimum. Figure
5.6 shows the results for divergence and idle threads after sorting the number of
reflections ni from the same benchmark run. Clearly, the issue of diverging branches

0.5 0.6 0.7 0.8 0.9 1.0
div

0.0

0.2

0.4

0.6

0.8

1.0

#t
hr

ea
ds

1e7

(a) Flat distribution of the div parameter of
all threads.

0.0 0.2 0.4
C

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#w
ar

ps

1e5

(b) Distribution of the number C of inactive
threads in the warps.

Fig. 5.6.: Distributions for divergence and idle threads in the simulation after sorting n.

disappears.

5.2 Performance optimization 63

In order to verify that the presented results affect the performance also in practice, a
simplified replication of the parallel GPU algorithm was implemented in CUDA. This
approach provides more control over the assignment of workloads than an analysis
in the actual simulation. Algorithm 4 demonstrates the simplified version. Basically,

Algorithm 4 Simplified algorithm

1: PRNGState← states[thread_id]
2: for i← thread_id, i < N do
3: iterations← n[i]
4: res← 0
5: for j ← 0, i < iterations do
6: res← res+ sum(X random numbers)
7: end for
8: i← i+ p
9: end for

10: states[thread_id]← PRNGState

the main simulation loop is replaced by a loop that calculates a sum of random
numbers. The number of iterations for that loop is determined by n, the number of
reflections of the photons in a real simulation. The variable X is used to tune the
workload of a single iteration of the loop. It should not be too small in order to get a
good compute-to-global-memory-access ratio.
The simplified program was executed with the simulation result n of the benchmark
setup with N = 107 and a value of X = 100. We examine the execution times of
using the original array n, a sorted version of it and one where each entry is replaced
by its mean 〈n〉.
Although this algorithm has nothing to do with the simulation of light, the workload
distribution is similar to the distribution of the simulation that created n. Moreover,
it has the same problem of branch divergence. Thus, the execution time of the first
case corresponds to the real simulation, the second one to the time of a simulation
with input sorted according to the individual work load per photon, and the third
one to a simulation with equal work load for each photon and no branch divergence.
Table 5.2 shows the results for taking the mean of 100 repetitions.

Tab. 5.2.: Run time and speedup comparison for the simplified program.

method time speedup

Original 10 432 ms –
Sorted 1359 ms 7.7
Mean 1340 ms 7.8

Consequently, we can conclude three things. First, the irregular workload indeed
affects the performance. Second, eliminating branch divergence and load imbalance
entirely gives a speedup of 7.8. Third, sorting the input yields almost the same

64 Chapter 5 Parallelization and optimization on the GPU

performance as the divergence-free case, proving that this is an acceptable solution
to minimize branch divergence.
Nevertheless, so far we have been looking at the number of reflections in retrospect.
In order to improve the performance, however, we have to be able to sort them
beforehand. In the next section, we will explore four possible optimizations to
minimize the branch divergence in the real simulation.

5.2.4 Optimization of the branch divergence

Sorting the photons

In chapter 4.3.4 we analyzed the number of reflections that a photon accomplished
in the space of emission angles ϕ and θ using a color map. Figure 5.7 shows such a
map for a simulation without attenuation. In this instance the used tube parameters
are close to some of the manufactured tubes. Those results are useful for obtaining a

Group 1 Group 1

Group 3 Group 3

Group 2

Fig. 5.7.: Map of the number of reflections in the space of emission angles for the param-
eters: Ro = 4.5 cm; Ri = 4.3 cm; y0 = 4.4955 cm; L = 40 cm; z0 = 20 cm. The
annotations mark three groups of photons. Group one is presumably not captured
in TIR. Group two is only reflected at the outer surface. Group three is reflected
at both surfaces.

scheme for sorting the photons without prior knowledge of the number of reflections,
which we obviously do not have.
Based on theoretical considerations from chapter 3.5 we were able to discriminate
three regions in the space of emission angles. Using those criteria yields a coarse
sorting of the photons in three groups. The first one is based on photons that are
presumably not captured in TIR. The condition for this group is given by cos(α) >
cos(θc) with α being the angle of incidence at the outer surface determined by
equation 3.23. In the second group we have all photons that are only reflected at the

5.2 Performance optimization 65

outer surface. Equation 3.21 gives a condition for the boundaries of ϕ that separates
those rays from rays reflected between both surfaces. The remaining rays, which are
reflected between both walls, are in the last group.
The first group already has an even workload with no significant branch divergence
The two remaining groups, however, still have a large variance in the number of
reflections according to figure 5.7 and thus require further sorting. With only a single
sorting criterion, the angle θ could be a good choice for the third group. It does not
yield a perfect sorting everywhere but it still looks like an overall good approximation
that separates the photons with high reflection count at θ → π

2 from those with few
at the upper and lower edges. The second group on the other hand looks more
complicated. The isolines bear some resemblance to branches of hyperbolas, but
there is no obvious equation that describes them. Using the angles alone as possible
sorting criteria, θ again looks like the better choice, since the variance for the number
of reflections is definitely smaller for a fixed θ.

Algorithm 5 summarizes the sorting approach in pseudo code. Here, the function
ArgSort(x) returns the index array that would sort x. The algorithm has to be

applied to the photon output of the initialization kernel. The sorted result is used as
input to the main kernel.

Algorithm 5 Sorting of photons

1: γ ← arccos
(
Ri
y0

)
2: for i← 0, i < N do

3: cos(α)←
(

sin(θ[i])
√
R2
o − cos2(ϕ[i])y2

0

)
/Ro

4: if cos(α) > cos(θc) then
5: Add i to G1
6: else if ϕ[i] ∈ ([0, γ] ∪ [π − γ, π + γ] ∪ [2π − γ, 2π)) then
7: Add i to G2
8: else
9: Add i to G3

10: end if
11: end for
12: ind2← ARGSORT(θ[G2])
13: ind3← ARGSORT(θ[G3])
14: G2← G2[ind2]
15: G3← G3[ind3]
16: photons← CONCATENATE(photons[G1], photons[G2], photons[G3])

However, there are two issues with this optimization. First, it requires additional
time for preprocessing which diminishes any potential overall speedup. Second, it
only evens out the static load imbalance in each warp due to the starting direction
while scattering and absorption can still randomly change the number of reflections
causing branch divergence again.

66 Chapter 5 Parallelization and optimization on the GPU

Manipulating the isotropic sampling

Instead of sorting the photons after the ray generation, it might be better to generate
rays in a more controlled way. The idea is to divide the sampling space for the
isotropic emission in N

32 equal sub spaces. For each group of 32 photons that are
going to end up in the same warp, the directions are sampled from only one of the
sub spaces.
The isotropic directions so far are defined by uniform sampling of ϕ ∈ [0, 2π] and
z ∈ [−1, 1], using equation 4.2 for the final direction. In order to get the sub spaces
we first have to define a two-dimensional grid in the sampling space with N

32 cells in
total. Length and width of the grid are defined by two integers N1, N2 with N1 ≥ N2

via:
N

32 = N1 ·N2 .

The i-th photon is sampled from cell j =
⌊
i

32

⌋
. The grid coordinates (l, k) of the cell

are defined as:
(l, k) =

(⌊
j

N1

⌋
, j mod N1

)
.

Finally, the width (∆ϕ,∆z) is defined as:

(∆ϕ,∆z) =
(2π
N1

,
2
N2

)
.

Thus, the direction for the i-th photon is obtained using equation 4.2 after uniform
sampling of ϕ ∈ [∆ϕ · l,∆ϕ · (l + 1)] and z ∈ [∆z · k − 1,∆z · (k + 1)− 1].

The advantage of this procedure is that it does not require additional preprocessing
time and it might get more even workloads in the warps, since the sorting of the
previous approach is not perfect.
The drawback of this method is that it could harm the quality of the random
directions. Applying a sampling scheme like this fixes the number of rays generated
in each cell to a constant number. For big values N and actual isotropic sampling
that might be approximately true for all cells, but never exactly. This could be
fixed, by adding random offsets to the cell bounds. However, section 5.2.5 shows
that the performance gain of this approach is not worth to spend more time on
improvements.

Restructuring the simulation loop

Unfortunately, both approaches presented so far have disadvantages and cannot
compensate branch divergence that is caused by changes of the number of reflections
due to scattering or absorption. Both occur at random and thus with the used simu-

5.2 Performance optimization 67

lation algorithm the number of actual reflections becomes unpredictable. In order to
regard absorption and scattering it is therefore not sufficient to only manipulate the
input.
The branch divergence in the algorithm arises because each thread processes a
photon from start to end. It turns out that this can be changed by restructuring the
simulation loop, such that each thread gets the opportunity to move on to another
photon after each simulation step.
The restructured loop is presented in algorithm 6. In this approach the grid-stride-

Algorithm 6 Restructured simulation loop

1: PRNGState← states[thread_id]
2: out← false
3: dt ← 0
4: i← thread_id
5: PREPARE_DATA(i, pos, dir, ∗params)
6: while i < N do
7: SIMULATE_STEP(PRNGState, pos, out, dt, dir, ∗params)
8: if out then
9: SAVE_SESULT(pos, dir)

10: i← i+ p
11: PREPARE_DATA(i, pos, dir, ∗params)
12: end if
13: end while
14: states[thread_id]← PRNGState

loop and the main simulation loop for a single photon collapse to one loop. In each
iteration, this loop performs one simulation step for the i-th photon in line 7, which
is the loop body of algorithm 1. Subsequently, if the photon terminates, it writes the
result to memory and updates i. PREPARE_DATA loads and prepares the data of the
new photon i for the next iteration.
Using this new structure, all threads in a warp always perform an update step of the
simulation in unison. Branch divergence can still occur at line 8. However, after any
diverging threads have finished that short extra path, they immediately reunite and
continue in the next iteration with a new photon.

Adding dynamic scheduling

However, this solution actually does not fix an eventually existing load imbalance
between the p threads. A load imbalance may occur due to the fact that the number
and indices of photons that are assigned for processing to a thread are statically
determined. Therefore, the total workload of the threads as sum of the workload for
processing all assigned photons varies. Nevertheless, for p� N the different work
loads of individual photons even out when summed up. Hence, aiming at N ≥ 106

68 Chapter 5 Parallelization and optimization on the GPU

and with p ≤ 12 288 for the used GTX 1050Ti4 a major load imbalance cannot exist.
We can still reduce any existing load imbalance by allowing dynamic assignment
of photons to threads. This can be accomplished by maintaining a single counter
variable in global memory, which is accessible by all threads and initialized to p. The
counter always remembers the highest photon id number that has not been assigned
to a thread yet. Therefore it acts as the manager of a queue of photons. Once a
thread has finished with a photon, it does not statically increment its index i by p
anymore. Instead, it looks up the value of the global counter in order to determine
the new value for i. Subsequently, the counter is incremented. To prevent race
conditions with several threads trying to access and update the counter at the same
time, this has to be performed with an atomic operation in line 10 of algorithm 6.
Using the counter has the benefit that threads calculating mostly photons with fewer
reflections can calculate more photons, which reduces the workload for threads with
long running photons.

5.2.5 Final performance

Table 5.3 compares the final performance of the main simulation kernel for the
different methods. For the results the mean of 100 repetitions per method was taken

Tab. 5.3.: Run time and speedup comparison of the different optimization methods.

method time speedup

Original 5912 ms –
Sorting input 2503 ms 2.4
Cell sampling 2201 ms 2.7
Restructured 931 ms 6.4
Dynamic 824 ms 7.2

using the previously defined benchmark setup with N = 107. We observe that the
imperfect sorting concept yields the weakest performance, closely followed by the
cell sampling. What makes the sorting approach even worse is that it requires a
preprocessing step that is not included in this run time. Apparently, both methods
are not suited to achieve groups of 32 with similar work loads for all photons. After
all, they do not incorporate scattering and absorption and cannot reduce the branch
divergence as much as sorting the photons in retrospect.
Good results are obtained with the restructured algorithm with a speedup of 6.4
w.r.t the non-optimized version. This is much closer to the speedup of 7.8 that was
observed for an even workload in the simplified program. Adding the dynamic
photon assignment pushes the speedup further to 7.2, which indicates that the
summed load of the threads indeed was slightly imbalanced otherwise. The still

4This GPU has 6 SMs with up to 2048 active threads per SM. Hence, there are at most 12 288 active
threads.

