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Abstract

Vehicular Ad Hoc Networks (VANETs) are characterized by intermittent connectivity,

leading to disruption in their communication. The current Internet Protocol Suite

supports end-to-end communication, where nodes requesting content need to know

the exact address of the node holding it. Thus, to support intermittent connectivity,

new architectures have to be designed and tested. Information Centric Networking

(ICN) is an approach aiming at evolving the Internet architecture from host-centric to

the content-centric. An implementation of ICN is Named Data Networking (NDN).

NDN’s main principle is that a content object can be distributed among network

nodes solely on its name. This thesis proposes efficient solutions to improve the

performance of NDN applications in VANETs that address the current communication

challenges caused by vehicular mobility and wireless standards.

First, we study how we can reduce the number of broadcast messages in a VANET, since

broadcasting of messages leads to waste of network resources (decrease of bandwidth

and throughput). In our first contribution, to deal with broadcasting every message

from every node, we investigate how creating unicast paths between vehicles improves

the communication and the content retrieval process. By using unique identifiers

on vehicles, we create routing entries targeting destination vehicles, i.e. which

vehicles should receive each message. Furthermore, we install on vehicles multiple

omnidirectional antennas to enable simultaneous reception and transmission of

a message. This allows us to satisfy vehicular requests compared to the standard

broadcast scheme. But, since omnidirectional antennas are installed on the vehicles,

a message still occupies the wireless medium in all directions. Hence, in our next

contribution we install directional antennas on vehicles, to further limit the dissemi-

nation area of messages, and to not occupy the channel of other vehicles outside of

the spreading area of messages.

In this thesis we also study whether using deployed infrastructure that supports

intermittent connectivity and resource management assists the content retrieval

iii



Abstract

process. To perform so, we use street sensors (Road Side Unit (RSU)) that act as

gateways that connect vehicles in VANETs. We create two routing protocols. In the first

RSUs receive and send all messages from nodes, and in the second RSUs act as a back

up mechanism for nodes. Indeed, we show that with their permanent use collisions

occur, leading to continuous rejection of messages. To deal with this, in our final

contribution, we propose the use of Software Defined Networking (SDN). SDN offers

centralized control by decoupling the network control from its forwarding functions.

We use SDN to construct vehicular paths, to install rules to the forwarding tables of

vehicles and to adjust the RSUs transmission power to enable their connection with

the maximum number of cars, without, however, rejecting all messages.

We evaluate our algorithms using simulation tools and realistic vehicular mobility

traces and we show that the solutions proposed in this thesis are efficient and assist

the content retrieval of an NDN application.

Keywords: Vehicular Ad Hoc Networks, Information Centric Networking, Named Data

Networking, Software Defined Networking
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1
Introduction

As the number of interconnected devices grows together with the number of Data

produced and shared over the Internet, the limitations that exist in its current

architecture pose as a significant challenge for ensuring connectivity. Hence, a new

Internet architecture has been proposed, named Information Centric Networking

(ICN), which ensures Data distribution over interconnected devices.

Moreover, with the introduction of smart capabilities on devices, i.e. the support of

Internet connectivity over different networks, high demand for assuring a proper

Internet connection among them has been emerged. In this thesis, we study a

particular mobile network, the vehicular network. Vehicular networks include

vehicles, public transportation, and some infrastructure deployed on city streets.

These networks have particular characteristics, such as high mobility and interrupted

connections leading to unstable Internet connections among vehicles. We apply the

ICN paradigm to these networks and examine its impact on the distribution of Data

among them.
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Chapter 1. Introduction

1.1 Overview

The origins of the current Internet date back about 50 years, with the U.S. military’s

funding of a research packet switching network named Arpanet, in 1969. Arpanet

connected five sites: UCLA, Stanford, UC Santa Barbara, the University of Utah and

BBN [103]. Many similar packet switching networks were created at that time from

1965 to 1980, namely: the NPL network, the Merit network and the Cyclades network.

Cyclades was the first network to make the hosts, rather than the network itself,

responsible for reliable delivery of Data, using unreliable datagrams and associated

end-to-end protocol mechanisms [169]. In 1973, after the above projects were

successfully delivering Data networking between different hosts, the Internet Protocol

(IP) and the Transmission Control Protocol (TCP) were created and they are still the

basis for today’s Internet protocol suite.

TCP is a protocol that provides a communication scheme between the application

layer, i.e. where an Internet application runs, and IP. TCP’s principle is based on

establishing a connection between two hosts before exchanging any actual Data.

TCP is part of the transport protocol of the Internet protocol suite. One of the most

important functions of TCP is the establishment of the connection through the three-

way handshake function. Before exchanging any information, both end-to-end hosts

have to establish a secure connection by exchanging SYN and ACK messages.

Furthermore, IP is responsible for routing and addressing each message that is

transmitted through the network. In particular, IP defines headers, including IP

addresses in all network packets. These addresses include the source and destination

information of a packet, so it can be forwarded through the network. Until today

IP protocols, have been proposed, mainly the IPv4 and IPv6 protocols, but one, in

particular, is used in today’s networks: IPv4.

When the Internet was created, the communication was only between static

computers without addressing today’s developing mobile devices. In the very late

1980s, commercial Internet service providers (ISPs) began to emerge [2]. Then,

in 1992, the first mass-produced GSM phone from Nokia, named Nokia 1011 was

introduced into the market. Although the smartphone concept was introduced in

the 1990s, it was not until the 2000s and specifically in 2007 that the smartphones as

a concept became popular with introducing the iPhone by Apple [3]. Smartphones

were the first mobile devices available to the public that used the Internet. With this
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1.1. Overview

introduction, the demand for more robust schemes for communication using the

Internet increased. Fig. 1.1 shows the number of Internet users over the last 35 years

(data taken from [104]). As seen in Fig. 1.1 the number of connected users has grown

over 1000% over the last 20 years, with over 55% of the world population using the

Interest.
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Figure 1.1: Internet Users and percentage of world population using the Internet over
the last 25 years

TCP/IP is based on host end-to-end connectivity, something that challenged the

communication of mobile devices, such as smartphones. The main issue TCP/IP is

facing is the increasing number and the heterogeneity of interconnected devices [143].

IPv4 is not suitable to deal with this problem. Hence, IPv6 has been proposed but not

used yet, since it requires the replacement or configuration of any communication

device (routers, switches, etc.). Thus, over the last ten years, new network paradigms

have been proposed, one of the most popular being Information Centric Networking

(ICN) [45, 62, 141]. ICN addresses the limitations that IP creates by addressing the

content by its name and not by the location of hosts. Hence, ICN is a significant
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candidate for a new era of Internet architectures, since messages are addressed via

unique names and nodes can exchange their information based on these names rather

than their location.

In addition, mobile users are limited by the range of transmitters or their proximity

to wireless access points. To solve the above limitations, networks on-the-fly or

else mobile Ad Hoc networks (MANETs) are created. Mobile Ad Hoc networks are

connected usually through a wireless signal and are mostly infrastructure-less [90]

by simultaneously allowing out of range nodes to route Data messages through

intermediate nodes [105]. A sub-category of MANETs are Vehicular Ad Hoc Networks

(VANETs). VANETs include vehicles that are equipped with on-board units (OBUs)

(that are equipped with wireless devices) and sensors that are deployed on streets,

such as Road Side Units (RSUs), cameras, traffic lights, etc. VANET creation is based

upon the need for communication between vehicles in everyday life. VANETs use

the V2X model for communication. V denotes the vehicle and X the component the

vehicle is connected to. For instance, V2V denotes Vehicle to Vehicle communication,

V2C denotes Vehicle to Cloud communication, V2I denotes Vehicle to Infrastructure

communication, etc.

VANETs are considered being an important part of Intelligent Transportation Systems

(ITS) [157]. ITS technology began in the 1970s and has been introduced to cope with

the growing need for traffic management due to the steadily increasing number of

vehicles. Namely, every year the number of total vehicles in Europe increases by

2% with a total of 6.2% increase only in the last 5 years [34]. It is predicted that a

quarter billion of vehicles are connected in 2020 to form new in-vehicle services and

automated driving capabilities [1]. VANETs provide many ITS services to vehicles [38]

and are considered part of ITS since a vehicle acts as a sender, receiver, and forwarder

of information [159].

Nowadays applications that are designed for vehicles can be divided mostly into two

categories: infotainment and safety applications. Infotainment applications include

video streaming, navigation, advertisements, while safety applications may include

traffic information, road accidents, weather conditions and general traffic warnings.

Moreover, VANET applications are usually related to a particular area, for instance,

a navigation application of a city. Hence, information dissemination in VANETs

should be performed in areas where the application content is related. Furthermore,

VANETs are characterized by high mobility of nodes (node mobility usually follows
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a pattern [164]). Nonetheless, this mobility (even if it is predictable) disrupts the

end-to-end paths that TCP/IP is based on. Hence, V2V and V2I communication is

intermittent and produces high overhead, high delays and is characterised by low

bandwidth, due to broadcast message transmissions. To deal with these problems,

over the last years ICN has been proposed and applied in VANETs. ICN targets to

change the current TCP/IP host centric communication model to a future content-

centric communication scheme. In ICN, Data exchange is not based on where a host

is located, but rather on which information is being requested. When applying ICN in

VANETs, therefore, Data exchange is not affected by node mobility and when needed,

Data can be restricted to a particular geographical area.

Moreover, in case that information is not only related to a particular geographical area,

Delay Tolerant Networking (DTN) combined with ICN has been proposed [9, 124, 125].

DTN aims to deliver data in highly-dynamic wireless topologies with intermittent

connectivity. DTN relies on the store-and-forward networking paradigm, allowing

nodes to act as agents by caching and transferring Data among different geographical

locations [125]. This allows communication between nodes and Data dissemination

to different areas of the network, but requires that the information requested will have

a large lifetime, i.e. it will be valid for a long duration. ICN and DTN integration in

VANETs applies for several infotainment applications, e.g. when a vehicle requests

the map of an area before entering this area. However, this combination would not

apply in safety related applications or in infotainment applications that have a short

lifetime, e.g. when requesting a real time traffic video of a road.

For implementing the ICN scheme, Content-Centric Networking (CCN) or Named

Data Networking (NDN) have been proposed. They are analysed in Chapter 2.2. NDN

networks are based on a reactive message retrieval process, where nodes request

content to retrieve it. One main advantage of the NDN networks is also the in node

caching capability; each node receiving a content object can store it in its cache.

This thesis addresses some key challenges that exist in VANETs and propose solutions

for content retrieval in VANETs in a particular geographical area using the ICN and

specifically the NDN paradigm. We describe these challenges together with the

contributions of this thesis in the following Sections.
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1.2 Research Questions

In this Section, we describe the research questions addressed in this thesis.

1.2.1 Message Broadcasting in VANETs

One of the most important characteristic of VANETs is the intermittent connectivity

between nodes. This interrupted connectivity derives from the mobility of vehicles.

In particular, when a vehicle moves, its connection with other vehicles in its vicinity

can break. Hence, messages that vehicles send to other nodes around their vicinity

may not be delivered. To address this issue of message path breaks and intermittent

connectivity in VANETs, always broadcasting messages is considered the most reliable

way of communication. Wi-Fi standards, such as the Wireless Access in Vehicular

Environments (WAVE) standard [11], are developed and applied specifically in

vehicular networks. WAVE relies on always broadcasting messages in the network.

But these broadcast transmissions lead to several problems in vehicular networks,

especially when the number of interconnected cars is high (e.g. in a city centre, during

rush hours, etc.).

The first problem of broadcast is the waste of network resources. When many devices

always broadcast messages, the bandwidth and throughput of the system decrease

[60]. This is an important limitation, since the WAVE standard, which is based on IEEE

802.11p, uses channels of only 10 MHz bandwidth in the 5.9 GHz band and provides

up to 27 Mbps data transmission rate in perfect conditions. Secondly, broadcasting

leads to message collisions in the communication channel. This produces errors

in the transmitted messages (e.g. coding errors) leading to unsuccessful message

transmissions. So, nodes can neither act nor rebroadcast messages according to their

routing strategy. This leads either to an increase in the number of messages in the

channel or to unsatisfied content retrieval attempts (e.g. a vehicle cannot download a

city map). Therefore, the first research question (RQ1) that is important to address

is how to reduce the number of broadcast transmissions of messages in VANETs

when the number of interconnected cars is high.
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1.2.2 Spreading Area of Messages in VANETs

When transmitting a message through Wi-Fi using omnidirectional antennas,

electromagnetic waves travel towards all directions. Even when the message

transmission is unicast, the message occupies the channel according to the radiation

pattern of the antenna that is installed in the device. In vehicular networks, when

the number of connected cars is high because vehicles travel, it is important to target

directly the destination node of the message, to avoid any unnecessary occupation

of the channel, as well as to limit the nodes receiving the message. To achieve this,

nodes can have directional antennas installed, or use beamforming techniques to

steer their antennas towards a particular direction. Therefore, the second research

question (RQ2) that is important to address is how to limit the dissemination area of

transmitted messages in VANETs when the number of interconnected cars is high.

1.2.3 Routing Protocols Using Infrastructure for VANETs

Network architectures need to support vehicular connectivity. Although V2V is

an ideal solution, in practice when the VANET is either sparse or dense, deployed

network infrastructure can assist in message routing. Even though several network

architectures that use infrastructure have been proposed, many of them do not

consider integrating ICN. In ICN messages are exchanged according to their content

and not on the location of hosts. This advantage makes ICN a crucial component to

integrate into a VANET since all content applications must be able to timely react to

the local demand as well as to the current physical characteristics of the vehicular

network. Therefore, the third research question (RQ3) that is essential to study is

whether deployed infrastructure, e.g. Road Side Units, combined with ICN and

appropriate routing protocols assist content retrieval in VANETs.

1.2.4 Centralized V2I Communication for VANETs

With a highly dynamic environment such as vehicular networks, a decentralized

communication as supported by V2V communication may not be appropriate since it

creates a large amount of overhead within the network [119]. Centralized architectures

in VANETs can improve the overall vehicular connectivity, as well as offer mobility

and resource management mechanisms [109], by having a global network view and a

unified configuration interface [57]. Moreover, a centralized architecture should
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be able to support efficient content retrieval policies, especially when the same

content object is requested by many nodes. This can be supported by ICN, where the

content is requested based on its name. Therefore, the fourth research question (RQ4)

that is essential to study is whether one centralized architecture combined with

the integration of ICN could improve network performance, in terms of vehicular

connectivity and content retrieval, in high density VANETs.