5.2 Performance optimization 69

existing small discrepancy is likely caused by two factors. First, as stated earlier, in
the restructured algorithm branch divergence still occurs for a few instructions every
time a photon terminates. Second, another access to global memory was added
for the counter which is slower than a usual one, since it is an atomic operation.
Furthermore, if many threads try to update the counter at the same time, they have
to wait for each other. In conclusion, this is probably the closest we can get to the
performance of the even workload.

Figure 5.8 depicts the throughput of the final optimized simulation using the re-
structured algorithm and the dynamic photon assignment. The part for the main

104 105 106 107

N

105

106

107

108

109

1010

ra
te

 [s
1]

Setup
Init
Main
Copy
Write
Total

Fig. 5.8.: Simulation throughput for the final improved simulation. Higher values are more
desirable.

loop alone now exceeds 107 photons per second. Also including the total program
run time the simulation still reaches around 7.5× 106 photons per second. After
applying all optimizations the simulation truly achieves excellent performance. It is
unlikely that there is much room for further improvements. Therefore, we want to
close this chapter.

70 Chapter 5 Parallelization and optimization on the GPU

6Simulation results

Each simulation run saves results in an output file in HDF5 file format [47]. In
the implemented format, an output file is organized in numbered datasets. Each
dataset is a result of a single simulation run. If an existing file is given as output file
for a simulation run, the new dataset is appended to the file. A dataset consists of
metadata in the form of HDF5 attributes for all simulation parameters of the run
and the results for the individual photons. For each photon, the coordinates of the
final position x, y and z, two angles ϕ and θ, which define the final direction in
spherical coordinates and the total distance travelled d are saved. Additionally, a
variable exit_code saves the cause of the photon termination (detected, absorbed,
left tube) encoded as an integer value. In this chapter, the simulation results are
used to analyze various aspects of light propagation in the WOM.

6.1 Light distribution in detection plane

First, we want to visualize the light distribution in the detection plane. We run
simulations with varying position of the light entry point z0 and the setup in table
6.1. We read out the values of x and y of photons that reached the detection plane at

Tab. 6.1.: Parameters for the simulation of light distributions.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 107 4.5 3.5 60 1.5 1.0 100 100 z0 4.4955

z = 0. Figure 6.1 shows two-dimensional distributions for several light entry points.
They all share the same color bar, which is standardized to the overall highest bin in
the figure. This standardization immediately visualizes the decrease of intensity for
greater light entry distances due to light attenuation. To get a more detailed view of
the distributions, we transform the data points to polar coordinates:

r =
√
x2 + y2 ,

ϕR = atan2(x, y) .

Here, atan2 denotes the two-argument arctan. Contrary to the regular arctan
(y
x

)
it

takes the quadrant of x and y into account and gives a result ∈ [0, 2π].

71

2.5 0.0 2.5

2.5

0.0

2.5

y [cm]
z0= 5.0cm

2.5 0.0 2.5

z0=15.0cm

2.5 0.0 2.5

z0=30.0cm

2.5 0.0 2.5 x [cm]

z0=45.0cm

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6.1.: Two-dimensional histograms of the light distribution in the detection plane.

Figure 6.2 shows a histogram in these coordinates for the leftmost plot in figure 6.1.
The light distribution is clearly non-uniform in ϕR with a peak at ϕR = 0, which

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. 6.2.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 5 cm. At the top and to the right, the marginal distributions of ϕR and r are
included. The patterns in the joined distribution are discussed in detail in the
text.

corresponds to the position of the light source on the outer surface. Figures 6.3(a)
and 6.3(b) demonstrate, however, that the distribution of ϕR becomes uniform for
higher distances of light emission. This is expected, since the longer travel distance
gives photons the opportunity to spread out more evenly.
The distribution of ϕR has been measured at DESY Zeuthen [48]. For a WOM
tube with Ro = 2.24 cm and Ri = 1.89 cm, the measured distribution appears to be
reasonably uniform for z0 ≥ (5.0± 1.0) cm. A qualitative comparison to a simulation
with similar parameters yields a consistent result (see figure C.10 in the appendix).
The distribution of r, on the other hand, has a distinct peak at r = Ro and contin-
uously decreases towards r = Ri. This peak exists even for high distances of light

72 Chapter 6 Simulation results

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

(a) z0 = 30 cm.

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

(b) z0 = 55 cm.

Fig. 6.3.: Two-dimensional histograms of the light distribution in polar coordinates.

emission. Experimental studies of the light distribution using a camera [49] yielded
pictures that are vaguely similar.

Furthermore, the two-dimensional joint distributions feature distinct patterns that
are not visible in the marginal distributions. The patterns appear in the shape of
parabolas that blur for higher values of z0 before vanishing completely. The position
of the patterns along the r-axis and especially the peak in the r distribution is a
direct result of the light emission depth of the wavelength-shifter. Figures 6.4, 6.5(a)
and 6.5(b) show results of a similar simulation setup with y0 shifted to the middle
of the tube wall. As a result, the patterns and the peak also move to the middle of

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. 6.4.: Two-dimensional histogram of the light distribution in polar coordinates with
z0 = 5 cm and y0 = 4.0 cm.

the wall.
Repeating the simulations with different parameter sets reveals that the displayed
distributions are characteristic for the geometry. The patterns and the peak only
disappear for very strong scattering (see figure 6.6).

Some insights about the patterns can be gained from inspections in the interac-
tive renderer. The majority of rays that terminate at one of the peak points in
the two-dimensional distributions are photons emitted under similar angles. The

6.1 Light distribution in detection plane 73

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

(a) z0 = 30 cm.

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

(b) z0 = 55 cm.

Fig. 6.5.: Two-dimensional histogram of the light distribution in polar coordinates for
y0 = 4.0 cm.

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. 6.6.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 5 cm and λs = 10 cm.

74 Chapter 6 Simulation results

corresponding photon paths form a bundle of small spatial broadening. They are
only reflected at the outer surface and after one or more reflections they have a
common intersection point again exactly at r = y0. Considering the case where
this intersection appears after only one reflection, it is obvious that this has to be at
r = y0, due to symmetry (see figure 3.7 in chapter 3.5). For emission under similar
polar angles, the number of required reflections depends on the variation of the
azimuth angle.
The parabola shapes are likely caused by such bundles of rays that do not reach the
detection plane exactly at their common intersection point. In that case the bundles
still stand out due to their small spatial extension.
Since the isotropy of the light emission has been confirmed in chapter 4.3.1, we can
conclude that the emerging patterns are features of the geometry. Besides, similar
patterns have been observed in previous simulations of the WOM using FRED [3].
Additional plots for the distributions and screenshots from the renderer can be found
in appendix C.3.

The knowledge of the peaks of the distributions of ϕR and r might be useful for
improving the readout or analysis of experimental data. For instance, an analysis of
data from the WOM test stand in Mainz [50] already uses the simulated distribution
of ϕR. In that case, the distribution is employed to get an error estimate for the
combination of the non-uniform light output of the WOM and the non-uniform
sensitivity of the PMT detection area.

6.2 Tube detection efficiency

In this section, we study the simulated detection efficiency of the tube as a function
of the distance between light emission point and detection plane. Unlike in the
brief treatment of the simulated capture efficiency of the geometry in chapter 4.3.4,
scattering and absorption are now included.
We define the efficiency for one side εone = Ndet

N as the ratio between the number
of photons reaching the specified detection plane Ndet and the initial number of
simulated photonsN . We conduct simulations with varying scattering and absorption
lengths λs and λa, respectively, and distance of light emission z0 based on the setup
in table 6.2.

Tab. 6.2.: Parameters for the efficiency simulations.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

5× 106 4.5 4.3 120 1.5 1.0 λa λs z0 4.4955

6.2 Tube detection efficiency 75

Figure 6.7 shows simulation results for a constant attenuation length of λatt = 100 cm
and several combinations of λa and λs compliant with equation 4.5. As expected,

0 20 40 60 80 100
z0[cm]

0.1

0.2

0.3

0.4
on

e

Theoretical maximum
a= 1e+05cm s= 100.1cm
a= 300.0cm s= 150.0cm
a= 200.0cm s= 200.0cm
a= 150.0cm s= 300.0cm
a= 100.0cm s=inf

Fig. 6.7.: Simulated efficiencies for combinations of λa and λs that all yield λ = 100 cm.
The dashed blue line is the theoretical maximum efficiency εone ≈ 0.37.

including light attenuation impacts the efficiency in a distance dependent way, re-
ducing it for longer photon paths. The simplified model in equation 3.25 yields a
theoretical capture efficiency of ε ≈ 0.75 for the presented simulation setup. Hence,
due to the isotropic light emission, we expect a maximum efficiency of εone ≈ 0.37 at
each detection plane. Using only absorption (purple curve in figure 6.7), this value
is almost reached for z0 approaching zero.
For all possible combinations of absorption and scattering, pure absorption results in
the lowest efficiency. This is reasonable, since the implemented scattering distribu-
tion is isotropic. Therefore, scattered photons have the same probability of about
74.5% for being captured in the tube again.
Remarkably, with scattering applied, the highest simulated efficiency values ex-
ceed the theoretical maximum efficiency stated above. This is primarily caused by
backscattering, i.e. photons that reverse n times in z-direction due to scattering (n is
an odd integer). For long distances, this effect cancels out, since, on average, the
same number of photons turns in both directions. For light emission close to one
of the detection planes, however, the travel distance is short for photons starting
in the direction of the closer one. Thus, the probability for backscattering prior to
detection is significantly smaller for half of the photons.
Figure 6.8 demonstrates how backscattering affects the efficiency. The two curves
only differ in the scattering distribution. For the orange line scattered light is only
emitted in its initial direction along the z-axis, while for the blue one an isotropic
emission is implemented. As a result, the orange curve only reaches the same

76 Chapter 6 Simulation results

0 20 40 60 80 100 120
z0[cm]

0.1

0.2

0.3

0.4

on
e

With backscattering:
 a= 200.0cm s= 100.0cm
No backscattering:

a= 200.0cm s= 100.0cm

Fig. 6.8.: Simulated efficiencies using the same parameters with and without backscattering.

maximum efficiency as without scattering.
Another very small contribution in the efficiency increase comes from photons whose
direction is changed in a scattering event such that they fulfill the TIR criterion
afterwards.
Figure 6.9 shows the effect of varying the absorption and scattering length without
keeping the attenuation length constant. The blue curve serves as baseline with

0 20 40 60 80 100
z0[cm]

0.1

0.2

0.3

0.4

on
e

a= 200.0cm s= 200.0cm
a= 200.0cm s= 100.0cm
a= 100.0cm s= 200.0cm

Fig. 6.9.: Simulated efficiencies for different attenuation lengths. The orange curve in-
creases the amount of scattering, while the green one increases the amount of
absorption.

equal values for λa and λs. The green curve is the result of applying stronger ab-
sorption, which causes an overall drop of the efficiency. The orange curve is the
result of applying more scattering. This leads to an increased efficiency at distances
shorter than 10 cm. For longer distances, however, the efficiency drops below the
blue curve. This is partly due to the increasing directional imbalance in scattering
events. However, it is mainly caused by more photons scattering and subsequently
not meeting the TIR criterion.

6.2 Tube detection efficiency 77

6.2.1 Comparison to flattened model

If the wall thickness is sufficiently small compared to the outer radius of the tube,
the light propagation can be approximated in a flat geometry neglecting the tube’s
curvature. This can be imagined as "cutting" the cylinder wall along the z-axis and
subsequently unrolling it (see figure 6.10). This so-called "flattened model" [5]
defines three coordinates for the direction of light emission:

• ϕF is defined as the angle to the straight path in the unrolled plane, with
ϕF ∈ [−π, π].

• θF is defined as the angle to the plane, with θF ∈ [−π
2 ,

π
2].

• d is defined as the distance between light emission point and tube end.

d	

PMT	 PMT	

PM
T	

top	view	 side	view	

Fig. 6.10.: Schematic of the flattened model.

Applying periodic boundary conditions along the long sides of the plane enables
photons reaching one side of the plane to enter it from the opposite side again. A
total distance of 2πRo in parallel to the PMT plane – crossing the boundary – results
in one circumvolution in the tube. Thus, ϕF is associated with the number i of
circumvolutions of the light path:

tan(ϕF) = 2πRoi
d

.

For ϕF → ±π
2 this number goes to infinity. The actual light path length in the plane

can be calculated via:
splane = d

cos(ϕF) . (6.1)

78 Chapter 6 Simulation results

Since the path lengths between reflections is constant in the side view, trigonometry
yields for the total path length:

s = splane
cos(θF) = d

cos(ϕF) cos(θF) . (6.2)

Note that this result neither depends on the thickness of the wall, nor on the radius of
the tube. Using equation 4.3 and equation 6.2 yields the probability for attenuation
on a light path in the flattened model:

Pr(att; d, ϕF , θF) = exp
(
− d

cos(ϕF) cos(θF)λatt

)
.

In the flattened model, the efficiency can be determined analytically by calculating
the solid angle coverd by light paths captured in TIR, i.e. θF ∈ [−θ′c, θ′c] with
θ′c = π

2 − θc. Additionally, attenuation can be taken into account by including the
attenuation probability as a weight in the calculation of the solid angle. This yields
the one-sided efficiency as function of d:

ε(d) = 1
4π ·

∫ π/2

−π/2

∫ θC

−θC
exp

(
− d

cos(ϕF) cos(θF)λatt

)
cos(θF) dθF dϕF . (6.3)

Unfortunately, an analytical solution does not exist for this integral. However, using
an elaborate Taylor approximation scheme [50], the integral can be solved with 1 ms
per evaluation.

In figure 6.11, we compare the distance dependent efficiency of the flattened model
to several simulations, using the parameters in table 6.3. The scattering is turned

Tab. 6.3.: Parameters of the efficiency simulations for the comparison to the flattened
model.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

5× 106 Ro Ri 120 1.5 1.0 100 ∞ z0 4.4955

off, since the attenuation in equation 6.3 cannot model changes of light paths.
The top panel shows the absolute values of the simulated efficiency for different
tube sizes and the efficiency according to equation 6.3 (blue line). The different
parameter sets of WOMs were chosen such that a regularly sized one (orange), an
exorbitantly oversized one (green), a small one (red), one with a very thick wall
(purple) and one with a thin wall (brown) were simulated. First, the plot illustrates
that the size of the WOM does not matter for the simulated efficiency from ray
tracing. This has already been demonstrated for the attenuation-free case in chapter
4.3.4. Consequently, the result including attenuation implies that changing the size
of the WOM does not change the overall length of the light paths. The actual paths
taken, however, still differ.

6.2 Tube detection efficiency 79

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

on
e

flattened model
RT: Ro= 4.50cm Ri= 4.30cm
RT: Ro=50.50cm Ri=50.30cm
RT: Ro= 1.50cm Ri= 1.30cm
RT: Ro= 4.50cm Ri= 0.50cm
RT: Ro= 4.50cm Ri= 4.49cm

0 20 40 60 80 100
d[cm]

0.99

1.00

1.01

RT
/

fla
t

Fig. 6.11.: Comparison of the efficiency calculated in the flattened model to ray tracing
simulations. The upper panel shows plots for the absolute efficiencies from ray
tracing for several WOM sizes and the efficiency from the flattened model. The
lower panel shows the corresponding ratios between ray tracing and flattened
model results.

In order to visualize deviations of both models, the bottom panel shows the ratio
between the simulated efficiencies and the result from equation 6.3. In almost all
cases the deviation is less than 1%. For longer distances, the deviations and the
statistical errors are larger due to the lower event counts and the larger accumulated
error from floating-point arithmetic1.
The high level of agreement is very impressive, considering that the flattened model
does not know the size of the tube. Moreover, the photon paths in the flattened
model and the ray tracing differ, especially because the ray tracing allows reflections
at only one surface. Apparently, the path lengths are still approximately the same
in both models, allowing for similar attenuation. Especially the case of a thick wall
stands out since the approximation of a flat plane should be hardly valid. Still, only
for d ≤ 10 cm the efficiency differs more than 1% (the respective data points fall out
of the plotting range of the lower panel). This is caused by a significant amount of
light reaching the detection plane without reflections in the ray tracing, including
rays that would otherwise fail the TIR criterion. The efficiency calculated in the
flattened model does, of course, not include this effect.
In conclusion, the flattened model yields a very good approximation of the efficiency
in the absorption-only case.

1Errors from floating-point arithmetic are not displayed here.

80 Chapter 6 Simulation results

6.2.2 Fit to experimental data

In this section, the possibilities and issues of comparing simulated efficiencies to
measurements of a tube via a fit are explored. A fit with the ray tracing simulation
would allow for the determination of both λa and λs, while fits with the flattened
model can only determine λa.

For a number of n measurement points (di, εi) with associated uncertainties σεi and
a function S(d; Γ) with free parameters Γ = (A, λa, λs) and associated uncertainties
σS(di;Γ) the following measure of similarity can be defined [51]:

χ2(Γ) =
n−1∑
i=0

(εi − S(di; Γ))2

σ2
εi + σ2

S(di;Γ)
. (6.4)

The non-linear function S(d;A, λa, λs) = A · εRT (d;λa, λs) is the result of an effi-
ciency simulation εRT with the parameters λa and λs for absorption and scattering,
respectively, scaled with a factor A. In principle, more parameters of the simulation
could be incorporated in Γ, but for the start the dimensionality D = dim(Γ) should
be kept low in order to make converging easier for the fit. All other parameters of
the tube are known from direct measurements anyway. However, extending Γ to
also cover the ellipse parameters might be worthwhile in order to find the deviation
of a tube from a circular cross section.
Solving the optimization problem

Γ̃ = arg min
Γ

χ2(Γ)

yields the set of parameters for a simulation that has the best fit to the data points.
The goodness of the fit can be determined by calculating

χ2
red = χ2(Γ̃)

n−D
. (6.5)

As a simplified rule of thumb, equation 6.5 should yield approximately 1 for a good
fit. Then the squared residual of fit function and measurement is on average equal
to their associated squared uncertainty. Values much greater than 1 can indicate
a poor fit. Values smaller than 1 on the other hand can indicate overfitting, since
the fit tries to describe the data more precisely than the actual measurement allows
given the uncertainty.

Most algorithms for non-linear minimization require that the objective function is
differentiable because its gradients are employed in order to find the minimum.
However, this is not the case for the objective function in equation 6.4, since it
involves evaluations of the ray tracing simulation which obviously does not provide

6.2 Tube detection efficiency 81

a gradient.
An algorithm that is suitable for objective functions that are not differentiable is the
Nelder-Mead downhill simplex algorithm [52]. The algorithm uses D + 1 test points
Γi that define a D-dimensional simplex in the space of parameters. By evaluating
the objective function at the test points and comparing the results it determines a
direction in parameter space to find the minimum and whether to expand or shrink
the simplex in that direction. In the best case the simplex shrinks to a point which is
the optimum.
The algorithm is present in the module scipy.optimize of the Python library SciPy [26]
as the function minimize(method=’Nelder-Mead’) . The fit is performed using this
function with the objective function from equation 6.4. Implementing the objective
function requires to make the simulation program callable from a Python script,
which can be done using Python’s subprocess module. In that way, the evaluation
of εRT (d;λa, λs) within Python takes place by generating an input text file from
the given simulation parameters, subsequently calling the simulation program as
a subprocess, reading the generated HDF5 output file and finally evaluating the
efficiency from that.
The fit converges if |Γ0

k−Γjk| ≤ xtol and if |χ2(Γ0)−χ2(Γj)| ≤ ftol for all j ∈ [1, D]
and k ∈ [0, D− 1]. This means that the parameters of all simplex vertices are at most
xtol away from the best vertex Γ0 and the values of the objective function differ at
most by ftol from the best one. Here, xtol and ftol are tuneable hyperparameters
of the minimization routine.

Testing the fitting routine for data of a tube measured at the Mainz test stand [50]
yields the result in figure 6.12. For comparison, the plot also includes a fit with the

0 5 10 15 20 25 30
d[cm]

0.15

0.20

0.25

0.30

0.35

0.40

on
e

RT: a=789.66cm, s=404.47cm, A=0.66
Flattened model:

a=295.52±15.34cm, A=0.701±0.005
data

Fig. 6.12.: Fit of the ray tracing simulation (blue) and the flattened model (orange) to an
efficiency measurement (green) of the tube "Q3" with the "South PMT". The ray
tracing fit converged with χ2

red = 0.0124. The flattened model fit converged with
χ2
red = 0.0222. The shaded blue area is the the simulation error magnified by a

factor of 100.

82 Chapter 6 Simulation results

flattened model using the numeric solution of equation 6.3 for ε in the objective
function and the standard routine curve_fit in the scipy.optimize module. Fitting
results for another tube can be found in figure C.13 in the appendix.
The uncertainties of the measurement σεi include both the statistic and the systematic

error. The uncertainties of the simulation σS(di;Γ) = A ·
√
Ndet(di)
N are the result of

the statistic error of the count of detected photons. Those are tiny compared to the
measurement uncertainties. In order to visualize the difference in magnitude of
both, the simulation error is magnified by a factor of 100 in the plot (shaded blue
area).
For the simulation evaluations the parameters (see table 6.4) were set to match the
measured tube (code name "Q3"). For the chosen value of N values of xtol = 10−4

Tab. 6.4.: Simulation parameters for the fit.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 106 2.2 1.67 30 1.49 1.0 λa λs di 2.1978

and ftol = 0.1 were used to achieve convergence. Higher values of N for now turned
out infeasible, since the time for writing this amount of data to HDF5 files starts
dominating when this is done at a high frequency. It appears that in consecutive
iterations at high frequency the simulation is able to produce data at a rate that
exceeds the writing capabilities of the hard drive.
The fit converged after about 20 minutes using 185 evaluations of the ray tracing
simulation at 22 distance points for 2× 106 photons each. The final value of χ2

red is
too small with χ2

red = 0.0124. This is a result of the high, correlated uncertainties
of the measurement. The same applies for the χ2

red of the flattened model fit with
χ2
red = 0.0222. Apart from that, the curves of both fits are very similar and also close

to the actual measurement points. Using equation 4.5 yields an attenuation length of
λatt = 267.47 cm for the ray tracing which can be compared to the absorption length
of the flattened model. Considering the fact that the attenuation in both models is
still different2, those results are quite close to each other.

However, this fitting routine has a number of issues that require improvement.
First, it is apparent that the parameter estimates from the fit are lacking statistic
uncertainties. Unfortunately, the used SciPy routine for the Nelder-Mead algorithm
minimize(method=’Nelder-Mead’) does not provide uncertainties on its own. The
original paper [52] contains an approach for obtaining uncertainties from the final
simplex, but due to time constraints it was not implemented anymore for this fitting
routine.
Moreover, the Nelder-Mead algorithm does not always converge to the global opti-
mum. The solution is quite sensitive to the initial simplex choice and it can easily get

2Bear in mind that the comparison in the previous section did not include scattering.