1.3 Thesis Contributions

A general communication concept of VANETs is when vehicles communicate with

each other (Vehicle to Vehicle- V2V communication) or with the infrastructure (Vehicle

to Infrastructure - V2I communication) to deploy services (e.g. Internet access,

music download) [44]. In this thesis, we use both V2V and V2I communication. Our

main goal is to address the research questions RQ1- RQ4, as described in Sections

Sections 1.2.1–1.2.4 to improve network connectivity and application performance in

an NDN-VANET.

1.3.1 V2V Communication

The first part of this thesis is dedicated solely on V2V communication addressing

RQ1 and RQ2. We believe that a vehicle should be autonomous and not rely on any

infrastructure assistance to satisfy its application requirements. In the literature,

recent studies focus on communication in VANETs by presenting architectures

that require large-scale networks, not only in terms of the number of vehicles but

also in terms of coverage area and infrastructure [54, 57]. They focus on cloud

services to establish connections between areas and to perform computations inside

proposed clouds. These studies, however, do not consider small areas that vehicles

can communicate with each other to perform their tasks. This Vehicle to Vehicle (V2V)

communication enables offloading traffic from clouds and cellular infrastructure. We

base the first two contributions of this thesis only on V2V communication.

1.3.1.1 Enhanced Routing Protocols for Reducing Message Broadcasting Using

V2V Communication

In our first contribution, we develop routing algorithms to cope with the message

broadcasts in VANETs [78,84], to address the RQ1, as described in Section 1.2.1 . When
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using Wi-Fi in VANETs, every message transmission is broadcast to all connected

network nodes. This provides excessive redundancy within the network by creating

high overhead, limiting bandwidth and network throughput. To solve the broadcast

problem, we propose a new routing protocol that avoids broadcasting requests and

instead uses unicast transmissions when possible.

In particular, we assume that a content object is related only to a particular area.

Then, we implement reactive routing, where the content object is available only when

it is requested and we create routing entries in nodes. The entries are created from

broadcasting a request until the request reaches the content source. When the content

object returns to the requester, all intermediate nodes receiving the content object

insert an entry into their routing tables. Hence, paths are created by identifying

the next nodes that a request should be transmitted. Then, all other requests are

unicast to nodes according to the routing table. Our routing protocol, therefore, allows

broadcasting of requests only when routing entries are not available. Otherwise,

messages are unicast to reduce both overhead and resource utilization in the network.

In addition, we develop and analyse three main route selection techniques, and

evaluate which one is the best for our network.

1.3.1.2 Enhanced Solution for Limiting the Spreading Area of Messages using V2V

Communication

In our next contribution [81, 83], we develop routing algorithms to reduce the

dissemination area of a message, thus addressing RQ2, as described in Section

1.2.2. In particular, we start by following the idea of unicasting messages, when

possible, to avoid redundant transmissions and overhead. Note that we use only V2V

communication. Moreover, to further reduce the dissemination area of a message we

install in each node directional antennas. Each antenna radiates its highest power

towards a particular direction, allowing us to point directly to the area that we want

to transmit a message. In addition, we transfer the responsibility of retransmitting a

message from request-centric, i.e. only the requester retransmits a message when its

Time To Live (TTL) expires, to a distributed approach, where each node is responsible

for retransmitting a message when its TTL expires [81].

1.3.1.3 Summary of Contributions of V2V Communication

To summarise, in the first part we address RQ1 and RQ2 to deal with the issue of

broadcasting messages into the network and to limit the dissemination area of a

message. We unicast messages, when there is an entry to the routing table, to reduce
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broadcasting messages. We also install in nodes directional antennas that point to

particular locations and select only one directional antenna for unicast transmissions.

We evaluate our protocols using network simulators. We used vehicular traces from the

city centre of Luxembourg [47, 48], and compared our proposed protocols with other

established routing protocols. Our results show that by limiting message broadcasts,

we retrieve more content objects quicker, thus highlighting the efficiency of our

network. Secondly, we show that by using directional antennas to send messages

towards particular locations, we reduce the utilization of network resources.

1.3.2 V2I Communication

In the second part of the thesis, we provide solutions for RQ3 and RQ4 by using only

V2I communication. We assume that a vehicle can partly rely on infrastructure that

is already deployed on streets in cities. Infrastructure helps to perform necessary

tasks, such as providing traffic information in vehicles, establishing forwarding rules

and increasing the content availability in the VANET. As infrastructure, first, we use

only Road Side Units (RSUs) that are deployed on streets. Secondly, we use RSUs and

Software Defined Networking (SDN), to centralize the network, combined with NDN

in a VANET.

1.3.2.1 Proposed Routing Protocols Using V2I Communication

In our next contribution, we propose routing protocols using V2I for content

retrieval [80] to study whether V2I communication can assist in message routing and

content retrieval, thus addressing RQ3, as described in Section 1.2.3.

Our main goal is to use deployed network infrastructure and use it as part of the

routing process of a message. In particular, we use infrastructure as a main or a back-

up network component that is responsible for the routing of packets. In this work we

use:

• already proposed data structures by NDN.

• RSUs deployed along roads.

First, we discover content sources, which then advertise their content objects back

to the RSUs. We highlight that network nodes have no prior knowledge about which

content object other nodes hold [80]. Our approach highlights that an easily deployed

infrastructure, such as RSUs, without proper configuration, i.e. without changing
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its characteristics (e.g. transmission power), fails to function as the main network

component and fails to manage intense traffic in case of high vehicle density. We show

that due to collisions around the installed RSU, the communication fails and the RSU

falls back into rejecting all messages. Nevertheless, we also highlight that using an

RSU only when necessary, we manage to reduce the broadcast storm around it and

effectively use it as the main network node.

1.3.2.2 Enhanced Solution to Centralize VANETs using V2I Communication

In our next contribution, we address RQ4, as described in Section 1.2.4. Our goals

are to study whether a centralized architecture with ICN can improve network

performance in VANETs, in terms of vehicular connectivity and content retrieval. For

centralizing the VANET, we use Software Defined Networking (SDN) [94, 168]. SDN

is considered as one of the promising solutions that can handle the dynamic nature

and dense deployment scenarios of future VANET applications [167]. Decoupling

of the network forwarding functions (data plane) from the network control (control

plane) together with its convenient deployment and its reliability brings potentials to

offer flexibility, programmability, and centralized control knowledge. This facilitates

flexible network management and control for large scale VANETs [79].

We study what impact a configurable infrastructure can have on a VANET [82]. We

treat all RSUs deployed on roads as switches and we apply SDN, allowing configuration

of characteristics of the RSUs via an SDN controller. In addition, we use different node

configurations to examine the most beneficial configuration for the vehicles. The SDN

controller is responsible for adjusting the transmission power of the RSUs that are

deployed on the streets to increase the number of cars connected to them. In addition,

the SDN controller performs path calculation for a request and populates the routing

tables of vehicles. This allows vehicles to always have a fallback mechanism for

content retrieval, without overloading the network neither with excessive broadcasts

nor with downloading content from the Internet (via cellular interfaces that are costly).

Therefore, except for the 1-hop broadcast of beacons in the control channel for

identifying the connected cars to the RSUs, we eliminate all broadcast transmissions

that are needed for content exchange and use only unicast transmissions via a

particular communication channel.

1.3.2.3 Summary of Contributions of V2I Communication

To summarise, in the second part we address RQ3 and RQ4. We study whether

infrastructure can assist in message routing and what impact a centralized architecture
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has on VANETs. We evaluate our protocols using network simulators. We used

vehicular traces from the city centre of Luxembourg [47, 48], where we choose a

particular area during rush hours. Our results show, first, that by using RSUs as back

up nodes, more data objects are delivered in requester nodes, compared when all

messages pass through RSUs. Second, by centralize the network, we can calculate

efficient routing paths of messages and offload messages from the network, thus

highlighting the efficiency of applying a centralized architecture in VANETs.

1.4 Thesis Outline

The remainder of the thesis is structured as follows.

Chapter 2 reviews the theoretical background and some of the related works that

contributed to and were used for the approaches proposed in this thesis. Then, our

main contributions are structured in two parts: Part I (Chapters 3, 4) introduces

our work on Vehicle to Vehicle (V2V) communication and presents our two V2V

proposed routing protocols. Part II (Chapters 5, 6) presents our proposed Vehicle

to Infrastructure (V2I) techniques and protocols we develop in this thesis. In the

following paragraphs, we summarize the contributions included in each Chapter.

Chapter 3 addresses RQ1 by proposing our first two main routing protocols that deal

with the continuous broadcasting of messages, as described in Section 1.3.1.1. The first

is called Multipath, Multihop and Multichannel NDN Routing Protocol (MMM-VNDN).

In MMM-VNDN we propose the use of MAC addresses as unique identifiers for each

node, and we perform routing decisions based on these identifiers. In particular,

we include new fields inside the NDN messages that contain MAC addresses. We

broadcast every message and based on these addresses, each node decides if it will

keep or discard the incoming message. Then, we select the next hop to transmit a

message based on three different next hop selection techniques. The second routing

algorithm that we propose extends MMM-VNDN and is called improved MMM-VNDN,

iMMM-VNDN. In iMMM-VNDN we eliminate broadcast transmissions when it is

possible. Thus, we transmit messages by selecting an appropriate MAC address from

a node’s routing table to unicast a message. Therefore, we leave the NDN messages

intact without introducing new fields. Finally, as in MMM-VNDN, iMMM-VNDN also

selects the next hop based on the same three different next hop selection techniques.

Chapter 4 addresses RQ2 by focusing on directional forwarding of messages and
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creating paths in an NDN-VANET, as described in Section 1.3.1.2. We develop a

new approach called enhanced Geographical aware routing protocol for NDN-

VANETs, eGaRP. In eGaRP, each node is equipped with directional antennas. We

introduce an antenna selection algorithm for transmitting a message only through

one directional antenna. This helps to reduce the spreading area of the message.

eGaRP’s underlying protocol is iMMM-VNDN. This means that when one antenna

is selected for directional forwarding towards a particular location, the message

transmission from that antenna is unicast. Finally, with eGaRP, a node detects path

breaks and/or congestion or collisions in the channel and, then, decides by itself

when to send the message to another node. The detection of a broken path and

the retransmission of messages are based on a timer-contention-based forwarding

algorithm.

Chapter 5 addresses RQ3 by introducing two new routing protocols for NDN-VANETs

that use RSUs to route messages, as described in Section 1.3.2.1. In these protocols,

we introduce two phases for forwarding a message. The first, called learning phase,

is based on beacon transmissions between vehicles and between vehicles and RSUs.

Through this beacon exchange, vehicles and RSUs know with which vehicles they are

connected and populate their routing tables. Afterwards, we introduce our routing

approaches. In the first, called linked approach, when a vehicle requests a content

object, it always sends its request to the nearest RSU. Then, the RSU (based on

the learning phase) transmits this request to the node that has the content object.

Therefore, in the linked approach, RSUs act as a gateway between requesters and

content sources. In the second routing algorithm, called hybrid approach, a vehicle

decides according to its FIB table where to send a message. In case of a routing entry

pointing to other vehicles, then the vehicle unicasts the message by selecting that

entry. Otherwise, the vehicle sends its message to its nearest RSU. Therefore, in this

approach, the RSUs assist in the routing of a message, only when a route to the content

source does not exist and act as a backup mechanism to perform content retrieval.

Chapter 6 addresses RQ4 by proposing a new routing protocol using SDN, as described

in Section 1.3.2.2. Specifically, we study the impact of SDN on vehicular environments.

To perform so, we use an SDN controller application (which is deployed away from city

streets) to change characteristics of Road Side Units (RSUs) and to assist in message

routing. The SDN controller has global knowledge of network connections. In addition,

the SDN controller instructs vehicles on how to satisfy their requests, i.e. how and

where to send a message, and finally, it notifies vehicles about emergencies, such
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as road accidents. We experiment with two different node configurations. In the

first configuration, we install one omnidirectional and multiple directional antennas

both in vehicles and RSUs. Vehicles are communicating with each other and with the

deployed RSUs using the omnidirectional antenna via the control channel. Content

retrieval is performed via the directional antennas in a service channel. In the

second configuration, we install multiple omnidirectional antennas both in vehicles

and RSUs. We treat these antennas as a MIMO system, and content retrieval is

performed via this system. The SDN controller is connected to the RSUs and collects

information about vehicular and network traffic from them. Then, the SDN controller

calculates the number of connected cars to an RSU and decides whether to change

its transmission power, if it calculates that more cars can connect to the RSU. Finally,

the SDN controller having both local and global knowledge of the network topology,

assists in path calculation, when a request is being issued and populates the routing

tables of nodes on the path taking part in the content exchange process.

Finally, Chapter 7 concludes the thesis by summarizing the contributions of this work

and addresses future work that can be investigated for dealing with the limitations of

vehicular environments.
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2
Related Work and Theoretical

Background

The following Chapter presents the key aspects of Vehicular Ad Hoc Networks

(VANETs), Named Data Networking (NDN) and Software Defined Networking (SDN).

This thesis is based on these three main concepts. In addition, this chapter presents

the related state of the art work on these fields and their combination.

2.1 Vehicular Ad Hoc Networks

The emerging rise of mobile devices combined with advances in wireless communica-

tions over the last decade has led to the creation of Mobile Ad Hoc Networks (MANETs).

These are mostly infrastructure less networks that are connected through a wireless

signal. Vehicular Ad Hoc Networks (VANETs) are addressed in vehicles and are a

sub-category of MANETs. Their creation is based upon the need for communication

between vehicles in everyday life. A VANET architecture includes vehicles that are

equipped with an On-Board-Unit (OBU) and infrastructure, such as Road Side Units
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(RSUs) and/or cellular network infrastructure.

Nowadays, reliable communication between vehicles, together with the support of

a variety of vehicular applications, is the key for success in vehicular networking.

Vehicular applications are divided mostly into three categories: infotainment, traffic

efficiency and management, and active road safety applications [85]. Infotainment

applications include cooperative local services and global Internet services. Traffic

safety applications include speed management and co-operative navigation, while

safety applications include traffic information, road accident warnings and/or weather

conditions [85]. For development and deployment of safety-related applications a

VANET should gather, aggregate, validate and disseminate appropriate information

with the specified requirements, e.g. low latency [77]. For instance, [100] develops a

robust broadcast scheme for disseminating safety information in a VANET. On the

other hand, [16] deals with the broadcast problem that exists in VANETs. This thesis

deals with infotainment applications and how vehicles can retrieve the requested

information.