6.2 Tube detection efficiency 83

stuck in local optima. Also, the two parameters λa and λs of course are correlated
via the more general attenuation length λatt, hence the minimization is quite flexible
in the choice of these two. In order to get more reliable results, a more sophisticated
analysis has to be applied. For instance, evaluating equation 6.4 on a grid for a
subset of the parameters, while keeping the rest constant should help narrowing
down the search of the global optimum. Creating a two dimensional map of χ2

depending on λa and λs in that way should visualize the correlation of the two.
Finally, speed is still a concern that can and should be improved. As stated above, the
interface between SciPy and the simulation program via HDF5 files is a severe bottle-
neck at the rate of data generation during the optimization. It should be considered
to implement the simulation, such that it is callable directly with a Python wrapper
function that returns the results in RAM rather than on the hard drive. Removing
that bottleneck makes the minimization process at least by a factor of 10 faster.
Subsequently, utilizing even higher photon counts in the simulation enables smaller
values for ftol and thus the optimum can be determined with better precision.
In summary, this section demonstrated that generally speaking the simulation is now
fast enough to be employed in a fitting routine. The actual results of this section
should only be treated as proof of concept that has to be extended in the future.

6.3 Light exit angles

The simulation program returns two angles for the final ray of each photon (see
figure 6.13). ϕ is the angle between the final ray projected to the x-y-plane and

Fig. 6.13.: Definition of the angles of the final ray.

the x-axis with ϕ ∈ [0, 2π]. θ is the angle between the final ray and the z-axis with
θ ∈ [0, π2]. We analyze the angles for simulations with the parameters in table 6.5.
Figure 6.14 shows distributions of the angle ϕ, the first for light emission close to
the detection plane and the second for light emission close to the opposite end of

84 Chapter 6 Simulation results

Tab. 6.5.: Parameters for the simulation of the angle distributions.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 107 4.5 4.3 60 1.5 1.0 100 100 z0 4.4955

the tube.
The distribution for the short distance features a peak at ϕ = 3

2π. That means, most

0 1
2

3
2

20.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
pe

r 0
.1

3
bi

n

z0= 5.0cm

0 1
2

3
2

20.00

0.05

0.10

0.15

pr
ob

ab
ilit

y
pe

r 0
.1

3
bi

n

z0=55.0cm

Fig. 6.14.: Distributions of the angle ϕ for simulations with different light emission dis-
tances.

photons exit favoring the negative y-direction. This has to be a consequence of the
light entry point position, which sits at (0, y0, z0). Therefore, at this distance, photons
still favor a direction that heads away from the light entry point. At greater distances
the distribution eventually becomes uniform due to the light spreading out. However,
compared to the distribution of ϕR in section 6.1 it takes much greater distances to
even out. Even for z0 = 55 cm the peak position is still slightly noticeable.

More meaningful, however, are the distributions of θ. In figure 6.15 the distribution is
depicted for a simulation of the attenuation-free case. The distribution is asymmetric
with a discontinuity defined by the critical angle at θ′c = π

2 − θc , which is marked by
the green line. We have learned in chapter 4.1.2 that for an isotropic emission the
angle θ follows the PDF fθ(θ) = 1

2 sin(θ). The left part of the distribution still follows
that initial distribution.
The right part, however, is the result of TIR. In two dimensions, the angle θ′c results
in an angle of incidence of θc at the surface. Therefore, angles greater than that
do not fulfill the TIR criterion at the surface in two dimensions, which causes the
decrease of the probability density in the right part. Nevertheless, the distribution
is not plainly cut at that angle, since the TIR criterion can still be accomplished in
three dimensions. It appears that the full distribution is a convolution of the initial
distribution and some kind of decay for angles above θ′c.
Figure 6.16 visualizes the distribution of θ for simulations including attenuation for
two different light emission distances. Since increasing the angle θ increases the

6.3 Light exit angles 85

0 1
4

1
2

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
pe

r 0
.0

3
bi

n

z0= 5.0cm

Fig. 6.15.: Distribution of the angle θ for light emission at z0 = 5 cm and λa = 106 cm,
λs =∞. The green line marks θ = π

2 − θc, which is defined by the critical angle
θc.

0 1
4

1
2

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
pe

r 0
.0

3
bi

n

z0= 5.0cm

0 1
4

1
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pr
ob

ab
ilit

y
pe

r 0
.0

3
bi

n

z0=55.0cm

Fig. 6.16.: Distributions of the angle θ for simulations with attenuation using λa = 100 cm
and λs = 100 cm.

86 Chapter 6 Simulation results

distance a photon has to cover before reaching the detection plane, the attenuation
leads to a decline of the distribution there. For the greater light emission distance,
the effect on great angles increases but it also starts expanding to smaller angles due
to the overall longer distances.
In summary, the distributions demonstrate that the WOM does not give a directed
output that is aligned with the normal of the exit surface. Since θ defines the angle
of incidence at a detector or a lightguide attached to the tube the knowledge of the
distributions are useful to estimate the efficiency of such attachments (see section
6.4.1).

So far we have only examined angles in the global coordinate frame. However, those
do not expose the orientation of a final ray in relation to the tube surfaces since this
also depends on the final position on the detection plane. Hence, we have to switch
to a local coordinate frame and calculate angles from there.
We define three basis vectors n̂, n̂⊥ and ẑ for a suitable coordinate system in the
following way: n̂ is a normal vector to the cylinder surface and it depends on the final
photon position p = (x, y, z); ẑ is the basis vector of the z-axis in global coordinates
which is already orthogonal to n̂; last, n̂⊥ is defined such that it is orthogonal to
both n̂ and ẑ and such that (n̂⊥, ẑ, n̂) yields a right-handed orthonormal basis. From
equation 3.8 we find for the cylinder:

n̂ = 1√
x2 + y2

x

y

0

 .

Subsequently, we obtain the right-handed orthonormal basis with:

n̂⊥ = ẑ × n̂ = 1√
x2 + y2

−y
x

0

 .

The basis vectors define the transformation matrix M = (n̂⊥, ẑ, n̂)−1 for switching
the coordinate system via p′ = M · p. After the transformation, we again examine
angles in common convention of spherical coordinates 3:

ϕF = atan2(p′x, p′y) ,

θF = arccos(p′z)−
π

2 .

The two angles defined in this way, are comparable to the two angles in the flattened
model, if the wall of the tube is sufficiently small.

3Note that the old z-axis takes on the role of the y-axis in this coordinate system, thus we get a
different angle θ.

6.3 Light exit angles 87

Figure 6.17 shows the distribution of ϕF , again without attenuation for the start.
The distribution appears to be very uniform in this case. This makes sense, since in

-1
2 -1

4 0 1
4

1
2

F

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y
pe

r 0
.0

6
bi

n

z0= 5.0cm

Fig. 6.17.: Distribution of the angle ϕF for light emission at z0 = 5 cm and λa = 106 cm,
λs =∞.

the flattened model all paths in the range of ϕF are equally likely. Figure 6.18 shows
the distributions for the addition of attenuation, again one close to the detection
plane and another one far away. The distributions are still symmetrical and centered

-1
2 -1

4 0 1
4

1
2

F

0.0

0.1

0.2

0.3

pr
ob

ab
ilit

y
pe

r 0
.0

6
bi

n

z0= 5.0cm

-1
2 -1

4 0 1
4

1
2

F

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
pe

r 0
.0

6
bi

n

z0=55.0cm

Fig. 6.18.: Distributions of the angle ϕF for simulations with attenuation using λa = 100 cm
and λs = 100 cm.

at ϕF = 0, which corresponds to a straight path in the plane of the flattened model.
Towards the edges, however, both are decreasing. For the light emission at z0 = 5 cm,
this mainly concerns only angles close to the edges while the center still features
a plateau. For the light emission at the opposite end of the tube, a wider range of
angles is impacted by this and the distribution appears with a shape similar to a
Gaussian.
This is expected, since increasing the angle in either direction, increases the photon
path length in the flattened model plane (see figure 6.10 and equation 6.2). Hence,

88 Chapter 6 Simulation results

photons at the edges with many circumvolutions in the tube have the highest
attenuation probabilities. Increasing z0 then magnifies the effect.

Finally, we examine the last angle θF . If the wall is sufficiently thin and the flattened
model approximation holds, this angle relates to the angle of incidence α at the
surface via α = π

2 − θF . Figure 6.19 depicts distributions of θF . It is again symmetric

1
2 -1

4 0 1
4

1
2

F

0.00

0.25

0.50

0.75

1.00

1.25

pr
ob

ab
ilit

y
pe

r 0
.0

6
bi

n

z0= 5.0cm

1
2 -1

4 0 1
4

1
2

F

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pr
ob

ab
ilit

y
pe

r 0
.0

6
bi

n

z0=55.0cm

Fig. 6.19.: Distributions of the angle θF . The orange lines mark the angle θF = π
2 − θc,

which is defined by the critical angle θc.

and centered at θF = 0. The distribution is pruned by the critical angle at both sides
exactly at θF = π

2 − θc. The peak at θF = 0 corresponds to light that arrives at very
flat angles at the surface (α ≈ π

2). It is likely caused by the high number of photons
that circulate close to the outer wall and also cause the high density ring at the outer
surface in figure 6.1. Increasing the light emission distance, again yields a decline of
the distribution at the edges due to the longer path lengths and hence the higher
attenuation probability.

6.4 ALG detection efficiency

Previous measurements with the manufactured ALG attached to the tube have shown
a drop in the WOM’s detection efficiency. The optical coupling could be the reason
for this, but other sources for a decreased efficiency must be considered as well. We
are thus primarily concerned with verifying the lossless concentration of light in the
geometry first, in order to rule out flaws in the design concept.

We simulate the light propagation in assembly of tube and ALG with the spline
approach discussed in chapter 3.4. We perform the simulation of the ALG itself in a
separate simulation run, which enables comparisons of tube and ALG light output
in a simple way. Instead of a light source undergoing a wavelength-shift, we thus
use the output data from a simulation run of the tube alone as input for the main

6.4 ALG detection efficiency 89

simulation loop for the ALG. Photons, which did not reach the detection plane in the
tube simulation are filtered out of the input. We assume that ALG and tube are made
of the same material and are attached with perfect optical coupling, i.e. photons are
transitioning lossless and without refraction between the two. In this simulation,
both the entrance and exit plane of the ALG serve as detection planes causing a
photon to terminate. This of course means, that by splitting the simulation in two
runs we lose the ability of simulating photons, which cross the boundary between
tube and ALG several times due to multiple scattering. However, this is only a minor
effect.
We want to simulate the same geometry that was calculated by Falke [31]. For
the hyperbola in equation 3.18, we use the parameters stated in the thesis, i.e.
r0 = p = 4.5 cm and ε = 1.4502 and rinner = 4.3 cm. We obtain spline coefficients
with 10 sample points of r2(z) from SciPy and use this as input for the geometry of
the ALG simulation.
For the tube simulation we use a perfectly circular tube that fits to the ALG, using the
set of parameters in table 6.6. We analyze the ALG efficiency for different settings

Tab. 6.6.: Parameters for the simulation of the ALG.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

1× 107 4.5 4.3 60 1.49 1.0 100 λs z0 4.4955

of λs and z0 in the tube simulation. For the simulations of the ALG itself, scattering
is disabled by setting λsc = inf and only little absorption is used with λabs = 1 km,
since the first goal is the investigation of the efficiency of the geometry alone.