For V2V communication and implementation of vehicular applications, the IEEE

802.11p standard has been proposed and is considered as the de facto standard [110].

For V2X communication, Cellular V2X (C-V2X) has been proposed. C-V2X uses

the standardized 3GPP standardised 4G Long Term Evolution (LTE) or 5G cellular

connectivity. Many studies have focused on the application of 4G and 5G to VANETs

[14, 49, 68, 87, 114, 118] and how cloud systems can improve a VANET performance

[23, 39, 41, 69]. Both standards operate in the 5.9 GHz band [73]. In this thesis, we use

the Wireless Access Vehicular Environments (WAVE) protocol, which derives from the

IEEE 802.11p standard. The WAVE protocol stack is composed of several components,

most notable the 802.11p and allows a multichannel operation. The IEEE 1609.4

standard defines the operation of the WAVE protocol. It defines several channels, each

for different application, and with different characteristics [70, 73].

As far as the communication scheme design in VANETs, many works have been

proposed over the last 20 years. One of the most challenging characteristics in a

VANET is the intermittent connectivity, derived from the vehicular movement and,

therefore, from the vehicular path breaks. To assist connectivity, studies analyse the

exact placement that the RSUs should have [149], while others use RSUs to assist for

communication between vehicles [97]. Inter-vehicle communication is also used to

gather traffic information amongst vehicles [129] to create platoon systems resulting
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in the enhancement of safety, traffic flow and road capacity [120].

2.2 Information Centric Networking

Information Centric Networking (ICN) is a future Internet architecture that aims to

eliminate the concept of the host location that an object can be found. In particular,

in ICN information is named at the network layer with unique identifiers and, then, is

exchanged based on these unique identifiers [153].

A key challenge of ICN is how the routing of the desired information will be performed.

There are many approaches. Some of them include flooding based approaches, where

the request is broadcast to all of its connected nodes; intra-domain routing, where

the request is routed based on distance vectors or link-state vectors. The main

disadvantage of flooding is the excessive overhead that creates into the network

by always broadcasting all packets. In comparison, distance vector and link-state

routing algorithms suffer from slow convergence, infinite routing loops and limited

scalability [86].

In general, ICN focuses on replacing the current host-based Internet architecture.

Therefore, many ICN paradigms have been developed and are still in active

development. The most popular of them are the following:

• Data Oriented Network Architecture (DONA [91]) is an ICN paradigm that

replaces the URLs with standard names in each object. DONA supports on

path caching for information availability.

• Publish Subscribe Internet Technologies (PURSUIT [63, 153]) is based on the

publish-subscribe approach. In PURSUIT a source publishes information and

a client subscribes to the content it needs. Again the names of the objects are

unique and nodes can forward the content objects and cache them.

• COntent Mediator for content-aware nETworks (COMET [10]) designs

mechanisms for mapping information names to particular servers and

hosts depending on the state of the network.

• Named Data Networking (NDN [162]) will be described in detail in the rest of

this Section.
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Figure 2.1: IP and NDN stacks. [162]

Named Data Networking

Content-Centric Networking (CCN) or Named Data Networking (NDN) [162] is a

variant of Information Centric Networking (ICN) architecture. NDN is one of the most

popular ICN paradigms and it is based on the principle that a content object can be

distributed among network nodes only based on its name. In NDN the structure of

a node changes, by eliminating the TCP/IP stack and replacing it by the NDN layer,

where objects are being processed. The NDN stack is shown in Fig. 2.1. The objects in

NDN are called content chunks and replace the IP packets.

Content-Centric Networking (CCN) or Named Data Networking (NDN) [162] is a

variant of Information Centric Networking (ICN) architecture. NDN is one of the most

popular ICN paradigms, and it is based on the principle that a content object can be

distributed among network nodes only based on its name. In NDN the structure of

a node changes, by eliminating the TCP/IP stack and replacing it by the NDN layer,

where objects are being processed. The NDN stack is shown in Fig. 2.1. The objects in

NDN are called content chunks and replace the IP packets.

NDN messages are either requests, named Interest messages, or contain the

information requested, named Data messages. Hence, when a node requests a

content object it sends an Interest message and when a node responds to this Interest

message with the requested content object, it sends a Data message. Each node in

NDN has a unique structure that is based on particular Data structures. The Content

Store acts as a cache and stores content objects. The Forward Information Base (FIB)

table acts as a routing table. The Pending Interest Table (PIT) keeps track of the

18



2.3. Applying ICN in Vehicular Networks

Content
Store

Pending Interest
Table (PIT) FIB

Interest

forward

Data
add incoming

 interface drop or 
NACK

Downstream Upstream

cache
Pending Interest

Table (PIT)
Dataforward

discard Data
Content

Store

lookup hitlookup miss

Figure 2.2: Interest processing at an NDN node. [162]

forwarded Interests to avoid retransmission of the same Interest.

Fig. 2.2 describes the process of the Interest message when it arrives at a node. First,

the node checks its Content Store Table to check if the content object is cached. If it

is, the Data message is retrieved and is sent back to the node that sent the Interest.

If the Content Store does not contain the requested content object, then the node

compares the Interest name to its PIT. If there exists a match, this means that the node

has forwarded the Interest before and there is no need for further transmission. In this

case, the node stores the interface where the Interest came from in the PIT and then

discards the Interest. If there is no match, the node inserts the Interest together with

the interface that the Interest came from into the PIT. Then, the node checks its FIB

table to identify possible interfaces to transmit the interest. The FIB acts as a routing

table. The Data message follows the PIT entries to be forwarded back to the requester

node.

2.3 Applying ICN in Vehicular Networks

The main problem of NDN lies in its application to large-scale networks. Firstly, today’s

technology (both from a hardware and software point of view) is not ready to support
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NDN in an Internet scale architecture [116]. Named Data Networking was designed

for fixed networks, where each server has many interfaces to communicate with the

connected to it nodes and can select one interface to send and/or receive Interests

and/or Data messages. Many works apply the NDN principle in fixed networks [32,

99, 108, 140, 156] and exploit multiple paths for Interest forwarding [52, 122, 163]. For

instance, [144] proposes to split the Interest messages of the same request and send

them through multiple paths at the same time. Furthermore, study schemes for

congestion control in NDN static networks [40,113,160] have been proposed. [53,113]

propose congestion control mechanisms, by utilizing the Round Trip Time (RTT)

estimations to measure the available bandwidth. Then, these works send Interests

though the best face based on estimations (for example bandwidth estimation), and

by implementing the AIMD congestion control mechanism.

Studies also focus on applying the NDN paradigm to Mobile Ad Hoc Networks

(MANETs). [96] uses a controller that controls each routing strategy of every mobile

device. It uses multiple paths to forward Interests towards specific servers. In [17] a

geographic Interest forwarding scheme is proposed, where the goal is to balance the

energy consumption in the network. In [30, 31] users are being selected to transfer

popular content objects.

Moreover, in wireless communications all NDN routers broadcast Interest packets

to neighbour nodes to receive the requested content. Based on this assumption, in

a large-scale network the size of FIB tables on each NDN node is increased due to

the high number of possible connections and content sources. Subsequently, the

possibility of congestion at paths through the network is very high, the size of the

FIB table of each node is large, and thus, the computational time of a simple retrieval

process is increased. In that case, in a mobile network like a VANET, adequate methods

for updating and deleting the FIB tables of all nodes should be developed.

There have been several attempts to encounter these problems; some of them try

to identify a path between a requester and a content source and store this path for

future references [29]. Authors in [26] propose CCVN, content Zcentric networking

for VANETs, where they extend the framework of CCN to support content delivery

on top of IEEE 802.11p. They broadcast messages in the entire network, but in case

of collisions, the messages are re-broadcast according to the distance from previous

senders. In [156] authors suggest using the different interfaces of a CCN node and

transmitting Interests simultaneously through multiple interfaces. In addition, they
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propose the utilization of NACK messages to avoid the dissatisfaction of an Interest.

Another major concern is the content distribution in an NDN-VANET. In a VANET,

broadcasting requests is a common solution for retrieving data. But, since

broadcasting consumes many network resources, not all requests should be

broadcast. A solution for this is to classify broadcast protocols with the premises

that not all broadcasts are the same. Each protocol should be context-aware based

on the application requirements [55]. Furthermore, content prefetching poses as a

major research issue, as it allows the increase of content availability throughout the

network. Content can be prefetched in static network nodes throughout the path

that a vehicle is travelling [107]. Also, content can be cached in RSUs that are placed

along the road such as to eliminate redundant caching, i.e. for the content to be

available everywhere without wasting caching resources [15]. Moreover, NDN can

be extended with publish/subscribe approaches to provide efficient data collection

and dissemination [56]. Vehicles can also exchange content information about

their cached contents during their communication process [158]. In the following

subchapters, we present four relevant works that use NDN in VANETs.

2.3.1 Content-Centric Networking in VANETs (CRoWN)

One of the first studies combining CCN with VANETs is the Content-Centric

Networking in Vehicular Ad Hoc Networks (CRoWN) [27]. CroWN is a scalable network

protocol that controls channel overhearing. It also employs multihop forwarding of

messages and Data caching to support node mobility.

In the CCN/NDN concept, the content object that is requested is fragmented in chunks.

This avoids overflowing the channel by exceeding possible bandwidth limitations that

are posed from the dedicated WAVE standard (c.f. Section 2.1) and to avoid possible

congestion. Subsequently, for a node to receive successfully a complete content object,

it should send as many Interest messages as the number of content chunks that the

content object is divided into.

CROWN employs the previous statement. A node requesting a content object sends the

first Interest message, named Basic Interest (BInt), to request the first content chunk

and to start the retrieval process. The following Interests, named Acknowledgement-

Interests (AInt), are used to request consequent content chunks and to acknowledge

previously successfully received Data messages.
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Figure 2.3: CRoWN discovery and forwarding stages

The protocol consists of three data structures. As in native CCN, a node in CRoWN

consists of a Pending Interest Table (PIT) for keeping track of forwarded Interest and

a Content Store to cache received Data. Moreover, it employs a new data structure

named Content Provider Table (CPT) to keep track of the available content providers.

In CRoWN all message transmissions are broadcast. The scheme functions in two

stages. The first stage is named Provider Discovery. In this stage, nodes broadcast BInts

to discover available content providers around them. If a node receives a BInt and

does not have a content in its cache (or does not provide a content), then, it continues

broadcasting the BInt to its neighbours. To reduce redundancy and broadcast storms,

nodes overhear BInt transmissions. When a BInt transmission is overheard, nodes

cancel their own scheduled transmission of the BInt. When a node receives a Data

message, it caches it into its Content Store, it maintains its entry into the PIT and it

inserts an entry into its CPT.

The second stage of CRoWN is the chunk retrieval, where requester nodes broadcast

AInts into the network. Inside the AInt a requester adds the distance from the selected

provider, as well as an acknowledgement of previous received Data messages. An
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intermediate node that receives an AInt will continue broadcasting it only if there is

an entry into its PIT and if it realizes that it is closer to the selected provider than the

field into the AInt. Both stages are shown in Fig. 2.3.

The main disadvantage of CRoWN is that all requests are always broadcasts.

Broadcasting leads to packet collisions in the channel, unnecessary utilization

of network resources and can create broadcast storms leading to lower network

throughout.

2.3.2 Controlled Data Packets Propagation in Vehicular Named

Data Networks (CONET)

In VANETs broadcasting every message is considered the standard way of communica-

tion, because of the broadcast nature of the wireless medium. Therefore, in an NDN

VANET, when a node requests a content object, it broadcasts an Interest message into

the network. The corresponding Data message follows the PIT entries of the Interest,

but it is still broadcast into the network. The Data message is discarded if a node has

not requested this content that the Data describes.

Hence, to deal with the broadcasting of a Data, CONET (Controlled Data Packets

Propagation in Vehicular Named Data Networks) [20] uses a hop-count in each node

that the Interest message passes. Every time the Interest is transmitted to a node, this

hop count is incremented by 1. When the Interest reaches a node that can respond

with the corresponding Data, the hop count of the Interest is extracted and it is added

to the field of the Data message named: “TTL” (Time To Live). Then, the Data is

broadcast to the network. Every node receiving the Data will decrease the TTL field by

1. If a node receives the Data message that its TTL field is 0 or less, then the Data is

discarded. By this, CONET eliminates possible duplicate transmissions of the Data,

leading to lower potential congestion and fewer broadcast storms.

CONET deals with Data propagation without minimizing redundant Interest

transmissions. CONET deals with the broadcasting of a Data message by transmitting

a Data message, when the hop counter is higher than zero. But, since the Data

message follows the entries on the PIT of an Interest message, this Data message

will be propagated to multiple nodes before this hop counter expires, creating

unnecessary transmissions and utilization of network resources.
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2.3.3 Density-Aware Delay-Tolerant Interest Forwarding Strategy

in VANETs (DADT)

To deal with the several issues that the Interest broadcasting in NDN in vehicular

environments creates, [95] proposes a Density-Aware Delay-Tolerant (DADT) Interest

forwarding strategy to retrieve traffic data in vehicular NDN. Interest broadcasts create

broadcast storms, which result in much packet loss and huge transmission overhead.

DADT is a solution for this by using geographical characteristics to retrieve traffic data

using Delay Tolerant Networking.

In DADT, every node is equipped with a GPS device to know its current coordinates at

any given time. DADT forwarding includes two communication phases: rebroadcast

and retransmission. In the rebroadcast phase, each node receiving the Interest creates

a timer and forwards the Interest after this timer expires. Hence, DADT defines a

forwarding priority based on the timer on each node. The factors that affect this

priority are:

• The nodes farther away from the last hop should have higher forwarding priority

so that the Interest can be propagated faster with fewer hops.

• The nodes closer to data location should have higher forwarding priority, thus,

the Interest could have more chances to be forwarded to its desired area.

When a node waiting to transmit an Interest message overhears the Interest

transmission, it stops rebroadcasting of the Interest and deletes it.