Figure 6.20 shows efficiency plots from repeating the ALG simulation for several
lengths of the ALG. Here, length means cutting away the end of the body of revolution
in order to get different levels of light concentration 4.
Unfortunately, for all simulated tube parameters the efficiency decreases significantly

with increased length. Changes of the two parameters mainly result in changes of
the slope and curvature of the plots. Shorter distances of light emission on the tube
(blue and green curve) or longer scattering distances (green and red curve) result in
lower efficiencies at all lengths. Attaching the full-length manufactured ALG results
in a simulated drop of the signal by up to 80%. In contrast to that, the calculation of
Falke expects a constant efficiency of 100%.

We find the reason for this by examining photon paths in the interactive renderer.
Figure 6.21 shows that, unlike predicted by Falke, photons starting with an angle
λ to a cross-sectional plane through the symmetry axis do not circulate around the
symmetry axis of the ALG. Instead, they travel more or less directly towards the

4The body of revolution always has to be cut before the root of the inner curve, since otherwise the
cross sectional area is not conserved.

90 Chapter 6 Simulation results

0 1 2 3 4 5 6
length of ALG[cm]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tube parameters
s=100.0cm; z0= 5.0cm
s=100.0cm; z0=30.0cm
s=500.0cm; z0= 5.0cm
s=500.0cm; z0=30.0cm

Fig. 6.20.: Efficiency of the ALG depending on the cutting length. The efficiency ε = Ndet

N
is defined as the ratio between the number of photons reaching the end Ndet
and number of incoming photons N . The statistical error ∆Ndet =

√
Ndet is not

displayed here, since it is not visible.

Fig. 6.21.: Nine different photon paths inside the ALG. Depending on the angle λ and the
cutting length, photons can turn back before they reach the detection plane.
Multiple subsequent reflections at the outer surface are possible, as highlighted
by the red circles.

6.4 ALG detection efficiency 91

detection plane but turn around at some point. Whether or not they reach the
detection plane depends on whether the turning point is located in front of the
cutting length. Longer cutting lengths then lead to less photons making it to the
detection plane, hence the efficiency decreases.
This could be an artifact of the normal vectors that are not smooth with the quadratic
spline approach. However, switching to exact normals, derived as the gradient of
equation 3.19, only results in a minor change of the photon paths and does not lead
to an increased efficiency.
The angle λ here is the same angle as ϕF in section 6.3. There we have seen that
increasing the distance of light emission or the attenuation length mostly causes
a loss of light at higher angles ϕF . Hence, in both cases a higher fraction of light
enters the ALG on paths that are – under the observations above – more favorable
for detection. Therefore, the distributions of ϕF are able to explain the variation
between the results for the different parameters in figure 6.20 and give further
evidence that this angle is indeed the problem.

Reviewing the thesis of Falke reveals that a wrong assumption in appendix A2 is likely
to be the reason for the failure of the design: Starting from the requirement that the
angle λ must not increase between reflections to prevent photons from eventually
turning their direction, he derives a condition for angle updates in his simulation.
This calculation uses several Taylor approximations based on the assumption that
photons are always reflected between inner and outer surface of the ALG. However,
figure 6.21 also indicates that this is not necessarily true.

6.4.1 A possible alternative for the Falke ALG

An apparent alternative could be the Compound Parabolic Concentrator (CPC, also
called "Winston Cone"), which is a standard solution from non-imaging optics [32].
This concentrator sends light entering through an opening with radius R to another
opening with a smaller radius r with one reflection at a single surface of revolution.
For a given R the whole geometry is defined by the acceptance angle θa with
sin(θa) = r

R . Light entering at an angle θ to the symmetry axis with θ > θa is sent
back to the entrance with a second reflection.
For the light output of the WOM, this angle θ is the same angle as discussed in
section 6.3. Unfortunately, the results show that the θ distribution of the WOM
covers the whole range [0, π2]. Although angles below the critical angle are favored,
this always results in some light loss. Quantifying the loss requires the CDF of the θ
distributions. The value CDFθ(θa) corresponds to the relative amount of light from
the WOM output that is accepted by a CPC with acceptance angle θa.
Figure 6.22 visualizes the result of this approach for the above tube simulation with
λs = 100 cm and z0 = 5 cm and compares it to the results of the ALG simulation.

92 Chapter 6 Simulation results

0.4 0.6 0.8 1.0
r
R

0.0

0.5

1.0

1.5

2.0

 /
re

l.
SN

R
[a

.U
.]

 CPC
rel. SNR CPC
rel. SNR ALG
 ALG

Fig. 6.22.: Comparison of efficiency and SNR of CPC and ALG. See text for details.

The x-axis features the level of concentration as r
R , such that a value of 1 means the

light concentrator does not reduce the radius at all. The y-axis features both the
efficiency ε and the theoretical SNR of the concentrator relative to their respective
values for r

R = 1. For the SNR this assumes that the noise is approximately propor-
tional to the surface area of the detecting PMT and thus SNR ∼ ε

r2 .
First, the plot demonstrates that the flawed ALG design still theoretically increases
the SNR up to a factor of 2 in that setting. For the CPC, however, we find that it
performs worse than the existing ALG design, both in SNR and efficiency. Thus, it
does not qualify as an alternative.

In conclusion, the ALG design by Falke does not come up to expectations for an
application in the WOM. Although it theoretically increases SNR and still performs
better than a standard solution from the field of non-imaging optics, it is flawed if
the goal is the reduction of the noise rate without losing in efficiency.

6.5 Detection time resolution

Last, we want to analyze the simulated time distribution of the WOM tube. The
simulation tracks the absolute traversed distance d of each photon. From this we
can calculate the elapsed time inside the tube for each photon using the speed of
light in vacuum c:

t = d · n1
c

.

We analyze the simulation setup in table 6.7 varying the distance of the light
emission point and for λatt = 300 cm and λatt = 100 cm both with equal scattering
and absorption. Figure 6.23 compares the results of the time distributions for several

6.5 Detection time resolution 93

Tab. 6.7.: Parameters for the simulation of the time distributions.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 107 4.5 4.3 50 1.5 1.0 λa λs z0 4.4955

values of z0 and for both attenuations. The distributions are plotted on a log scale

10 5

10 3

10 1

pr
ob

ab
ilit

y
pe

r 0
.3

5n
s b

in

z0= 5.0cm
att=300.0cm

mean=0.12ns
std=0.29ns

att=100.0cm
mean=0.10ns
std=0.18ns

z0=10.0cm
att=300.0cm

mean=0.17ns
std=0.32ns

att=100.0cm
mean=0.14ns
std=0.19ns

z0=15.0cm
att=300.0cm

mean=0.22ns
std=0.34ns

att=100.0cm
mean=0.19ns
std=0.20ns

0 4 8 12

10 5

10 3

10 1

z0=20.0cm
att=300.0cm

mean=0.27ns
std=0.36ns

att=100.0cm
mean=0.22ns
std=0.20ns

0 4 8 12
t[ns]

z0=30.0cm
att=300.0cm

mean=0.36ns
std=0.39ns

att=100.0cm
mean=0.29ns
std=0.21ns

0 4 8 12

z0=45.0cm
att=300.0cm

mean=0.48ns
std=0.43ns

att=100.0cm
mean=0.39ns
std=0.22ns

Fig. 6.23.: Simulated time distributions on a log scale for two levels of attenuation and at
different distances of light emission. The green line represents the probability
distribution for the decay of the paint, which is not yet included in the output
distributions.

in order to visualize the extensive tails. Each distribution has a rapidly decreasing
peak close to t = 0. The long tails have probabilities several orders of magnitude
smaller than the peak area. They are caused by the relatively few photons that circle
many times in the tube. Increasing z0 moves the distribution slightly along the t-axis,
which can be seen from the increasing values of the mean. But also the standard
deviation increases and the height of the peak slightly drops. Thus, it also broadens
the distribution and gives more weight to the tail.
The depicted distributions are only the distributions for the propagation inside the

94 Chapter 6 Simulation results

tube wall and do not include the time delay of the WLS paint. The light emission
time of the paint complies to a law of exponential decay with probability density

pt(t) = 1
τ

exp
(
− t
τ

)
,

which is the green line in each panel of figure 6.23. The time constant τ =
(1.37± 0.06) ns has been measured at DESY Zeuthen [53]. Using this we can obtain
the simulated time resolution of the tube with the paint combined. To do so, we
actually need a single time distribution with light emission at random positions z0

instead of a fixed position. This would be closer to the use case with light hitting the
WOM at random positions. Unfortunately, the simulation has been developed with
comparisons to the rather artificial efficiency test measurements at fixed positions in
mind. Thus, at the time of writing this, the program is lacking this feature.
However, we can try to emulate the use case by simulating the tube in steps of 5 cm
for z0 over the whole length of the tube. The results of the simulations are then
merged into a single time distribution and binned. Subsequently calculating the
discrete convolution of the binned data and the probability density for the decay
time of the paint yields the time distribution of the combination.
Figure 6.24 shows the result of this procedure for the attenuation length λatt =
300 cm. Compared to figure 6.23 the distribution becomes broader, shifts towards

0 10 20 30
t[ns]

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
pe

r 0
.1

9n
s b

in

mean= 1.62ns
std= 1.43ns

Fig. 6.24.: Time resolution of the WOM tube, including decay time of the paint for λatt =
300 cm.

larger t and gets an even longer tail.
Concluding, for this simulation setup we find 1.62 ns for the mean time elapsed
between photons hitting the tube and their arrival at the detector with a standard
deviation of 1.43 ns. This is, however, only for the tube alone. For a fully assembled
WOM module, the time resolution of the detector has to be considered as well.

6.5 Detection time resolution 95

7Conclusion and outlook

This work presents a dedicated simulation tool for the WOM, which allows for an
overall better understanding of the sensor by providing unprecedented statistics at
high simulation speed. It is a redevelopment of a preceding prototype [9] and has
improved the simulation in numerous aspects.
The simulation is based on the ray tracing algorithm, which provides a model for
the simulation of light propagation. It enhances the ray tracing algorithm with total
internal reflection, absorption and scattering of light and is prepared for further
extensions.

It has been demonstrated, that the algorithm reproduces all theoretical predictions
(see chapter 4.3). It can thus be concluded that the light propagation is correctly
simulated within the implemented physical framework.

In order to perform the ray tracing itself, a framework for intersections of rays and
general quadrics has been developed (see chapter 3). This framework has been
employed to implement the WOM geometry using two elliptic cylinders, as well as
the geometry of the adiabatic light guide (ALG) via an approximation by quadratic
splines.

The simulation has been optimized for high throughput of photons on a GPU.
Optimizations were applied for the generation of random numbers and to reduce
performance losses caused by branch divergence and load imbalance. Using a
simplified replication of the parallel algorithm, it has been demonstrated that the
applied optimizations yield a performance that is close to a scenario without branch
divergence and load imbalance (see chapter 5).
After all optimizations have been applied, the simulation reaches a throughput of 7
million photons per second on an outdated mid-range GPU for typical simulation
settings. This is a significant improvement compared to the 3000 photons per second
achieved with Fred [5], but also compared to the prototype, which reaches 50 000
photons per second with similar settings.

Finally, the developed tool has been used to simulate and analyze properties of the
WOM (see chapter 6). Here, the simulation tool has enabled the observation of
scattering effects on the WOM efficiency for the first time. Additionally, the simulated

97

efficiency without scattering has been compared to the simplified "flattened model"
and a consistency of more than 99% between both models was found. This result
further supports the usage of the simpler and faster flattened model.
Furthermore, simulations of the ALG geometry have revealed that the current ALG
design does not yield a lossless concentration. As a result, alternatives for the ALG
are currently under investigation. One approach uses the simulation tool in an
attempt of optimizing the design via the spline knots.