In the retransmission phase, DADT defines a spatial priority, which measures how

close the neighbour is to the shortest line between the current node and the data

location. This priority is calculated according to the neighbour list. Interests will be

retransmitted only if the priority is higher than zero. Before retransmitting an Interest,

if a node overhears the transmission of the same Interest from another node, it will

cancel its own Interest retransmission.

DADT applies selective broadcasting, meaning that it reduces the number of

broadcasts transmissions but does not minimize them. Broadcasting increases the

network traffic, wastes resources and lowers the bandwidth of the network.
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2.3.4 Geographical Opportunistic Forwarding Protocol in VANETs

(GOFP)

To support path breaks and deal with the location-independent routing that exists

in traditional NDN [98] proposes a Geographical Opportunistic Forwarding Protocol

(GOFP) for vehicular networks using NDN. GOFP is based on the fact that constant

connectivity between the vehicles and the service platform cannot be considered

reliable because of sparse vehicle density or high mobility of vehicles. GOFP also

supports the store-carry-and-forward paradigm, meaning that a vehicle can store an

Interest as in NDN, carry an Interest, instead of instant forwarding it as in native NDN,

and forward it according to the routing strategy.

To perform such a task, GOFP incorporates the geographic location of a particular

location-dependent application (such as parking space) named Point of Interest (POI)

into the naming of an Interest. Moreover, in GOFP the messages (both Interests and

Data) contain a Time-To-Live (TTL) field that defines the lifetime of the messages.

These messages are discarded once the TTL expires. Finally, messages contain a

trajectory info field that shows the consumer’s (in case of an Interest) or the content

provider’s (in case of Data) trajectory. A node requesting a content object will send the

Interest to a neighbour vehicle only if the neighbour vehicle moves closer to the POI

than the content requester.

When a vehicle that has the content object receives the Interest message, it will forward

the Data either to a vehicle that moves towards the content provider or to a vehicle

that has higher speed (and moves towards the content provider) than it.

GOFP proposes geographic forwarding of messages, which is considered as a viable

solution for vehicular networks. But still, NDN principles are compromised if Data do

not follow the PIT entries of the Interest, but they are only forwarded based on the

location of the content requester nodes.

2.3.5 Interest Forwarding Based on GeoLocations in VANETs

(Navigo)

One of the main principles of NDN is the decoupling of content objects from their

locations. A node can request a content object just by knowing its unique identifier.

This is beneficial for VANETs that are characterized by high mobility and path breaks.
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Figure 2.4: Mapping Geofaces to particular areas [72]

In such a network, the standardized way of retrieving a content object is to broadcast

requests to neighbour nodes, expecting that one node will respond with the requested

Data.

Navigo [72] exploits NDN. To reduce overhead, Navigo introduces geocasting strategies

for content retrieval. One of the main challenges in the combination of NDN with

VANETs is how to identify properly content providers. In this case, Navigo introduces

geofaces that bind a particular content object to a particular location on the map on

the premises that vehicular applications usually concern a particular geographical

area. Specifically, in Navigo, the world is divided into regions according to the Military

Grid Reference System (MGRS), c.f. Fig. 2.4.

When a node sends an Interest message, it broadcasts the Interest towards all locations.

A node responding to this Interest will include in its Data its geolocation. The requester

and all intermediate nodes receiving the Data will bind the Data to this location on the

map for future requests. The routing strategy of an Interest is, therefore, the following:

• A requester searches its FIB to identify possible entries to forward the Interest.

If such entries exist, then the Interest is forwarded towards the geolocation

contained in the FIB entry. If there are not, the Interest is broadcast. The latter

is called exploration phase.

• If multiple entries are available in the FIB, the Interests are routed in a round-

robin way. If only one FIB entry is available, the Interest is forwarded to this
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geolocation with a probability p. The Interest is broadcast with a probability

1−p.

• If the Interest times out, then the FIB entry (and therefore, the geolocation) is

removed and another FIB entry is selected. If there is not another FIB entry,

then the Interest falls back to the exploration phase.

Furthermore, to forward an Interest towards a particular geolocation, each node

calculates a path towards the destination. This path is calculated using the Dijkstra

shortest path algorithm by assigning each street as an edge and an intersection as a

node. Then, particular costs are assigned to edges that are inversely proportional to

the number of lanes. When an Interest is incoming in a node, the node forwards the

Interest only if it is closer to the destination area (destination geolocation) than the

node that sent the Interest.

Navigo uses geographical locations to forward Interest and Data messages. Navigo

helps by reducing the number of retransmitted Interest packets and, hence, it avoids

Interest flooding. However, in Navigo, content names include the location of the

content provider. This limits the use of in-network caching and causes major changes

in the FIB table structure. The change of native NDN architecture is not preferable,

especially for large-scale deployment [88].

2.3.6 Multiple Unicast Paths Forwarding Protocol (MUPF)

As mentioned in Section 1.2.1 packet broadcasting has a significant impact in VANETs,

since broadcasting leads to packet loss. To reduce broadcasting, [123] proposes a

multiple unicast paths forwarding (MUPF) protocol that makes the Data packets

return along opposite paths, efficiently decreasing the excess of useless network traffic.

MUPF uses motion parameters of routing nodes and link quality metrics, such as link

expiration time and link available probability, to choose the next hop of a message.

MUPF suggests the creation of two new messages named REQ and REPLY. When a

content requester wants to send an Interest, it checks its FIB to identify next hops to

send the message. When there are no entries into its FIB, the node broadcasts a REQ

message. Every node receiving the REQ message replies with a REPLY message that is

also broadcast into the network. If a node is a content provider, its id is added to the

REPLY message.
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MUPF adds a Weight Table (WT) and Neighbour Table (NT) in each node to record

the motion parameters and neighbour information. The motion parameters are:

1. the distance that the two vehicles have,

2. the direction that denotes the direction of the next hop,

3. the traffic density, which is defined as a function of the road connectivity to the

average number of neighbours within a given transmission range per second.

Based on WT and NT, MUPF creates unicast paths from the requester node to the

content provider. These paths are inserted into the FIB table of the requester node.

When multiple content providers exist, multiple entries to different providers exist

in the requester’s FIB. In this case, a content requester uses link quality metrics to

select the path that the Interest should go through. Fig. 2.5 shows the forwarding of

the Interest and a Data message according to MUPF.

Figure 2.5: MUPF Interest and Data forwarding [51]

MUPF creates new messages for discovering neighbours and content providers. These

new messages create excessive traffic for the network and are not compliant with the

wireless vehicular standards and especially the WAVE protocol. Moreover, MUPF deals

with path breaks by broadcasting REQ and REPLY messages, each time a path between

a content provider and a requester breaks. This also creates unnecessary traffic to
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the network. Finally, MUPF fails to deal with path breaks, when the Data message is

forwarded back to the requester node.

2.3.7 Hybrid Forwarding Strategy Using NDN in VANETs (HVNDN)

To avoid always broadcasting message and the lack of routing entries in FIB tables of

nodes, [51] proposes HVNDN, a hybrid forwarding strategy through NDN. Specifically,

HVNDN introduces an opportunistic and probabilistic forwarding strategy based on

the geographical location of nodes. In particular, applications and routing entries

are characterized by their location dependence or independence and Interests are

forwarded based on this information. Moreover, HVNDN uses a new retransmission

and acknowledgement mechanism to guarantee packet reliability.

In HVNDN all vehicles are equipped with two Data structures, the PIT and CS. There

are two types of Interests, Location Dependent Interests (L-Int) and Blind Interests

(Location Independent) named B-Int. Each vehicle contains a unique id. HVNDN

assumes that the id and the location of the content provider are known. When

an application is location dependent, a content requester broadcasts an L-Int by

indicating the geographical coordinates of the Interest location. This Interest contains

the geographical coordinates of the content requester and the destination coordinates

of the content provider. When an intermediate node receives the Interest, it will check

whether the node is closer to the content provider, by checking its own coordinates

and the coordinates of the Interest. If the node is not closer to the content provider,

then the Interest will be discarded. Otherwise, the node will check its CS and PIT to

identify if it has the requested Data cached, or it has forwarded the Interest before. If

these checks fail, the intermediate node defines a timer and broadcasts the Interest

when this timer expires. In addition, if a node does not receive an acknowledgement

before the expiration of this timer, it will also retransmit the Interest.

Nodes responding with a Data message will delay its transmission to avoid collisions.

Data messages contain an acknowledgement field that is being set when nodes

forward the Data. To avoid the waste of bandwidth, nodes broadcasting the Data set

the value of the acknowledgement field to valid to inform vehicles around them to

cancel their forwarding of the same Data message.

When an application is location independent, a content request broadcasts a B-Int

message. All nodes receiving this B-Int message will continue forwarding based on
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a probability. This probability depends on the velocity of the vehicle, by its distance

from the content source and its transmission range. The Data are being forwarded

according to NDN mechanisms.

Using acknowledgements in vehicular networks is suboptimal because paths between

vehicles can break unexpectedly. If a path breaks during the Data propagation from

the content provider to the content requester, intermediate nodes that the Interest

passed through will retransmit the Interest. If an intermediate node has moved away

from the content provider, this leads to excessive Interests retransmissions that will

burden the channel with unnecessary packets.

2.3.8 IP-Based Vehicular Content-Centric Networking (IVCCN)

In vehicular CCN networks broadcasting messages can increase content retrieval costs,

since it usually creates redundant copies in the network, introduces high overhead,

and wastes network resources. In addition, the native nature of CCN is for the Data

message to follow the PITs that the Interest passed to go back to its destination. The

latter, though, can create partitioning in a mobile network, when a node leaves and

breaks the routing path. To solve these problems, IP-based Vehicular Content-Centric

Networking (IVCCN) [148] is presented. IVCCN reduces the content object acquisition

cost and improves the success rate by using the address-centric unicast instead of the

content-centric broadcast transmission for content object acquisition.

In IVCCN the content object is related to a given geographical location, and the

content retrieval is based on message exchanges between vehicles and Access Points

(APs). In general, an area is divided into logical rectangular subnets. The subnets

are placed next to each other so that all areas are covered. Routing between subnets

can be performed. Since the subnets are not overlapping, one unique identifier can

be assigned to each subnet. Fig. 2.6 illustrates the proposed network architecture

consisting of vehicles, access points and access routers (AR) that connect many APs

and are connected to the Internet.

IVCCN defines unique unicast addresses and content addresses. This distinction is

based on the fact that a unicast address is used for routing a content request, without

flooding the network with broadcast transmissions. A content address is used for

seeking the content object in a given geographical location. In general, the unicast

address and the content address define the source address and the destination address
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Figure 2.6: IVCCN architecture

of a message (not necessarily in this order).

A vehicle moving into different subnets constructs a unicast address independently,

depending on which subnet it is located in. When a vehicle produces a content object

and enters a new subnet, it advertises this content object to the AP that is mapped

to this area. In particular, the content provider creates a message, named shared

message, with the following fields:

• The source address is a newly constructed unicast address. The unicast address

contains the geographical coordinates and the unique id of the provider.

• The destination address is a newly constructed content address. The content

address contains the coordinates of the AP, the coordinates of the content object

(in this case these are the same as the coordinates of the content provider) and

the content object id.

• The payload which includes the content object.

Then, the vehicle sends this shared message, and this message is forwarded hop by
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hop until it reaches the AP. Every intermediate vehicle receiving the share message

adds the content id, the content provider geographical address, and the payload in

their content table.

Let us assume that a vehicle requesting a content object is located inside a subnet

with an AP. We also assume that this content object is related to a particular area, and

the requester knows the geographical coordinates of the content object. Finally, we

assume that the AP is located closer to the provider than to the requester. For instance,

in Fig. 2.6 assuming that the content provider is located south of AP2, V1 is located

closer to AP2 than to the content provider. In this case, the vehicle requesting the

content object, first, sends a C-Req message. The C-Req consists of one unicast and

one content address:

• The unicast address contains the geographical coordinates and the id of the

requester and is used as a source address.

• The content address contains the geographical coordinates of the AP that is

located in the current subnet and the content object address and is used as a

destination address.

When an intermediate vehicle receives the C-Req, it sends back the requested content

object, if it possesses it. Otherwise, the C-Req reaches the AP. If the AP has the

requested content object, the AP sends it back to the requester node. If the AP does

not have the requested content object, it initiates a content creation algorithm to

obtain the requested content object. The content creation algorithm is the following:

• First, the AP creates a create message, without changing the source and

destination addresses.

• Second, the AP sends this create message towards the content provider.

• Third, the AP receives the content object (either from an intermediate node or

from the content provider) via a share message.

After the successful delivery of the content object to the AP, the AP sends the content

object back to the requester node.

If we assume that the content provider and the content requester are located in

different subnets, then the content requester will send the C-Req message to the AP
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that is located in its subnet. After this AP will forward the message to its connected

AR. The latter will send the message to the AR that is connected with an AP inside the

provider’s subnet. Then, the message will be forwarded to the AP located inside the

content provider’s subnet and, finally, this AP will forward the message to the content

provider. The content object will follow the same route to return to the requester node

while being cached in every intermediate node that passes by. For instance, in Fig.

2.6, if the content is located in S2, then the requester V1 sends its request to AP2. AP2

sends it to AR1, AR1 sends it AR2 and the latter to the AP located closer to the provider.

2.4 Software Defined Networking

In this Subchapter we describe Software Defined Networking (SDN) and we present

studies that combine SDN with NDN.

2.4.1 SDN Architecture

Software Defined Networking (SDN) is a paradigm for network architectures

with the potential to reshape the field of computer networking [92]. SDN’s key

principle is programmable networks that are centralized and flexible. SDN considers

increasing network functionality by separating the data and the control plane as

well as by logically centralizing network control. SDN simplifies networking in

both development and deployment of new protocols and applications. In SDN, the

control plane controls the network infrastructure and installs forwarding rules to it.

Network infrastructure just accepts all the actions from the control plane without

implementing and running its own software and protocols.

The generalized simplified SDN architecture [93] can be seen in Fig. 2.7. The

architecture consists of three layers:

• The application layer, where all applications are running.

• The control layer, where all applications are programmed. The control layer

provides supervision of the network forwarding state and makes the network

application abstract.

• The infrastructure layer that consists of all the network components like routers,

switches etc. Switches are controlled through software running in an external,
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Figure 2.7: SDN layers

decoupled control plane [76].

SDN separates the control from the data plane through the control and the data

plane abstraction. The data plane consists of forwarding elements such as virtual

and physical switches. These switches allow for packet switching and forwarding.