Due to the achieved speed, it turned out feasible to deploy the simulation in a
χ2-based fitting routine for experimental data. However, the fitting results and the
routine still require additional work. On the one hand, uncertainties have to be
implemented and a more thorough examination of the objective function in the
parameter space is required in order to cope with the flexibility of the minimization
algorithm. On the other hand, writing results to HDF5 files is not reasonable with
the achieved simulation throughput, since this is the major bottleneck during the
optimization. Therefore, the simulation tool should receive a Python interface with
NumPy arrays in order to speed up the fit at least by a factor of 10.

Possible future enhancements of the algorithm are transmission and subsequent
refraction of light, which is demonstrated in appendix B.1, the correct simulation
of reflections described by the Fresnel equations (see chapter 2.1), the wavelength
dependence of the refractive index and the simulation of rough surfaces.
Furthermore, the geometry in the ray tracing is entirely replaceable. Thus, the simu-
lation software facilitates the simulation of arbitrary geometries without changes
to the core algorithm provided that the required intersection routines are imple-
mented. E.g., based on the quadric intersection framework an implementation of
a geometry consisting of more layers of the module – most importantly separate
layers for the paint and the tube wall – is immediately possible when transmission is
implemented.

Overall, the dedicated simulation tool enables fast simulations of the light position
distribution, the exit angle distributions, the detection efficiency and the time
resolution as well as parameter estimation via fits to experimental data and much
more. All this is possible for the WOM tube, the ALG and for the exploration of many
other potential geometries in the future.

98 Chapter 7 Conclusion and outlook

Appendices

99

AEquations

A.1 Scalar results of the coefficients from the
quadric-ray-intersection

α = d2
xā00 + d2

yā11 + d2
zā22

+ 2(dxdyā01 + dxdzā02 + dydzā12)
(A.1)

β = dx(ā03 + ā00v0x + ā01v0y + ā02v0z)

+ dy(ā13 + ā01v0x + ā11v0y + ā12v0z)

+ dz(ā23 + ā02v0x + ā21v0y + ā22v0z)

(A.2)

γ = ā00v
2
0x + ā11v

2
0y + ā22v

2
0z + ā33

+ 2(ā01v0xv0y + ā02v0xv0y + ā12v0yv0z)

+ 2(ā03v0x + ā13v0y + ā23v0z).

(A.3)

A.2 Full quadric matrix of the elliptic cylinder with
arbitrary position and rotation

After applying a rotation around the z-axis by α followed by a translation of the
quadric, the transformed matrix of the elliptic cylinder calculates from equation 3.7
with the matrix

Ā =

1
a2 0 0 0
0 1

b2 0 0
0 0 0 0
0 0 0 −1

for the untransformed quadric and the matrix

M =

cos(α) − sin(α) 0 x0

sin(α) cos(α) 0 y0

0 0 1 0
0 0 0 1

101

for the transformations. Using the shorthand notation s = sin(α) and c = cos(α)
this yields the result:

Ā′ = (M−1)T Ā M−1

=

c2

a2 + s2

b2 c s(1
a2 − 1

b2) 0 −c(x0c+y0s)
a2 − s(x0s−y0c)

b2

c s(1
a2 − 1

b2) c2

b2 + s2

a2 0 c(x0s−y0c)
b2 + s(−x0c−y0s)

a2

0 0 0 0
−c(x0c+y0s)

a2 − s(x0s−y0c)
b2

c(x0s−y0c
b2 − s(x0c+y0s)

a2 0 (x0s−y0c)2

b2 + (x0c+y0s)2

a2 − 1

 .
(A.4)

A.3 Full quadric matrix of the spline surface of
revolution with arbitrary position

After applying a translation to the quadric, the transformed matrix of the spline
surface of revolution calculates from equation 3.7 with the matrix

Āi =

−1 0 0 0
0 −1 0 0
0 0 αi

βi
2

0 0 βi
2 γi

 .

for the untransformed quadric and the matrix

M =

1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1

for the transformation. This yields the result:

Āi
′ =

−1 0 0 x0

0 −1 0 y0

0 0 αi
1
2(βi − 2z0αi)

x0 y0
1
2(βi − 2z0αi) −x2

0 − y2
0 + z2

0αi − z0βi + γi

 . (A.5)

102 Chapter A Equations

BDetails for extensions

B.1 Transmission and refraction

Figure B.1 demonstrates the construction of the refracted ray’s direction dir′

from the incident ray’s direction dir, with ‖dir‖ = 1 and the surface normal
n, with ‖n‖ = 1. Using equation 2.5, we calculate the refraction angle β =
arcsin

(
n1
n2

sin(α)
)

and can construct dir′:

dir′ = d⊥ · n⊥ + d · (−n)

= d⊥ · (n× (dir × n)) + d · (−n)

= sin(β) · (n× (dir × n))− cos(β) · n (B.1)

OO

Fig. B.1.: Refraction of a light ray at the point O of a surface with normal n and construction
of the refracted ray.

103

CAdditional plots and pictures

C.1 Number of reflections depending on the initial
direction

Additional plots for the number of reflections depending on the starting angles in
different geometries. The parameters used here are listed in table C.1.

Tab. C.1.: Parameters in the simulations for the analysis of the number of reflections
depending on the starting angles.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

5× 106 4.5 Ri 40 1.5 1.0 5× 105 ∞ 20 y0

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. C.1.: Ri = 3.5 cm; y0 = 3.555 cm

105

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. C.2.: Ri = 0.5 cm; y0 = 2.25 cm

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. C.3.: Ri = 0.5 cm; y0 = 4.4955 cm

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. C.4.: Ri = 0.5 cm; y0 = 3.015 cm

106 Chapter C Additional plots and pictures

0 1
2

3
2

0

1
4

1
2

3
4

1

2

3

lo
g(

#r
ef

le
ct

io
ns

)

Fig. C.5.: Ri = 3.0 cm; y0 = 3.015 cm

C.2 Light attenuation

Additional plot for the verification of the Beer-Lambert law. The parameters used
here are listed in table C.2.

Tab. C.2.: Simulation parameters for the verification of the Beer-Lambert law.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

107 4.5 4.3 105 1.58 1.0 λa λs 5× 104 4.499

C.2 Light attenuation 107

0 200 400 600 800 1000
d [cm]

0.0

0.2

0.4

0.6

0.8

N

1e7
Law of Beer-Lambert - = 105.0cm
Simulation

Fig. C.6.: Simulation of absorption and scattering and theoretical curve. The simulation
used the parameters N0 = 7 742 210, λa = 150 cm and λs = 350 cm, which
corresponds to λ = 105 cm for the theoretical curve. The statistic uncertainties of
the measurements with ∆N =

√
N are not displayed here, as they are too small.

C.3 Light distributions at detection plane

Additional plots for the light distributions at the detection plane. The parameters
used here are listed in table C.3.

Tab. C.3.: Parameters for the simulation of light distributions.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 107 4.5 3.5 60 1.5 1.0 100 100 z0 4.4955

108 Chapter C Additional plots and pictures

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. C.7.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 10 cm.

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. C.8.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 15 cm.

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50

r [
cm

]

Fig. C.9.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 50 cm.

C.3 Light distributions at detection plane 109

1
2 0 1

2
R

3.50

3.75

4.00

4.25

4.50
r [

cm
]

Fig. C.10.: Two-dimensional histogram of the light distribution in polar coordinates for
z0 = 6 cm. The tube dimensions are similar to a tube measured at DESY
Zeuthen with Ro = 2.24 cm and Ri = 1.89 cm. Similar to the measurement the
distribution of ϕR is already reasonably uniform at this distance.

Fig. C.11.: Screenshot from the interactive renderer with rays that cause a peak in the light
distribution. The arrows mark the light emission point and the end point.

110 Chapter C Additional plots and pictures

Fig. C.12.: Screenshot from the interactive renderer with rays that cause a peak in the light
distribution. The arrows mark the light emission point and the end point. Some
of the rays start in the opposite direction but still reach the same point.

C.3 Light distributions at detection plane 111

C.4 Fit

Additional plot of a fit result for measurements of another tube.

Tab. C.4.: Simulation parameters for the fit.

N Ro[cm] Ri[cm] L[cm] n1 n2 λa[cm] λs[cm] z0[cm] y0[cm]

2× 106 4.5 4.18 55 1.49 1.0 λa λs di 4.4955

0 10 20 30 40 50 60
d[cm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

on
e

RT: a= 82.62cm, s= 86.40cm, A=0.41
Flattened model:

a= 49.80±0.76cm, A=0.483±0.007
data

Fig. C.13.: Fit of the ray tracing simulation (blue) and the flattened model (orange) to an
efficiency measurement of a tube (green). The measured tube has the code
name "Q2" and the measurement was taken with the "South PMT". The fit of
the ray tracing converged with χ2

red = 0.58. The fit of the flattened model with
χ2
red = 0.32

112 Chapter C Additional plots and pictures

List of Figures

1.1 Overview of the IceCube Neutrino Observatory, including the DeepCore
sub-array and the IceTop surface array. Source of picture: [11]. 3

1.2 Cherenkov radiation photon yield per unit path length dx and per wave-
length interval dλ plotted in blue assuming high energetic charged
leptons. Thus, z = 1 and v/c ≈ 1. n(λ) uses data for ice at a temper-
ature of −7 ◦C [13]. The wavelength-dependent photon attenuation
length of the ice is not included here. The orange point marks the PMT
peak quantum efficiency. The green point marks the border for 50%
transparency of the borosilicate glass. 4

1.3 Schematic composition of the WOM. The closeup depicts the wall of
the hollow cylinder and photon paths inside it. 5

1.4 Absorption and emission spectrum of the WLS paint for the WOM. . . 6

2.1 A viewer looking at a scene through a screen. 10

2.2 Light reflection and transmission at an interface. 11

2.3 Reflectance of both polarizations. 12

2.4 Schematic comparison of CPU and GPU chip area usage. 14

2.5 Data layouts written in C. 16

3.1 Two examples of poor interpolations (orange) for function approxima-
tion. The red data points are samples from the blue curve. 23

3.2 A ray intersecting the polynomial pieces of a spline. The spline approx-
imates a function from the blue sample points. Each spline piece si
approximates the function on the interval [zi, zi+1]. The intersection
routine has to find the intersection with the correct spline piece. 25

3.3 Intersections of rays with the WOM geometry: A ray starting at G
returns no real-valued k for E1. For E2 both kA and kB are positive, but
the correct hit point is A, since kA is the smaller one. A ray starting at
D returns the solution kE for E1, since kD ≈ 0. For E2 the solution kF
is returned, since kC is negative. Since kE < kF the correct point is E. . 28

3.4 Hyperbolic cross section of the ALG. 29

3.5 Quality of the spline approximation for the ALG curve. 30

3.6 Light reflection inside the geometry of a perfectly circular WOM with
inner radius Ri and outer radius Ro. 31

3.7 Light being reflected only at the outer surface of the tube. 33

113

3.8 Two contour plots for equation 3.23. Both plots use Ro = 4.5. The top
one uses y0 = 4.49, while the bottom one uses y0 = 3.5 35

3.9 Light emission under angle ϕ for two different emission points. 36

3.10 Illustration of the loss cone defined by the critical angle θc. Rays emitted
inside the loss cone reach the outer wall at an angle smaller than the
critical angle. 36

4.1 Reflection of a light ray dir at the point O of a surface with normal n
and construction of the reflected ray dir′. 46

4.2 Comparison of distributions of 107 rays in a two-dimensional Lamber-
tian projection. 47

4.3 Visualization of photon tracks for selected simulation geometries in an
OpenGL based renderer. 48

4.4 Reflection angles of a ray at the i-th reflection for different geometries. 49

4.5 Two-dimensional map of the number of reflections depending on the
emission angles ϕ and θ in spherical coordinates of the photon. Photons
without successful reflections are excluded. 50

4.6 Two-sided efficiency for varying light emission point. The orange line
marks the outer surface. The dashed line marks the theoretical maxi-
mum efficiency. 51

4.7 Simulation of absorption and scattering and theoretical curve. The
simulation used the parameters N0 = 7 743 659, λa = 600 cm and
λs = 200 cm, which corresponds to λ = 150 cm for the theoretical curve.
The statistic uncertainties of the measurements with ∆N =

√
N are not

displayed here, as they are too small. 53

5.1 Benchmark result for the simple parallelization. The dashed black line
serves as optical guidance for linearity in the double log scale. 59

5.2 Benchmark result for the grid-stride-loop parallelization. The dashed
black line serves as optical guidance for linearity in the double log scale. 60

5.3 Simulation throughput for the grid-stride-loop parallelization. Higher
values are more desirable. 61

5.4 Distribution of the loop iterations for all photons on a log scale. Very
few photons accomplish more than 7000 reflections due to the low
probability of long travel distances caused by attenuation. This results
in few bins being occupied by less than ten photons or only one photon. 62

5.5 Distributions to showcase branch divergence in the simulation. 63

5.6 Distributions for divergence and idle threads in the simulation after
sorting n. 63

114 List of Figures

5.7 Map of the number of reflections in the space of emission angles for
the parameters: Ro = 4.5 cm; Ri = 4.3 cm; y0 = 4.4955 cm; L = 40 cm;
z0 = 20 cm. The annotations mark three groups of photons. Group one
is presumably not captured in TIR. Group two is only reflected at the
outer surface. Group three is reflected at both surfaces. 65

5.8 Simulation throughput for the final improved simulation. Higher values
are more desirable. 70

6.1 Two-dimensional histograms of the light distribution in the detection
plane. 72

6.2 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 5 cm. At the top and to the right, the marginal distributions
of ϕR and r are included. The patterns in the joined distribution are
discussed in detail in the text. 72

6.3 Two-dimensional histograms of the light distribution in polar coordinates. 73

6.4 Two-dimensional histogram of the light distribution in polar coordinates
with z0 = 5 cm and y0 = 4.0 cm. 73

6.5 Two-dimensional histogram of the light distribution in polar coordinates
for y0 = 4.0 cm. 74

6.6 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 5 cm and λs = 10 cm. 74

6.7 Simulated efficiencies for combinations of λa and λs that all yield
λ = 100 cm. The dashed blue line is the theoretical maximum efficiency
εone ≈ 0.37. 76

6.8 Simulated efficiencies using the same parameters with and without
backscattering. 77

6.9 Simulated efficiencies for different attenuation lengths. The orange
curve increases the amount of scattering, while the green one increases
the amount of absorption. 77

6.10 Schematic of the flattened model. 78

6.11 Comparison of the efficiency calculated in the flattened model to ray
tracing simulations. The upper panel shows plots for the absolute
efficiencies from ray tracing for several WOM sizes and the efficiency
from the flattened model. The lower panel shows the corresponding
ratios between ray tracing and flattened model results. 80

6.12 Fit of the ray tracing simulation (blue) and the flattened model (orange)
to an efficiency measurement (green) of the tube "Q3" with the "South
PMT". The ray tracing fit converged with χ2

red = 0.0124. The flattened
model fit converged with χ2

red = 0.0222. The shaded blue area is the
the simulation error magnified by a factor of 100. 82

6.13 Definition of the angles of the final ray. 84

List of Figures 115

6.14 Distributions of the angle ϕ for simulations with different light emission
distances. 85

6.15 Distribution of the angle θ for light emission at z0 = 5 cm and λa =
106 cm, λs =∞. The green line marks θ = π

2 − θc, which is defined by
the critical angle θc. 86

6.16 Distributions of the angle θ for simulations with attenuation using
λa = 100 cm and λs = 100 cm. 86

6.17 Distribution of the angle ϕF for light emission at z0 = 5 cm and λa =
106 cm, λs =∞. 88

6.18 Distributions of the angle ϕF for simulations with attenuation using
λa = 100 cm and λs = 100 cm. 88

6.19 Distributions of the angle θF . The orange lines mark the angle θF =
π
2 − θc, which is defined by the critical angle θc. 89

6.20 Efficiency of the ALG depending on the cutting length. The efficiency
ε = Ndet

N is defined as the ratio between the number of photons reaching
the end Ndet and number of incoming photons N . The statistical error
∆Ndet =

√
Ndet is not displayed here, since it is not visible. 91

6.21 Nine different photon paths inside the ALG. Depending on the angle
λ and the cutting length, photons can turn back before they reach the
detection plane. Multiple subsequent reflections at the outer surface
are possible, as highlighted by the red circles. 91

6.22 Comparison of efficiency and SNR of CPC and ALG. See text for details. 93

6.23 Simulated time distributions on a log scale for two levels of attenuation
and at different distances of light emission. The green line represents
the probability distribution for the decay of the paint, which is not yet
included in the output distributions. 94

6.24 Time resolution of the WOM tube, including decay time of the paint for
λatt = 300 cm. 95

B.1 Refraction of a light ray at the point O of a surface with normal n and
construction of the refracted ray. 103

C.1 Ri = 3.5 cm; y0 = 3.555 cm . 105

C.2 Ri = 0.5 cm; y0 = 2.25 cm . 106

C.3 Ri = 0.5 cm; y0 = 4.4955 cm . 106

C.4 Ri = 0.5 cm; y0 = 3.015 cm . 106

C.5 Ri = 3.0 cm; y0 = 3.015 cm . 107

C.6 Simulation of absorption and scattering and theoretical curve. The
simulation used the parameters N0 = 7 742 210, λa = 150 cm and
λs = 350 cm, which corresponds to λ = 105 cm for the theoretical curve.
The statistic uncertainties of the measurements with ∆N =

√
N are not

displayed here, as they are too small. 108

116 List of Figures

C.7 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 10 cm. 109

C.8 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 15 cm. 109

C.9 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 50 cm. 109

C.10 Two-dimensional histogram of the light distribution in polar coordinates
for z0 = 6 cm. The tube dimensions are similar to a tube measured
at DESY Zeuthen with Ro = 2.24 cm and Ri = 1.89 cm. Similar to the
measurement the distribution of ϕR is already reasonably uniform at
this distance. 110

C.11 Screenshot from the interactive renderer with rays that cause a peak in
the light distribution. The arrows mark the light emission point and the
end point. 110

C.12 Screenshot from the interactive renderer with rays that cause a peak
in the light distribution. The arrows mark the light emission point and
the end point. Some of the rays start in the opposite direction but still
reach the same point. 111

C.13 Fit of the ray tracing simulation (blue) and the flattened model (orange)
to an efficiency measurement of a tube (green). The measured tube has
the code name "Q2" and the measurement was taken with the "South
PMT". The fit of the ray tracing converged with χ2

red = 0.58. The fit of
the flattened model with χ2

red = 0.32 112

List of Figures 117

List of Figures 119

Acronyms

ALG adiabatic light guide.

ALU arithmetic logic unit.

AoS Array of Structures.

API application programming interface.

CDF cumulative distribution function.

CPU central processing unit.

CU control unit.

CUDA Compute Unified Device Architecture.

DOM Digital Optical Module.

DRAM Dynamic Random Access Memory.

EM electromagnetic.

EMR electromagnetic radiation.

GPGPU general-purpose computing on graphics processing units.

GPU graphics processing unit.

PCIe Peripheral Component Interconnect express.

121

PDF probability density function.

PMT photomultiplier tube.

PRNG pseudo-random number generator.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SM Streaming Multiprocessor.

SNR signal-to-noise-ratio.

SoA Structure of Arrays.

TIR Total Internal Reflection.

UV ultraviolet.

WLS wavelength-shifting.

WOM Wavelength-shifting Optical Module.

122 Acronyms

Bibliography

[1]S. Agostinelli, J. Allison, K. Amako, et al. „Geant4—a simulation toolkit“. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 506.3 (July 2003), pp. 250–303 (cit. on p. 1).

[2]Timo Karg. Geant4 and Geometric Tolerances. WOM Phone Call August 24, 2016. 2016
(cit. on p. 1).

[3]Daniel Popper. „Optical Simulation of the Wavelength-Shifting Optical Module“. Bache-
lor’s Thesis. Johannes Gutenberg-Universität Mainz, Apr. 2017 (cit. on pp. 1, 75).

[5]Sebastian Böser. Private communication. 2019 (cit. on pp. 1, 78, 97).

[7]J. Allison, K. Amako, J. Apostolakis, et al. „Recent developments in Geant4“. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 835 (Nov. 2016), pp. 186–225 (cit. on p. 2).

[8]HEP Software Foundation, : J Apostolakis, et al. HEP Software Foundation Commu-
nity White Paper Working Group - Detector Simulation. 2018. arXiv: 1803 . 04165
[physics.comp-ph] (cit. on p. 2).

[9]Frederic Thomas Kirstein. „Partikelbasierte Lichtausbreitung in Rohren mit elliptischem
Querschnitt mit Hilfe von CUDA“. Bachelor’s Thesis. Johannes Gutenberg-Universität
Mainz, Dec. 2017 (cit. on pp. 2, 55, 97).

[10]Ig. Tamm. „Radiation Emitted by Uniformly Moving Electrons“. In: Selected Papers.
Springer Berlin Heidelberg, 1991, pp. 37–53 (cit. on p. 3).

[11]M.G. Aartsen, M. Ackermann, J. Adams, et al. „The IceCube Neutrino Observatory:
instrumentation and online systems“. In: Journal of Instrumentation 12.03 (2017),
P03012–P03012 (cit. on pp. 3, 4).

[13]Stephen G. Warren. „Optical constants of ice from the ultraviolet to the microwave“. In:
Appl. Opt. 23.8 (1984), pp. 1206–1225 (cit. on p. 4).

[14]Dustin Hebecker, Markus Archinger, Sebastian Böser, et al. „A Wavelength-shifting
Optical Module (WOM) for in-ice neutrino detectors“. In: EPJ Web of Conferences 116
(Jan. 2016), p. 01006 (cit. on p. 4).

[15]Dustin Hebecker. „Development of a single photon detector with wavelength shifting
and light guiding technology“. MA thesis. Rheinische Friedrich-Wilhelms-Universität
Bonn, Sept. 2014 (cit. on p. 5).

123

http://arxiv.org/abs/1803.04165
http://arxiv.org/abs/1803.04165

[16]Arthur Appel. „Some techniques for shading machine renderings of solids“. In: Pro-
ceedings of the April 30–May 2, 1968, spring joint computer conference on - AFIPS '68
(Spring). ACM Press, 1968 (cit. on p. 10).

[17]Wolfgang Demtröder. „Elektromagnetische Wellen in Materie“. In: Experimentalphysik
2: Elektrizität und Optik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 209–
248 (cit. on pp. 11, 13).

[19]Bertil Schmidt, Jorge González-Domínguez, Christian Hundt, and Moritz Schlarb. „Com-
pute Unified Device Architecture“. In: Parallel Programming. Elsevier, 2018, pp. 225–285
(cit. on p. 13).

[20]David Kirk. Programming massively parallel processors : a hands-on approach. Cambridge,
MA: Morgan Kaufmann, 2017 (cit. on p. 13).

[24]Egbert Brieskorn. Lineare Algebra und Analytische Geometrie III - Geometrie im euklidis-
chen Raum. Mit historischen Anmerkungen von Erhard Scholz. 1. Aufl. 2019. Wiesbaden:
Springer Fachmedien Wiesbaden, 2019 (cit. on p. 19).