SDN includes a flow table for packet forwarding that contains flow configurations and

matches each flow with the action named in the table. The control plane provides a

global overview of the network. This global overview provides a collection of network

nodes. The nodes’ forwarding tables support features that link information, queues

and ports and attribute the node’s switching potentiality [76].

Some efforts have been made to bring the concept of SDN into wireless networks

[58, 127, 128, 136, 165]. However, applying SDN to the wireless domain is challenging

due to the fact that wireless networks feature many characteristics that rarely exist in

wired networks. Because of the intrinsic nature of non-stationary wireless channels,

the wireless communication service quality is subject to wireless transmission power,

interferences, etc. [79]. To tackle these problems, [126] creates a testbed management

system to evaluate various types of SDN applications in wireless sensor networks. SDN

has been proposed to cope with the challenges of mobile networks, such as VANETs.

SDN in VANETs has the potential to offer flexibility, programmability, centralization,

elasticity and agility [101]. [142, 155] describe an architecture combining SDN with

Fog computing for management and orchestration of vehicular networks.

Moreover, SDN can be combined with ICN to offer flexibility and scalability in
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Figure 2.8: SDN-based CCN traffic management architecture [137]

networks [102]. In wireless communications, ICN and in particular, CCN/NDN native

broadcasting of Interest messages for content discovery create usually unnecessary

network redundancy, something that SDN could limit. By combining SDN with

NDN and by assigning one local SDN controller to a cluster of nodes, [135] creates

a forwarding strategy that allows for robust communication between nodes. An

extension of CONET (Section 2.3.2) has also been proposed [145]. In the next chapters,

we describe some core studies that combine ICN with SDN.

2.4.2 SDN-Based CCN Traffic Management

An SDN-based autonomic CCN traffic management is presented in [137]. The network

architecture is presented in Fig. 2.8. It consists of an SDN controller, SDN switches

and CCN routers. The switches and the routers cooperate and perform specialized

actions.

In the SDN switch, the CCN protocol is installed. The data flow processing of a switch

is divided into four phases:

• Flow identification identifies a CCN flow.

• Processing Type Classification recognizes the processing type and then goes
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into different pipeline processes.

• Pipeline Processing writes the content object name into a flow entry.

• Queue Scheduling, where users indicate which packets will be sent to which

queues.

To enable CCN in SDN, the existing data structures as defined in Section 2.2 are

required in the CCN routers. But, to enable CCN only having the same data structures

is not sufficient; additional functions are developed to enable the centralization

that SDN offers. First, a communication function is performed, where the routers

communicate directly with the SDN controller or with one of their neighbours. The

second function is the traffic configuration, where CCN routers add functional fields

to packets such as queue scheduling and queue management.

Finally, the SDN controller is connected with all other network devices and is in charge

of configuring all rules for packet processing. In addition, the controller manages the

routing, since it receives messages both from switches and routers and can calculate

(according to the desired routing protocol) paths. Then, the controller creates flow

rules and sends them to the switches to be executed. Last, the controller receives

packets from all network components and uses them for different functions, such as

classification of network nodes, scheduling rules, etc.

[137] does not perform any simulations to evaluate their proposals. Hence, it is

unclear if the proposed architecture would burden the network and is a feasible

solution for network management.

2.4.3 SDN-Based Routing Scheme for CCN (SRSC)

The SDN-based routing scheme for CCN(SRSC) architecture is depicted in Fig. 2.9.

SRSC uses only the typical CCN data structures and Interests and Data messages for

communication between routers and controllers, as described in Section 2.2. When

an Interest is issued from a requester (in this study a requester is a node containing a

router), if there is not an entry into the FIB table, the Interest is being sent into the

SDN controller for path calculation. The SDN controller has a global overview of all

network connections. To obtain this overview, the controller performs a bootstrapping

step: The controller broadcasts an Interest message to the network. Nodes receiving

this Interest message respond to it with their id. Then the forwarding step is executed:
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Figure 2.9: SRSC proposed architecture [35]

The router issues an Interest, and in case of no match in its FIB or Content Store, the

Interest is being sent in the SDN controller. Then, the controller finds a path to satisfy

the Interest and sends this path to the requester node. The requester node extracts

the path and sends the Interest to the node according to the calculated path.

SRSC does not consider the traffic on each node. Hence, when a node is connected

with many, all network traffic can be passed through that node, leading to congestion,

collisions and eventually the node can start rejecting all incoming to it messages.

2.4.4 Software Defined Content-Centric Network (SDCCN)

In the Software Defined Content-Centric Network (SDCCN) the CCN architecture is

combined with the SDN paradigm for content retrieval [43]. The network topology

consists of CCN routers, users, and a CCN controller. The routers have the same

structure as in Section 2.2. SDCCN adds one additional data structure named: Cache

Rules Table (CRT). CRT stores rules for the successful caching or the rejection of a

content object.

In SDCCN, when an Interest is requested, if there is no match to the data structures, it is
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forwarded towards the CCN controller. Then, the controller is responsible for installing

forwarding rules to the FIB table of the requester. In addition, when a Content Store

of a node overflows, the node will send a control message to the controller notifying

about the lack of storage. The controller installs storing rules to the CRT and can also

remove content objects from the congested Content Store.

In SDCCN, the controller does not create paths according to the current network

state. In addition, a new data structure is proposed, something that compromises the

CCN/NDN principle.

2.4.5 Use Cases of Applying SDN and NDN to VANETs

Use cases that improve the performance of the overall VANET, by using Named Data

Networking (NDN) in vehicular nodes together with Software Defined Network are

presented in [79]. Road Side Units (RSUs) are deployed in city streets and act as

switches. These RSUs communicate with controllers that act as the control plane of

the network. The use cases of combining SDN and NDN in VANETs are the following:

• Population of Forward Information Base (FIB) tables in nodes via an SDN

controller. The SDN controller having an overview of all network links can

populate the FIB tables of vehicular nodes to facilitate routing. This use case is

implemented in Chapter 6.

• The SDN controller can dictate to vehicles with multiple interfaces installed

which interface is proper to use. This selection is based on the connected links

through these interfaces and is dependent on the content objects that vehicles

exchange. This use case is implemented in Chapter 6.

• Exchange of messages between different region inside a city. Specifically, inside

a city, we define clusters of vehicles. These clusters are formed based on the

coverage area of an RSU, i.e. all vehicles existing in the coverage area of an RSU

can form a cluster. Then we utilize SDN to dictate to vehicles moving between

different clusters to transfer potential messages. This is depicted in Fig. 2.10.
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Figure 2.10: Communication between different areas that are defined by RSUs range

2.4.6 Conclusions

In this Chapter we describe core principles and characteristics of VANETs and NDN

and present studies that utilize NDN in VANETs. Moreover, we describe SDN and

cite studies that combine SDN and ICN in fixed networks. Although many works

that integrate ICN in VANETs have been proposed, the issue of broadcasting every
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message is still open. Many works do not consider the issue of Interest broadcasting

(c.f. Chapters 2.3.1- 2.3.2), others propose to create counters to terminate message

broadcasting when the counter exceeds a threshold (c.f. Chapter 2.3.2), other propose

to reduce the number of broadcast transmissions using DTN (c.f. Chapter 2.3.3), to

use geographical locations to route a message (c.f. Chapters 2.3.4-2.3.5) or to create

new broadcast messages to deal with path breaks in VANETs (c.f. Chapters 2.3.6-2.3.7]).

But, still the open issue remains on how we can reduce or even eliminate the broadcast

transmissions. We address this issue on Chapter 3, by unicasting both Interest and

Data messages in a VANET.

Moreover, ICN integration in VANETs does not address the open issue of how to limit

the dissemination area of transmitted messages. Studies have proposed the use of

directional antennas and beamforming techniques ( [57, 61, 151, 152, 154, 161]) in

VANETs, but without evaluating how it affects application performance. Therefore, in

Chapter 4 we use directional antennas to target the destination nodes together with

NDN and message unicasting, and we show that this improves the performance of the

NDN application.

Infrastructure can address the communication limitations that exist in V2V

communication. For instance, a large number of interconnected devices (vehicles)

permanently broadcasting requests and establishing connections among them can

lead to collisions on the channel and to message errors. Using infrastructure the

impact of such problems could be reduced. Moreover, RSUs can assist in message

transmissions, path selections or timer constructions for transmitting messages [138].

But still, the open issue remains how using RSUs as a main network component

can affect the performance of NDN applications installed in vehicles. Therefore, in

Chapter 5 we propose the integration of ICN in VANETs with RSUs that act as a main

network component. RSUs act as either a central gateway, i.e. every message passes

through an RSU, or back-up gateway, where every node decides whether a message

should be sent towards an RSU.

Although, SDN has proposed for wireless networks [58, 127, 128, 136, 165], its

applicability is still an open issue. On the other hand, SDN can deal with the

permanent broadcasting of messages in an NDN-VANET. But still the challenge

that is not answered in the presented studies is whether the integration of SDN in

NDN-VANETs would be beneficial. Specifically, how could SDN improve the NDN

application performance and how this impacts the network. The network conditions
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would be significantly different, for instance, when a consumer node sends 100

Interests and it receives 100 Data responses, than when a consumer nodes sends 100

Interests, receives 50 Data responses and periodically retransmits the unsatisfied

Interests. Therefore, in Chapter 6 we use SDN in an NDN-VANET and we study its

applicability and its impact in the NDN application.
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Part I

Vehicle to Vehicle Communication

In this part routing algorithms using NDN for Vehicle to Vehicle (V2V) communication

are presented. The main idea for V2V communication is that a vehicle should be

autonomous and decide by itself, when, where, and how its content requests should

be sent. In particular, in Chapter 3 we focus on reducing message broadcasting

transmissions and we create paths between vehicles. To perform such a task, requests

from vehicles are being broadcast periodically to discover neighbour nodes. During

broadcasting, routing entries between vehicles are being created and inserted into

the routing tables. After creating paths, when a vehicle produces or receives a request

from another vehicle it unicasts this request to another node based on its routing

table. Hence, we use paths consisting of many nodes to create multihop connections

between a requester node and a provider node by unicasting messages. In Chapter

4 we focus on limit the dissemination area of a message. To perform this, we install

directional antennas in vehicles, and each vehicle decides when, how and where a

message should be sent. Thus, in this part, we focus on V2V communication and

propose routing solutions for vehicles moving across city streets.





3
A Multihop and Multipath Routing

Protocol Using NDN for VANETs

3.1 Introduction

In this Chapter, we tackle the problem as described in Section 1.2.1, thus, proposing

answers to RQ1, which formulates the problem of how to reduce the number of

broadcast transmissions of messages in VANETs when the number of interconnected

cars is high. The nature of Wi-Fi is always broadcasting messages. This broadcasting

leads to waste of resources since unnecessary transmissions occur in the network

occupying the channel and reducing the bandwidth. Moreover, broadcasting on the

same channel leads to message collisions. Therefore, in this Chapter we investigate

how we can reduce the message broadcast transmissions from all nodes to offload

traffic from the communication channel.

In particular, we present two Vehicle to Vehicle (V2V) routing protocols using NDN to

support vehicular mobility in a dynamic changing networking vehicular environment

by reducing broadcast transmissions. In the first routing protocol, named a V2V
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Multihop, Multipath and Multichannel routing strategy for VANETs using NDN, MMM-

VNDN, we filter broadcast messages based on new fields that we introduced into the

NDN messages and into the NDN data structures [78]. In the second routing approach,

which presents an enhanced work of the first routing protocol and is named improved

MMM-VNDN iMMM-VNDN [84], we use both broadcast and unicast transmissions to

transmit messages into the network.

The main difference between the two protocols, MMM-VNDN and iMMM-VNDN is

the NDN message transmission. In MMM-VNDN we created two new fields in the

NDN messages and insert the MAC addresses of the interface of nodes into these

fields. Then, we always use broadcast MAC addresses and every node receiving this

message broadcasts it into the network. Next, based on these created fields in the

NDN messages, we accept or reject incoming messages. Specifically, these newly

created fields determine whether a node will accept or reject a message on top of its

broadcast transmission.

In iMMM-VNDN, we extract the MAC addresses from the strategy layer of the node,

and we use them as fields inside this layer. Thus, we leave the original NDN messages

unchanged. The strategy layer of NDN is equivalent to the data link layer of the OSI

model. Then, we create unicast transmissions to send messages. In this Chapter,

we will introduce both protocols. We will show that by reducing the broadcast

transmissions of messages in iMMM-VNDN (since we create unicast transmissions)

and by containing no additional information in the messages, iMMM-VNDN achieves

better results in terms of content retrieval and latency, compared to MMM-VNDN and

other state of the art protocols.

In particular, the contributions of this Chapter can be summarized as follows:

• We develop two Vehicle to Vehicle (V2V) routing protocols, where a node

requesting information broadcasts an Interest message to discover potential

content sources to create routing entries.

• We exploit the latency and connection timing of these routing entries, and, thus,

we develop three different techniques to select a next hop:

– We distribute the traffic uniformly to all available next hop.

– We choose next hops based on their latency. To define the latency, we

measure how much time passed from the time a node sends an Interest to

the time the nodes receives the corresponding Data message.
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– We distribute traffic uniformly to all available next hops with the lowest

latency.

We show that the proposed routing protocols allow the network to support the mobility

of vehicles, and enable it to adjust to most scenarios that could happen to a VANET,

i.e. content source out of range of requester, etc.

The rest of the Chapter is organized as follows: In Section 3.2 we introduce our

architecture and present the routing decisions that we developed for both of our

protocols. We, then, present the implementation together with our simulation results

(Section 3.3). Finally, we draw conclusions in Section 3.4.

3.2 Routing

Due to the mobility of nodes in VANETs, we developed two algorithms that discover

content sources, create routing entries, and transmit messages based on information

that these routing entries provide.

In VANETs, due to the node mobility and the broadcast characteristics of the wireless

medium (Wi-Fi), studies (e.g. [71]) propose not to exploit the FIB for any routing

decisions. In both of our algorithms, i.e. Multihop, Multipath and Multi-channel

for VANETs using NDN (MMM-VNDN) and improved MMM-VNDN (iMMM-VNDN),

the first task is to identify the content source(s) and to create paths between it and

the requester node(s), which can be used to receive messages. We define as path a

sequence of nodes that a message passes through, starting from the requester node

and ending in the destination node. This sequence consists of next hops of the routing

entries of nodes that a message passes.

Because of that characteristic, the current NDN logic has been extended and

developed as follows: First for MMM-VNDN, fields that contain unique identifiers

(MAC addresses) are added in both Interest and Data messages. In particular, for

MMM-VNDN we propose two new fields in the Interest and Data message, in addition

to the existing NDN header:

• Target MAC Address (TMA) is the destination MAC address of the message. Thus,

it shows the next hop that the Interest or Data message will be sent to.
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• Origin MAC Address (OMA) is the source MAC address of the message. It shows

the network device of the node that the Interest or Data message has been sent

from (previous hop).

OMA and TMA assist in identifying intermediate nodes transmitting messages and

creating paths, as described Section 3.2.1. In addition, new fields in the PIT and FIB

tables of every node have been added to the existing NDN implementation. In iMMM-

VNDN we leave the NDN header unchanged, i.e. these new fields are not included in

the NDN messages. Instead, we extract the MAC addresses, the origin MAC address

and the target MAC address, from the strategy layer at each NDN node. Then, we

use the OMA and the TMA as fields inside the strategy layer of each node to perform

routing decisions.

3.2.1 Routing Decisions

As described in Chapter 2.2, in NDN to route an Interest message, a node checks the

FIB table to find available information regarding the next hop.

First Phase - Flooding First, every node consists of an empty FIB table (there are no

entries to the content source). Thus, it should populate its FIB table to find possible

routes to the content source.

A node that requests content (requester), broadcasts an Interest message for its request.

This Interest message contains the MAC address of the interface of the node that has

Algorithm 1 Routing of an Interest from a requester node

1: procedure CHECK FIB
2: if F I BEntr y = ; then
3: Or i g i nM AC ← M y M AC
4: Tar g et M AC ← NU LL . in MMM-VNDN or
5: Tar g et M AC ← Br oadcast M AC . in iMMM-VNDN
6: tr ansmi t (Inter est ,nexthop)
7: else
8: Or i g i nM AC ← M y M AC
9: Tar g et M AC ← Sel ect (nexthop)

10: tr ansmi t (Inter est ,nexthop)
11: end if
12: end procedure
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sent the message in the Origin MAC Address (OMA) field (in this case the MAC Address

of the requester). In MMM-VNDN the Target MAC Address (TMA) field in this Interest

message is empty. In iMMM-VNDN, the TMA in this Interest message is a broadcast

MAC address. In Algorithm 1 from lines 2-6, the routing of an Interest from a node

with an empty FIB entry is described. The node enters in the OMA its MAC address

and in its TMA either null (in MMM-VNDN) or the broadcast MAC address (in iMMM-

VNDN).

(a) Broadcasting of the Interest by the requester node for the first time

(b) Interest broadcast from node A in
MMM-VNDN

Node B

Node A

Interest

Origin MAC address    00:00:00:00:00:01
Target MAC address   FF:FF:FF:FF:FF:FF

(c) Interest broadcast from node A in
iMMM-VNDN

Figure 3.1: Flooding phase from requester node A

Let us assume that the topology of a VANET is as shown in Fig. 3.1a. The MAC addresses

of the participating nodes are shown. Let us also assume that node A is the requester

node, and node G is the content source. First, node A broadcasts an Interest. In

MMM-VNDN, the Interest contains two additional fields in its NDN header. In this
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example, node A enters its MAC address, i.e. 00:00:00:00:00:01 into the OMA field

of the Interest message and leaves the TMA field empty, as shown in Fig. 3.1b. In

iMMM-VNDN, the Interest contains 00:00:00:00:00:01 as OMA and FF:FF:FF:FF:FF:FF

as TMA, which is the MAC broadcast address, as shown in Fig. 3.1c.

(a) Transmission of an Interest from node B
in MMM-VNDN

Node B Node D

PIT Entry   
MAC address    00:00:00:00:00:01 

Interest

Origin MAC address    00:00:00:00:00:02
Target MAC address   FF:FF:FF:FF:FF:FF

(b) Transmission of an Interest from node B
in iMMM-VNDN

Figure 3.2: Differences in processing and transmitting an Interest between MMM-
VNDN and iMMM-VNDN

When an intermediate node receives this Interest message, it checks the OMA field, to

identify the node that sent the message. Then this node creates a PIT entry, containing

this OMA. In MMM-VNDN, the TMA field is empty, thus, this intermediate node

continues broadcasting the message without a TMA. As illustrated in Fig. 3.2a, node B

that received the broadcast Interest from node A, creates a PIT entry with the OMA

field of the received Interest, i.e. 00:00:00:00:00:01. Node B updates the Interest’s

OMA field to its own, 00:00:00:00:00:02 and because the Interest’s Target MAC field

is empty, it broadcasts the message. In iMMM-VNDN as seen in Fig. 3.2b, node B,

which received the broadcast Interest from node A, creates a PIT entry with MAC

address: 00:00:00:00:00:01. Node B updates the Interest’s OMA to 00:00:00:00:00:02

and broadcasts the message with TMA: FF:FF:FF:FF:FF:FF.

This process continues for both MMM-VNDN and iMMM-VNDN until this Interest

message arrives at the node holding the Data. For both MMM-VNDN and iMMM-

VNDN, after receiving the Interest, the content source responds with a Data message

and performs the following actions:

(i) It takes the OMA (source address of the previous hop) of the Interest message

and inserts it into the Data message as its TMA (destination MAC address).
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(ii) It takes its own MAC address (MAC address of the content source) and inserts it

into the OMA field of the Data message.

(iii) It sends the Data Message to the network. In MMM-VNDN the content source

broadcast this Data Message. In iMMM-VNDN it unicasts the Data message

into the network, to all nodes that previously broadcast the Interest message to

it.

(a) Node G responding with Data (b) Node D processes and sends the Data

Figure 3.3: Data processing

The aforementioned process is illustrated in Fig. 3.3a. Assuming that the topology

is the same as in Fig. 3.1a, node G, which is the content source, receives an Interest

from node D. In MMM-VNDN the Interest has an empty TMA field and the content of

the OMA field is 00:00:00:00:00:03. Node G, then, creates a Data message in response

to the received Interest message by entering 00:00:00:00:00:03 in the field TMA, and

its own MAC address, i.e. 00:00:00:00:00:04, in the field OMA. Then, it broadcasts

the Data message. In iMMM-VNDN, the Interest has a broadcast TMA and OMA:

00:00:00:00:00:03. Node G, then, creates a Data message by entering 00:00:00:00:00:03

into the TMA and 00:00:00:00:00:04 into the OMA. Then, it unicasts the Data message

into the network.

The process of Data transmission is outlined in Algorithm 2. When an intermediate

node receives a Data message it checks if the Data message is meant for itself, i.e.

if the TMA (destination address) in the Data message is the same as its own MAC

address. If not, the message is discarded. If the TMA of the message and the node’s

MAC address is the same, the node checks the PIT. If there is no matching PIT entry,

the Data message is discarded. If there exists a PIT entry, the node performs the

following actions:
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(i) The node creates (or updates), a new FIB entry that contains the OMA of the

Data message (source address of the previous hop of the message).

(ii) The node updates the OMA of the Data message to contain its own MAC address.

(iii) The node checks the PIT entry that has been created from the respective Interest

and sets the TMA of the Data message to the MAC address of the PIT entry.

(iv) The node enters the Data packet in its CS.

(v) The node sends the updated Data message to the network. In MMM-VNDN this

transmission is broadcast. In iMMM-VNDN the transmission is unicast.

Algorithm 2 Routing of a Data message from an intermediate node

1: procedure RECEPTION OF DATA

2: if PI T Entr y 6= ; then
3: if Tar g et M AC 6= M y M AC then
4: Cr eate/Upd ate(F I BEntr y,Or i g i nM ac)
5: r etur n
6: else
7: Cr eate/Upd ate(F I BEntr y,Or i g i nM ac)
8: Or i g i nM AC ← M y M AC
9: Tar g et M AC ← PI T Entr y(nexthop)

10: Del etePI T Entr y
11: tr ansmi t (Dat a,nexthop)
12: end if
13: end if
14: end procedure

In Algorithm 2, we prevent loops and limit the transmission of the Data message. In

MMM-VNDN and iMMM-VNDN, we check if a node has a PIT entry with the same

name as the Data message. If the node does not have a PIT entry, then the Data

message is discarded. In addition, in both algorithms, we delete the PIT entry before

the Data routing. By this, loops are avoided: If the Data message is received again in

the same node, there will be no PIT entry, and the Data message will be discarded.

To continue with our example, the Data message node G sent in Fig. 3.3a is now

incoming in node D. As shown in Fig. 3.3b node D first checks if a PIT entry exists for

this Data message. Since node D transmitted the corresponding Interest (as shown

in Fig. 3.2a), a PIT entry exists. Node D then starts processing the Data, by checking

the TMA field, to see if this Data message is meant for it. The TMA field of the Data
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message is set to 00:00:00:00:00:03 (as shown in Fig. 3.3a) and since it is the same as

nodes D’s MAC address, node D accepts the message and processes it. After, node D

creates or updates a FIB entry with the OMA field of the Data, i.e. 00:00:00:00:00:04.

Finally, node D updates these two fields of the Data message: It sets as TMA the

address that exists in the PIT, i.e. 00:00:00:00:00:02, and as OMA its own MAC address,

i.e. 00:00:00:00:00:03.

This process of broadcasting the Interest in every node continues until the requester

receives the first Data message. Since multiple nodes transmit the same Interest,

the responding Data message will arrive at the requester node many times through

different nodes. When the requester receives the Data message, it creates or updates

a FIB entry containing the OMA field of the Data message, i.e. the MAC address of

the previous node that transmitted the message. Hence, the FIB was extended with

two additional fields. Fig. 3.4 shows the first path that has been established from

the requester, node A, to the content source, node G. Node B, node C, and node D

are intermediate nodes that assist in the message transfer since there is no direct

connection between node A and node G.

Figure 3.4: Established connection through PIT and FIB entries

Second Phase - Routing Based on FIB Subsequently, when the requester node sends

the second Interest, it checks the FIB table to identify possible routes. It will search

the FIB for MAC addresses of next hops, i.e. MAC addresses of next nodes to transmit

the Interest. The requester then selects a next hop and sets the Interest fields as

follows: The OMA field containing the current node’s MAC address, and the TMA field

containing the MAC address of the next hop that has been selected.
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(a) Paths that are established after a flooded Interest

(b) Interest transmission from node A

(c) Interest processing and transmission from node E

Figure 3.5: Routing based on FIB entries
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Fig. 3.5a shows the VANET topology and the paths that are established after an Interest

was flooded in the network by broadcasting the Interest from every node. Node A will

continue its content retrieval by sending a second Interest into the network.

First, as shown in Fig. 3.5b, node A checks its FIB, where it identifies two possible next

hops: 00:00:00:00:00:02 and 00:00:00:00:00:05. It selects one (the selection criteria

is described in the Section 3.2.2), and updates the TMA field of the Interest, to the

selected next hop MAC address, e.g. 00:00:00:00:00:05. The OMA field is set to its

own MAC address, 00:00:00:00:00:01. It then sends (broadcast with MMM-VNDN and

unicast with iMMM-VNDN) the Interest into the network.

When a node receives an Interest containing a non-empty or non-broadcast TMA,

it will check if the latter is the same MAC address as its own. If the Target MAC is

different, it will discard the message. In case the MAC address is the same as its own,

the Interest is meant for this node, and the node will accept it for further processing.

First, if there is no match in the node’s CS, the node will enter the OMA from the

Interest message to the PIT. Then, it will check its FIB table in order to identify possible

next hops. Next, it will send the message with the updated OMA field that is set to its

own MAC address, and a TMA field that is set to the MAC address of the chosen next

hop.

Fig. 3.5c shows this process, where an incoming Interest from node A has arrived

at node E. Node E will check if the Interest is meant for it, i.e. if the TMA of the

Interest is the same as its own, i.e. 00:00:00:00:00:05. Since these MAC addresses are

the same, node E will create a PIT entry with the Interest’s OMA, and then search

its FIB for possible next hops. Since there is only one next hop, with MAC address

00:00:00:00:00:06, node E selects this MAC address from the FIB, and inserts it into the

TMA of the Interest message. It then updates the OMA field of the Interest to its own

MAC address, 00:00:00:00:00:05, and sends the message into the network. This process

continues until the Interest message arrives at the content source. The responding

Data message follows the reverse path, as described in the flooding phase in Section

3.2.1 Algorithm 2. The Data will be transmitted by nodes if the nodes contain a PIT

entry with the same prefix as the Data message. In this case, the nodes will enter into

the OMA field their MAC address, and into the TMA field, the MAC address extracted

from the PIT entry.
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3.2.2 Next Hop Selection

When the flooding, using broadcast for Interest transmissions occurs, the Interest

message passes through many intermediate nodes and subsequently, the Data

message will also pass through some of these nodes. The requester(s) and

intermediate nodes will receive the same Data message by different nodes and

will create FIB entries that will contain multiple MAC addresses. When a node wants

to route an Interest message, it checks the FIB to find next hops in its routing entry, i.e.

MAC addresses of nodes that have potential a connection to the content source. If

many next hops exist, a node should select one or more of them. To perform so, the

FIB will have additional fields to the existing FIB data structure, as shown in Table 3.1.

For the selection of the next hop for the Interest, we propose three approaches.

Table 3.1: FIB Entry next hop additional fields

MAC address Latency(ms) Counter
00:00:00:00:00:02 100 0
00:00:00:00:00:05 50 0

(i) When a FIB next hop is created, the counter field is set to 0. Every time this next

hop is chosen for transmitting an Interest, the counter field is incremented by

one. The first approach, named Uniformly selected PATH (UPath), is selecting

the next hop field that corresponds to the lowest counter. This ensures that

we will distribute the traffic to all possible next hops. When there are multiple

next hops with the same counter, the selection is based on the last added next

hop of the FIB table. For instance, in the example shown in Fig. 3.5a, there are

two paths. Since both next hops have the same number in their counter field

(Table 3.1), node A will choose 00:00:00:00:00:05, because it was the last that

was added into the FIB.