[25]Josef Hoschek and Dieter Lasser. „Allgemeine Splinekurven“. In: Grundlagen der ge-
ometrischen Datenverarbeitung. Vieweg+Teubner Verlag, 1992, pp. 72–114 (cit. on
p. 24).

[26]Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python. [Online; accessed Sep.03,2019]. 2001– (cit. on pp. 25, 82).

[27]P. Dierckx. „An algorithm for smoothing, differentiation and integration of experimental
data using spline functions“. In: Journal of Computational and Applied Mathematics 1.3
(1975), 165–184 (cit. on p. 26).

[28]Paul Dierckx. An improved algorithm for curve fitting with spline functions. TW Reports
TW54. Department of Computer Science, K.U.Leuven, Belgium, July 1981 (cit. on
p. 26).

[29]Paul Dierckx. „A Fast Algorithm for Smoothing Data on a Rectangular Grid while Using
Spline Functions“. In: SIAM Journal on Numerical Analysis 19.6 (Dec. 1982), pp. 1286–
1304 (cit. on p. 26).

[30]Paul Dierckx. Curve and Surface Fitting With Splines -. New York: Clarendon, 1993
(cit. on p. 26).

[31]Peter Falke. „Entwicklung eines Lichtkonzentrators basierend auf einer Hohlzylinder-
Geometrie“. Bachelor’s Thesis. Rheinische Friedrich-Wilhelms-Universität Bonn, July
2014 (cit. on pp. 28, 90).

[32]Roland Winston, Lun Jiang, and Melissa Ricketts. „Nonimaging optics: a tutorial“. In:
Adv. Opt. Photon. 10.2 (2018), pp. 484–511 (cit. on pp. 28, 92).

[33]Jost-Hinrich Eschenburg. Sternstunden der Mathematik. pp. 47-54. Springer Fachmedien
Wiesbaden, 2017 (cit. on p. 30).

[34]L. Euler, J. Hewlett, F. Horner, J. Bernoulli, and J.L. Lagrange. Elements of Algebra. pp.
272-278. Longman, Orme, 1822 (cit. on p. 30).

[36]Roland Waldi. „Monte-Carlo-Rechnung“. In: Statistische Datenanalyse: Grundlagen und
Methoden für Physiker. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 233–
260 (cit. on pp. 41, 43).

124 Bibliography

[37]John P. Snyder. Map projections: A working manual. 1987 (cit. on p. 47).

[38]Makoto Matsumoto and Takuji Nishimura. „Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator“. In: ACM Trans. Model.
Comput. Simul. 8.1 (Jan. 1998), pp. 3–30 (cit. on p. 55).

[40]Mutsuo Saito. „A Variant of Mersenne Twister Suitable for Graphic Processors“. In:
CoRR abs/1005.4973 (2010). arXiv: 1005.4973 (cit. on p. 56).

[41]George Marsaglia. „Xorshift RNGs“. In: Journal of Statistical Software 8.14 (2003) (cit.
on p. 56).

[43]Pierre L'Ecuyer and Richard Simard. „TestU01“. In: ACM Transactions on Mathematical
Software 33.4 (Aug. 2007), 22–es (cit. on p. 56).

[44]Lawrence E. Bassham III, Andrew L. Rukhin, Juan Soto, et al. SP 800-22 Rev. 1a. A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Tech. rep. Gaithersburg, MD, United States, 2010 (cit. on p. 56).

[46]John Rack-Helleis. Private communication. 2019 (cit. on p. 58).

[48]Benjamin Bastian. „Characterization of cylindrical wavelength shifting optical light
guides.“ MA thesis. Humboldt-Universität zu Berlin, Apr. 2019 (cit. on p. 72).

[49]Esther Ana del Pino Rosendo. „Study of the Light Propagation in the Wavelength-shifting
Optical Module“. MA thesis. Johannes Gutenberg-Universität Mainz, Feb. 2016 (cit. on
p. 73).

[50]John Rack-Helleis. „Efficiency determination of the Wavelength-shifting Optical Module
(WOM)“. MA thesis. Johannes Gutenberg-Universität Mainz, Oct. 2019 (cit. on pp. 75,
79, 82).

[51]Roland Waldi. „Statistische Inferenz“. In: Statistische Datenanalyse: Grundlagen und
Methoden für Physiker. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 97–212
(cit. on p. 81).

[52]J. A. Nelder and R. Mead. „A simplex method for function minimization.“ English. In:
Comput. J. 7 (1965), pp. 308–313 (cit. on pp. 82, 83).

[53]Dustin Hebecker. Private communication. 2019 (cit. on p. 95).

Webpages

[4]Photon Engineering. FRED Optical Engineering Software. 2019. URL: https://photonengr.
com/fred-software/ (visited on Oct. 16, 2019) (cit. on p. 1).

[6]Herb Sutter. The Free Lunch Is Over. 2004. URL: http://www.gotw.ca/publications/
concurrency-ddj.htm (visited on Oct. 6, 2019) (cit. on p. 1).

[12]Hamamatsu Photonics. Hamamatsu Data Sheet – Photomultiplier Tube R7081-02 for
IceCube Experiment. 2019. URL: https://icecube.wisc.edu/~kitamura/NK/PMT/
031112\%20R7081- 02\%20data\%20sheet.pdf (visited on Oct. 17, 2019) (cit. on
p. 4).

Webpages 125

http://arxiv.org/abs/1005.4973
https://photonengr.com/fred-software/
https://photonengr.com/fred-software/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://icecube.wisc.edu/~kitamura/NK/PMT/031112\%20R7081-02\%20data\%20sheet.pdf
https://icecube.wisc.edu/~kitamura/NK/PMT/031112\%20R7081-02\%20data\%20sheet.pdf

[18]NVIDIA Corporation. CUDA Toolkit Programming Guide. 2019. URL: https://docs.
nvidia.com/cuda/cuda- c-programming-guide/index.html (visited on Oct. 11,
2019) (cit. on p. 13).

[21]TechPowerUp. NVIDIA Tesla V100 datasheet. 2017. URL: https://www.techpowerup.
com/gpu-specs/tesla-v100-sxm2-32-gb.c3185 (visited on Oct. 12, 2019) (cit. on
p. 14).

[22]Frank Denneman. Memory Deep Dive: DDR4 Memory. 2015. URL: https://frankdenneman.
nl/2015/02/25/memory-deep-dive-ddr4/ (visited on Oct. 12, 2019) (cit. on p. 14).

[23]PCI-SIG. PCI Express-3.0 Frequently Asked Questions. 2019. URL: https://pcisig.com/
faq?field_category_value\%5B\%5D=pci_express_3.0&keys=bandwidth (visited
on Oct. 12, 2019) (cit. on p. 14).

[35]Florian Thomas. WOMRaT Git. 2019. URL: https://etap-git.physik.uni-mainz.
de/WOM/WOMRaT (visited on Sept. 26, 2019) (cit. on p. 39).

[39]NVIDIA Corporation. cuRAND API reference guide. 2019. URL: https://docs.nvidia.
com/cuda/curand/index.html (visited on Aug. 30, 2019) (cit. on p. 55).

[42]NVIDIA Corporation. CUDA 6.5 Performance Report. 2014. URL: http://developer.
download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_
Report.pdf (visited on Aug. 30, 2019) (cit. on p. 56).

[45]Robert G. Brown. Dieharder: A Random Number Test Suite. 2006. URL: http://webhome.
phy.duke.edu/~rgb/General/dieharder.php (visited on Aug. 30, 2019) (cit. on
p. 56).

[47]The HDF Group. THE HDF5 LIBRARY & FILE FORMAT. 2019. URL: https://www.
hdfgroup.org/solutions/hdf5/ (visited on Sept. 8, 2019) (cit. on p. 71).

126 Bibliography

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-32-gb.c3185
https://www.techpowerup.com/gpu-specs/tesla-v100-sxm2-32-gb.c3185
https://frankdenneman.nl/2015/02/25/memory-deep-dive-ddr4/
https://frankdenneman.nl/2015/02/25/memory-deep-dive-ddr4/
https://pcisig.com/faq?field_category_value\%5B\%5D=pci_express_3.0&keys=bandwidth
https://pcisig.com/faq?field_category_value\%5B\%5D=pci_express_3.0&keys=bandwidth
https://etap-git.physik.uni-mainz.de/WOM/WOMRaT
https://etap-git.physik.uni-mainz.de/WOM/WOMRaT
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
http://developer.download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_Report.pdf
http://developer.download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_Report.pdf
http://developer.download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_Report.pdf
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/

Declaration

I hereby declare that I have written the present thesis independently and without use
of other than the indicated means. I also declare that to the best of my knowledge
all passages taken from published and unpublished sources have been referenced.
The paper has not been submitted for evaluation to any other examining authority
nor has it been published in any form whatsoever.

Mainz, October 25, 2019

Florian Thomas

	Cover
	Titlepage
	Acknowledgement
	Abstract
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Neutrino experiments
	1.2.1 Cherenkov radiation
	1.2.2 IceCube

	1.3 The Wavelength-shifting Optical Module
	1.3.1 Wavelength-shifting paint
	1.3.2 Light guiding tube

	1.4 Thesis Structure

	2 Theory
	2.1 Simulation of light propagation
	2.1.1 Ray tracing
	2.1.2 Reflection and transmission at interfaces
	2.1.3 Light attenuation

	2.2 Processing on GPUs
	2.2.1 GPU hardware design
	2.2.2 CUDA

	3 Simulation geometry
	3.1 Quadric surfaces
	3.1.1 Intersection of ray and quadric
	3.1.2 Coordinate transformations
	3.1.3 Normal vectors

	3.2 Surfaces of revolution
	3.2.1 Spline interpolation
	3.2.2 Quadric approximation of surfaces of revolution

	3.3 Geometry of the WOM
	3.3.1 Intersection of the elliptic cylinder

	3.4 Geometry of the adiabatic lightguide
	3.5 Theoretical properties of the tube
	3.5.1 Reflection angles
	3.5.2 Condition for capturing light
	3.5.3 Light capture efficiency

	4 Implementation and validation of the simulation algorithm
	4.1 Initialization
	4.1.1 Light source
	4.1.2 Isotropically distributed light directions

	4.2 Main simulation loop
	4.2.1 Applying interactions with the medium
	4.2.2 Applying surface interactions

	4.3 Validation of the implementation
	4.3.1 Verification of the isotropic light distribution
	4.3.2 Visual inspection
	4.3.3 Verification of the reflection angles
	4.3.4 Verification of the theoretical capture efficiency
	4.3.5 Verification of the Beer-Lambert law

	5 Parallelization and optimization on the GPU
	5.1 Parallelization
	5.1.1 Random number generation
	5.1.2 Initialization and main loop

	5.2 Performance optimization
	5.2.1 Evaluation of the performance
	5.2.2 Optimization of the initialization
	5.2.3 Further performance issues
	5.2.4 Optimization of the branch divergence
	5.2.5 Final performance

	6 Simulation results
	6.1 Light distribution in detection plane
	6.2 Tube detection efficiency
	6.2.1 Comparison to flattened model
	6.2.2 Fit to experimental data

	6.3 Light exit angles
	6.4 ALG detection efficiency
	6.4.1 A possible alternative for the Falke ALG

	6.5 Detection time resolution

	7 Conclusion and outlook
	Appendices
	A Equations
	A.1 Scalar results of the coefficients from the quadric-ray-intersection
	A.2 Full quadric matrix of the elliptic cylinder with arbitrary position and rotation
	A.3 Full quadric matrix of the spline surface of revolution with arbitrary position

	B Details for extensions
	B.1 Transmission and refraction

	C Additional plots and pictures
	C.1 Number of reflections depending on the initial direction
	C.2 Light attenuation
	C.3 Light distributions at detection plane
	C.4 Fit

	List of Figures
	Acronyms
	Bibliography
	Declaration