(ii) The second approach, named Smallest Latency PATH (SLPath), is to choose the

next hop that has the lowest latency. Latency is defined as the time that has

passed from the transmission of the Interest message to the reception of the

Data message in a specific node. Then this time is included in the respective

FIB entry. In this case, based on Table 3.1, node A will choose the second next

hop, because of the lowest latency, with a MAC address of 00:00:00:00:00:05.
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(iii) The third approach is based on the combination of (i) and (ii) and is named

Uniform Selection of Lowest latencies PATH (USLPath). A counter in each next

hop is added. Each time when a next hop is selected (selection of the next

MAC address), this counter is increased by one. When multiple next hops exist,

which have been added almost at the same time and have not been selected for

transmitting an Interest, their counters will have the same value. In that case,

the next hop with the lowest latency is chosen. For the values that are shown

in Table 3.1, we assume that their counter field is zero. Hence, the Latency

field will be checked, and the next hop with the lowest latency will be selected,

i.e. 00:00:00:00:00:05. Loop problems are avoided since the selection of next

hops is based on a fair distribution. For instance, in Table 3.1 the node sends

the Interest to 00:00:00:00:00:05. Then the node increases the counter field on

Table 3.1 of the next hop 00:00:00:00:00:05 by 1. We assume that the Interest

is coming back to this node. This time the node checks the FIB and sends the

Interest to 00:00:00:00:00:02, since this is the next hop with the lowest value in

the counter field.

The next hops in the FIB entries that result from overheard Data are part of this process.

Such next hops are chosen only if there does not exist another next hop, or if other

next hops have been selected many times, to avoid collisions. As shown in Table 3.1,

the counter for both the next hops is zero. If the first entry (00:00:00:00:00:02) were

a result of an overheard Data, this MAC address (00:00:00:00:00:02) would be added

to the FIB entry with a higher counter. This distinction allows prioritizing these next

hops from others and select them only when they are the only ones available.

3.2.3 Creation of Routing Entries

Since the topology in VANETs is constantly changing, created paths from a requester

to a content source may break unexpectedly. To discover new routes and new content

sources, the chosen approach is to flood an Interest every few seconds. In MMM-

VNDN the Interest TMA will be empty and in iMMM-VNDN the Interest will contain

in its TMA the broadcast MAC address. By this periodic flooding, the FIB is populated

regularly with new and active connections. When new vehicles in the network are

discovered, they are also used for transmission of messages, and new routes that

include them are created. Every time a node receives an Interest an empty or a

broadcast MAC address, the node deletes its FIB table entries. In this way, we control
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the FIB size and update it accordingly every time a new route is created.

3.3 Performance Evaluation

3.3.1 Simulation Environment

Simulation Scenarios

To evaluate the routing protocols described in Section 3.2, we used the three different

next hop selection options, which meaning and description is presented in Section

3.2.2:

(i) UPath:The first set of results is performed for selecting next hops from the FIB

table that have the lowest counter value. When multiple next hops have the

same counter value, the most recently added is selected.

(ii) SLPath: The second approach is based on the average latency of the next

hops in the routing entries. The next hop with the lowest latency is chosen

for transmitting an Interest.

(iii) USLPath: The last approach is based on the combination of the previous two.

As mentioned in Section 3.2.2, we select the next hop with the lowest counter.

If there are multiple next hops with the same counter, the one with the lowest

latency is selected.

Simulation Parameters

Moreover, to evaluate our routing protocols we used the ndnSIM simulator [18], v2.0.

NdnSIM is a software module providing the basic NDN implementation [18, 19, 106]

for the ns-3 network simulator [8]. To obtain the network traffic simulation we

used SUMO [36]. For the topology, for MMM-VNDN we chose the MANHATTAN

scenario, 1km x 1km, with the number of nodes (cars) varying from 60 to 100. Each

vehicle is equipped with three interfaces, to send and receive Interest and Data

messages simultaneously, using Wi-Fi 802.11a (We use IEEE 802.11a since 802.11p

is not available in ndnSIM v2.0). For iMMM-VNDN we have chosen two different

topologies to evaluate the algorithms, the Manhattan map, and the Luxembourg

map [47]. In the Manhattan map, the number of nodes (cars) chosen is varying from
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Table 3.2: Simulation Parameters

STRATEGY
PROPAGATION

LOSS MODEL

STANDARD-
TRANSMISSION

RANGE

DATA

RATE

CHANNEL

BANDWIDTH

MMM-
VNDN

Three Log
Distance

and Nakagami

IEEE802.11a
200m

24 Mbps 20MHz

iMMM-
VNDN

Two Ray Ground
IEEE802.11p

250m
6 Mbps 10MHz

Broadcasting
Three Log

Distance
and Nakagami

IEEE802.11a
200m

24 Mbps 20MHz

Best-route
Three Log

Distance
and Nakagami

IEEE802.11a
200m

24 Mbps 20MHz

NCC
Three Log

Distance
and Nakagami

IEEE802.11a
200m

24 Mbps 20MHz

CCVN Two Ray Ground
IEEE802.11p

250m
6 Mbps 10MHz

CODIE Two Ray Ground
IEEE802.11p

250m
6 Mbps 10MHz

20 to 100 and the average speed is around 15m/s. In the Luxembourg map, we have

chosen an area of 1km x 1km in the city centre. Luxembourg traces are available

for 24 hours. We have chosen different times during these 24 hours to extract the

mobility traces. Then, in these different mobility traces, we have extracted the density

of vehicles, varying from 109 to 396. The average speed of cars depends on the time

slot when the mobility traces were extracted. The parameters of the algorithms are

shown in Table 3.2. In Table 3.2 the standard defines the transmission range, the data

rate and the channel bandwidth. We used the IEEE 802.11a standard for MMM-VNDN,

Broadcasting and NCC strategies because these strategies were developed in ndnSIM

v2.0 and ndnSIM v2.0 is not compatible with IEEE 802.11p. The propagation models

include the Three Log Distance model, which is a log distance path loss propagation

model with three distance fields [4], the Nakagami model, which accounts for the

variations in signal strength due to multipath fading [5], and the Two Ray Ground

model, where the gain of the signal depends on the reflection of the signal from
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roads [6].

For the next hop selection options chosen (Section 3.3.1(i), (ii), (iii)), one node is

sending Interest messages and there exists one content source in the network. For

each of the above next hop selection options, we first compare MMM-VNDN with the

flooding strategy, which next hop an Internet message into the network. Then, we

compared iMMM-VNDN with MMM-VNDN to show the advantages that the improved

protocol offers. Finally, for the third next hop selection option, we compared iMMM-

VNDN with the broadcasting strategy, which broadcasts every Internet message into

the network, the best route strategy, which chooses the best face to send an Interest

according to its cost [19], the NCC strategy [7], which chooses the best face to send the

Interest and tracks the RTT of faces, the Content-Centric Vehicular Networking (CCVN)

algorithm [24], described in Section 2.3 and the Controlled Data and Interest packet

propagation strategy (CODIE) [21], where the Interest contains a hop counter and

the Data propagation is controlled by this hop counter. The presented results have a

confidence interval of 95%. Since the proposed algorithms are developed for VANETs,

new nodes could enter the network at any time. This leads to intermittent connections

and consequently to breaking the paths from the requester to the content source. To

cope with these problems, we broadcast one Interest message every 10 seconds. By

broadcasting only one instead of every Interest, routing entries are created or updated

and broadcast storms are avoided. This is accomplished by not broadcasting the

network with unnecessary Interest transmissions.

For all scenarios chosen, we experiment with three different Interest Lifetime (IL)

times, i.e. the time that the Interest is transmitted into the network before it expires.

We note that the IL lifetime depends on the application, i.e. how much an application

should wait before requesting again its Data. We propose our algorithm in scenarios

where vehicles request infotainment data, e.g. a video of a road, where there is a

tolerance for a small delay in receiving the Data. Therefore, we choose different ILs:

4 seconds, 8 seconds and 12 seconds. We consider these values to be realistic for

infotainment application with delay constrains. Moreover, such small values are

widely used in the literature [29, 32]. We highlight here that using large values for the

I.L. could result in prevention of forwarding similar Interests because the request is

already pending (a node has an entry to its PIT.
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Simulation Metrics

To evaluate the routing protocols three metrics were used:

• Interest Satisfaction Rate (ISR) describes the number of received Data messages

that were received by the requester divided by the total number of Interest

messages being sent.

• Average Latency: The average latency for all received Data messages describes

the average time that passed from the time a requester sent an Interest message

to the time that the requester received the Data message. When a Data message

has not been received until its expiration time, the requester node retransmits

the Interest message and the initial time is reset.

• Average Jitter: Jitter is defined as the mean deviation of the difference in packet

spacing at the receiver node compared to the sender for a pair of packets [64].

The above metrics describe the main characteristics that we consider important to

the V2V communication in a VANET for an infotainment application. ISR is a core

metric, but it is insufficient, when a VANET application has delay constraints. Hence,

latency and jitter are being measured in our experiments.

3.3.2 Simulation Results

Figure 3.6: Interest Satisfaction Rate for the UPath
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The first set of results that show how MMM-VNDN performs are presented in Figs. 3.6–

3.11. For UPath, the results of the ISR are shown in Fig. 3.6. The proposed next

hop selection option achieves up to 10% higher delivery rate, with lower latency,

compared to the broadcasting approach. The average latency is presented in Fig. 3.7

and fluctuates from 2 to 5 seconds, compared to the broadcasting routing protocol,

where it is around 14 seconds. These results indicate that by selecting next hops, the

network resources are released and the network is less congested.

Figure 3.7: Average Latency for the UPath

Figure 3.8: Interest Satisfaction Rate for the SLPath

In SLPath, we see that the ISR is better when there is a short Interest Lifetime of 4

seconds, and the node density is low. The performance is also increased, when the

Interest Lifetime and the node density of the network are higher (Fig. 3.8). This is due

62



3.3. Performance Evaluation

Figure 3.9: Average Latency for the SLPath

to the fact that in a sparse VANET when the Interest expires, the retransmissions are

fewer because the number of nodes is also small. When the VANET is dense and the

Interest expires, the number of nodes that will route the Interest is high, leading to

lower ISR. In the other case, when the Interest Lifetime is at 12 seconds, the Interest is

more likely to reach the content source before it expires. The average delay is kept at

the same level, around two seconds, for both of these cases (Fig. 3.9).

Figure 3.10: Interest Satisfaction Rate for the USLPath

In the USLPath, we achieve the best results compared to the other two. This is due to

the fact, that the selection of next hop is based on both the average latency that this

hop provides, with the latest time where the connection with this hop is established.

Fig. 3.11 shows that the latency for all Interest Lifetime values is kept at an almost
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Figure 3.11: Average Latency for the USLPath

steady level of 2 seconds, independent from the density of the network. In addition,

we notice that again the performance of our network is higher than a broadcasting

approach (that is illustrated in Fig. 3.6 and in Fig. 3.7), both in terms of the ISR

(Fig. 3.10) and the Average Latency (Fig. 3.11). The overhead of the network that the

broadcasting approach produces is high, and thus the network is congested, which

leads to longer waiting time and lower ISR.

Figure 3.12: ISR in Manhattan map for the UPath

For the second set of our results, first, we compare the two routing protocols for the

first next hop selection approach (UPath) in Figs. 3.12–3.14. iMMM-VNDN keeps the

ISR above 93% compared to MMM-VNDN that keeps the ISR above 70%, as shown in

Fig. 3.12. This is due to the fact that the decision of processing or discarding a message

is performed in the strategy layer of the NDN stack, thus allowing more control over
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the incoming messages. In addition, the average latency is lower for iMMM-VNDN

than for MMM-VNDN and remains in between 2.5 - 3 ms, regardless of the number of

nodes Fig. 3.13. iMMM-VNDN performs worse in terms of jitter, which stays almost at

0.5 ms independent of the density of the nodes Fig. 3.14.

Figure 3.13: Average Latency in Manhattan map for the UPath

Figure 3.14: Average Jitter in Manhattan map for the UPath

In the second presented next hop selection approach (SLPath) in Figs. 3.15–3.17, we

observe that for both protocols the ISR fluctuates. Generally, iMMM-VNDN performs

better than MMM-VNDN, but it is clear that choosing the next hop with the lowest

latency does not guarantee that the path will be valid. In contrast, because of the

path breaks, we see that the ISR for both approaches is lower than in Fig. 3.12. For all

algorithms, we also observe a drop in the ISR, when 40 vehicles exist in the network.

For iMMM-VNDN in particular, since the protocol is based on unicast transmissions

when paths break, nodes retransmit the Interests through invalid paths, since the next
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Figure 3.15: ISR in Manhattan map for the SLPath

hop selection is based on the latency field in the FIB entry chosen. Hence, unicast

transmissions fail because nodes (since the number of vehicles is sparse) may have

fewer FIB entries and most of them are invalid. Also, despite the fact that the goal

was to decrease the average latency, the average latency is kept at the same levels as

in Fig. 3.13. The average jitter also remains the same for both algorithms, and we

observe that there are small fluctuations in jitter for low ISR.

Figure 3.16: Average Latency in Manhattan map for the SLPath

66



3.3. Performance Evaluation

Figure 3.17: Average Jitter in Manhattan map for the SLPath

For the third next hop selection approach (USLPath), we achieve the best results

compared to the other two. This is because the selection of a next hop is based on

the average latency of the next hop of the routing entry together with the latest time

when the entry was established. The results for the ISR are shown in Figs. 3.18–3.20.

iMMM-VNDN achieves the highest ISR compared to other protocols, independent

from the I.L. value. We observe in Fig. 3.18 a drop in the flooding and the NCC strategy.

This is because the network is sparse and even through always broadcasting, vehicular

paths break and Data messages cannot be delivered back to the requester node. We

also highlight that the ISR of MMM-VNDN strategy fluctuates from 70-80% and is

almost 10% higher compared to broadcasting. In Figs. 3.18–3.20, we observe that

Figure 3.18: ISR in Manhattan map for the USLPath for Interest Lifetime of 4 seconds
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Figure 3.19: ISR in Manhattan map for the USLPath for Interest Lifetime of 8 seconds

Figure 3.20: ISR in Manhattan map for the USLPath for Interest Lifetime of 12 seconds

best-route and CCVN strategies have higher ISR in some cases than MMM-VNDN.

But, as shown in Figs. 3.21–3.23, CCVN’s delay of the delivered content object is up to

20 times higher.

Figs. 3.21–3.23 show the average latency of each strategy. The results indicate that

our algorithms together with the best-route strategy have the lowest latency for all

network sizes. The average latency fluctuates for MMM-VNDN from 3 to 5 ms and for

iMMM-VNDN from 2.5 to 3 ms. This difference comes from the number of messages

that are being delivered. Higher ISR for iMMM-VNDN means that more messages exist

in the network. Thus, the possibility of collisions is higher. In contrast, other strategies

achieve much higher delay than both of our proposed protocols. By considering the
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Figure 3.21: Average Latency in Manhattan map for the USLPath for Interest Lifetime
of 4 seconds

results of the ISR graph in Figs. 3.18–3.20 we manage to deliver more requested content

objects. We reduced the latency by selecting appropriate next hops. Furthermore,

the network resources are released, because not all nodes participate in message

transmissions, and the network is less congested.

Figure 3.22: Average Latency in Manhattan map for the USLPath for Interest Lifetime
of 8 seconds
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Figure 3.23: Average Latency in Manhattan map for the USLPath for Interest Lifetime
of 12 seconds

Figs. 3.24–3.26 shows the average jitter for all strategies. CODIE outperforms our

protocols by keeping the jitter very low. iMMM-VNDN and MMM-VNDN perform

similar to the previous next hop selection approaches, keeping the jitter above 1ms,

compared to the other strategies.

Figure 3.24: Average Jitter in Manhattan map for the USLPath for Interest Lifetime of 4
seconds
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Figure 3.25: Average Jitter in Manhattan map for the USLPath for Interest Lifetime of 8
seconds

Figure 3.26: Average Jitter in Manhattan map for the USLPath for Interest Lifetime of
12 seconds

Finally, we compare iMMM-VNDN with other algorithms by using the map of the

Luxembourg City Center, where we selected an area of 1km x 1km. There, we selected

different time slots to extract the mobility traces. Each simulation runs for 149 seconds.

We chose to use the traces that have more than 100 nodes to show what happens in a

more dense network than the Manhattan map. Since with the Manhattan map iMMM-

VNDN performs better than MMM-VNDN, we chose to include only iMMM-VNDN

for these experiments in the 3rd next hop selection approach, i.e. when the selection

of a next hop is based both on the newest creation time of the entry combined with

the lowest latency, compared to the other aforementioned strategies.
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Figs. 3.27–3.29 show the ISR for all strategies. The ISR is kept almost the same for

iMMM-VNDN independent of the I.L.. It is higher than 94% for a low number of nodes,

and it decreases to around 80% if the node density is high.

Figure 3.27: ISR in Luxembourg map for the USLPath for Interest Lifetime of 4 seconds

Figure 3.28: ISR in Luxembourg map for the USLPath for Interest Lifetime of 8 seconds
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Figure 3.29: ISR in Luxembourg map for the USLPath for Interest Lifetime of 12
seconds

Moreover, iMMM-VNDN outperforms all other approaches considering the average

latency, as seen in Figs. 3.30–3.32. In particular, the average latency is stable at 2-4 ms,

compared to all other strategies that have a latency bigger than 950 ms.

Figure 3.30: Average Latency in Luxembourg map for the USLPath for Interest Lifetime
of 4 seconds
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Figure 3.31: Average Latency in Luxembourg map for the USLPath for Interest Lifetime
of 8 seconds

Figure 3.32: Average Latency in Luxembourg map for the USLPath for Interest Lifetime
of 12 seconds

We observe in Figs. 3.33–3.35 that the average jitter of iMMM-VNDN is higher than for

other approaches, in particular than for the CODIE strategy. This happens, because

in a dense network CODIE only manages to retrieve messages that are 1-hop away

from the requester node, thus the jitter is non-existent. But, since, in iMMM-VNDN

multihop communication is supported, the jitter is increased compared to 1-hop

communication algorithms. By creating unicast paths, we can reduce overall message

transmissions in the network, and thus avoid collisions that happen in the network.

This leads to a more stable environment for message transmissions, since collisions

and congestion, in general, are avoided.
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Figure 3.33: Average Jitter in Luxembourg map for the USLPath for Interest Lifetime of
4 seconds

Figure 3.34: Average Jitter in Luxembourg map for the USLPath for Interest Lifetime of
8 seconds

75



Chapter 3. A Multihop and Multipath Routing Protocol Using NDN for VANETs

Figure 3.35: Average Jitter in Luxembourg map for the USLPath for Interest Lifetime of
12 seconds

3.4 Conclusions

In this Chapter we introduce two routing protocols. The first is called a multihop

multipath and multichannel (MMM-VNDN) routing protocol and the second is

called improved MMM-VNDN, iMMM-VNDN. Both of these protocols are designed

for VANETs using the NDN future Internet architecture. We identified some of

the problems that exist in the current architecture of NDN and proposed the

corresponding solutions. In particular, we investigated the lack of node identification

in NDN and designed a new routing approach that utilizes the MAC addresses of

nodes in VANETs. We utilize the new identifiers that are inserted into the nodes of

the VANETs and equip each node with multiple interfaces to design two multihop

and multipath routing protocols. By this we allow vehicles to create routing entries

that we use to unicast messages when possible, and to allow vehicles to transmit and

receive messages at the same time.

We also studied different next hop selection techniques, i.e. in which vehicle should

a vehicle unicast the message. We choose to route messages uniformly to each next

hop of routing entries or based on the latency of a network connection. Finally, we

propose that next hop selection should be uniformly and based on the latency of each

connection. We compare our algorithms to other state of the art algorithms and with

the broadcasting of NDN (every node always broadcasts ). Our results present that

the requester node can receive much more Data in less time. Specifically, we show
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a decrease of up to 12 seconds to the average waiting time, since we do not flood

constantly the network with messages, hence, we do not create constant collisions in

the communication channel.

The limitations of these algorithms derive from the spreading area of a message

together with the periodically broadcasting of requests. The spreading area of a

message depends on the antennas that are being used in nodes. This Chapter uses

omnidirectional antennas that are installed in nodes, meaning that the power of an

antenna is distributed equally around the antenna. Hence, even when unicasting a

message, nodes that are in different areas compared to the targeted node will hear

the message transmission occupying their channel. Thus, a directional approach

is needed to reduce the dissemination area of messages. Moreover, periodically

broadcasting is not optimal for content requests. Connections between nodes can

be broken much before the next broadcast occurs, hence, nodes can have invalid

entries into their routing tables. To avoid this, the interval of broadcasting could be

decreased, but then we create again unnecessary traffic into the network. Therefore,

an efficient broadcast mechanism should be developed for preventing redundant

message broadcasts. We will present our solution for these limitations in the next

Chapter.
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4
A Geographical Aware Routing Protocol

in NDN-VANETs

4.1 Introduction

In Chapter 3 we developed an approach for creating FIB entries in the FIB tables of

vehicles and we use these entries to unicast messages. We also reduce the broadcast

transmissions by broadcasting one message periodically, i.e. in a particular time

interval, instead of always broadcasting every message. But, still, as described in

Chapter 3, every node periodically broadcasts an Interest message to update its

connections and its routing table. But broadcast transmissions may create redundant

channel utilization, leading to message collisions (c.f. Section 1.2.1). Moreover, in

Chapter 3 we use omnidirectional antennas, meaning that messages are being sent

and received in all directions. This leads to messages being delivered to undesired

locations (c.f. Section 1.2.2).

In this Chapter, we address RQ2, as described in Section 1.2.2, which concerns

how to limit the dissemination area of transmitted messages in VANETs when the
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number of interconnected cars is high. We investigate how we can limit the spreading

area of transmitted messages to reduce the collisions on the communication

channel. Furthermore, we use a timer-based approach, where each node discovers

if its connections (according to its routing table) to other nodes are broken. In

particular, we present our enhanced Geographical aware Routing Protocol, named

eGaRP [81, 83]. eGaRP focuses on message exchange inside small areas inside a city

so that V2V communication is performed without using any infrastructure.

eGaRP does not rely on any infrastructure support. To do so, we assume that a vehicle

is autonomous and should perform the necessary actions for meeting its application

requirements without infrastructure assistance when this is possible. Considering

that VANET services and applications usually concern their surrounding area [74], a

vehicle should be able to communicate with its surrounding environment, i.e. with

other vehicles in its neighbourhood, so as to collect all the necessary information (Fig.

4.1). Therefore, in a content retrieval process, a vehicle should decide where, how, and

when to forward a message.

To perform such a task, we assume that each vehicle runs a navigation application on

its On-Board Unit (OBU), which allows the vehicle to know its location at any given

time, by using GPS. In addition, we install directional antennas in vehicles to target

nodes in a specific direction. By using the GPS coordinates of a vehicle at a given time,

and by deploying directional antennas in each vehicle we unicast messages to vehicles

that are located at a specific location. The combination of Named Data Networking

(NDN) together with directional antennas in vehicles allows retrieving content based

on its name and sending requests to a specific location, leaving nodes that do not

need to participate in the content exchange unoccupied. Moreover, each vehicle is

equipped with directional antennas that cover 360° are around the vehicle, and these

antennas are used only to transmit a message towards a direction. Since we allow

360° coverage area on a vehicle, we can guarantee that the message will be received in

any of the antennas of a vehicle. In particular, the contributions of this Chapter are

summarized as follows:

• We introduce in detail our proposed enhanced Geographical aware Routing

Protocol (eGaRP) to support multihop V2V communication in vehicles for

content retrieval.

• We install directional antennas in each vehicle to support directional forwarding

and to reduce the dissemination area of transmission of a message.
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• We unicast requests for a particular content object, after a path from the

requester to the content source has been established.

• To support vehicle mobility and path breaks we use a timer-contention-based

forwarding mechanism. In particular, in our approach, a vehicle decides when

a message path to the content source is broken. Then, it is responsible for

unicasting the Interest via another path (when a unicast path is available) to

the content source. Our algorithm allows vehicles to retrieve requested content

quickly, as it reduces the number of overall messages of the network, by sending

messages to a specific location.

Figure 4.1: V2V directional communication using directional antennas.

Fig. 4.1 presents our idea, where vehicles in an intersection retrieve different content

objects from different paths. Each path is created only by vehicles that need to

participate in a content exchange mechanism, leaving other vehicles unoccupied

to perform other tasks. Every vehicle has 4 directional antennas installed, making

the communication possible in particular directions. For instance, three vehicles are

participating in a video retrieval process, and each of the vehicles uses 1 directional
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antenna. At the same time, 2 other vehicles communicate for the execution of a

navigation application, again with each vehicle using 1 directional antenna.

The rest of this Chapter is structured as follows: In Section 4.2 we present our algorithm

for content retrieval via V2V and in Section 4.3 we evaluate our work. We conclude

this Chapter in Section 4.4.

4.2 System Model

Although cellular infrastructure is already deployed in many cities and will be

upgraded to 5G technology, a vehicle cannot rely on accessing information via cellular

infrastructure only, because infrastructure can fail unexpectedly. A vehicle should be

autonomous to perform actions like driving, accessing vehicle information, accessing

community information, downloading or uploading infotainment content to other

vehicles, and also retrieving and broadcasting, when necessary, emergency messages.

In this Chapter, we focus on making infotainment content accessible to vehicles when

this content is requested and is available within a particular geographical area. We

do not rely on any infrastructure, but we rather let a vehicle create routes and then

decide where and how to send a message.

4.2.1 Forwarding Support

One of the main problems in VANETs is the intermittent connectivity between vehicles.

There are many ways to establish a message route from the source node to the

destination node. To solve this problem and to update all routes between vehicles

the literature proposes either infrastructure support [148], always broadcasting each

request [28], limit the forwarding area based on geographical coordinates in messages

[72], or a combination of the above. In our previous work named iMMM-VNDN

(c.f. Chapter 3) [84] we proposed a combination of broadcast and unicast to support

intermittent connectivity and to establish paths between vehicles. The main focus

of this Chapter is to reduce the resources that are required during the exchange of a

content object. To reduce required resources we need to:

• Reduce redundant messages that are broadcast, when a path has been

established.
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• Use unicast transmissions, when content can be retrieved by established paths.

• Limit the message spreading area, i.e. the direction of the message that is

transmitted, to use as little resources as possible.

To perform the above actions we use as in [84] MAC addresses to identify nodes

between source and destination vehicles and to create unicast paths based on these

MAC addresses. To limit the dissemination area of a message we propose to use

directional antennas to target at once the geographical location that a message should

be sent. When a message is forwarded into a particular direction, which is denoted

by the directional antenna that is being used to forward the message, other vehicles

outside of the area that is covered by the directional antenna remain unaffected by

this message exchange and can perform different actions.

4.2.2 Placement of Directional Antennas

Vehicles are equipped with directional antennas. Each antenna points into a different

direction to target different locations. The direction of each antenna is associated with

the number of antennas of a vehicle. Therefore, if a vehicle contains N ∈Z+ antennas,

each antenna Ai , i ∈ {1..N } will have beamwidth B :

B = 360°

N
(4.1)

and the pointing P Ai of an antenna Ai , i.e. where the antenna radiates and receives its

greatest power, will be:

P Ai = (i −1)B +B/2, ∀i ∈ {1..N } (4.2)

Thus, if, e.g. a vehicle consists of 4 directional antennas we place the antennas in the

vehicle as shown in Fig. 4.2b.

4.2.3 Rotating Antennas

In this study, we suggest using directional antennas to send and retrieve messages

to and from a particular location. One main problem is the radiation pattern of the

directional antennas. Fig. 4.2a shows a vehicle that is equipped with 4 directional
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(a)

N° rotation  
of antennas

N°

(b)

Figure 4.2: Example with 4 patch antennas installed in a vehicle. (a) Placement of 4
patch antennas in a vehicle as described in [59]. Blue indicates low gain and red high
gain of an antenna. (b) Rotation of antennas by N°.

antennas, in particular patch antennas [59]. A patch antenna is an example of a

directional antenna, whose radiation pattern is characterized by a single main lobe

of moderate beamwidth. The beamwidth of a patch antenna can be manipulated to

produce a higher or lower gain in particular areas, depending on the requirements [46].

Assuming that antennas are installed on a vehicle and that their effective gains are

not coinciding with each other, some areas around the vehicle are not covered with

a signal, i.e. the gain of the antennas is small. Thus, nothing can be received, as in

Fig. 4.2a, in areas denoted outside of the antenna lines (by blue). To avoid such an

issue we propose to mechanically rotate the antennas by an appropriate angle. Each

antenna covers a particular area, which is derived according to the antenna type, its

beamwidth, and its radiation pattern. To send a message a particular directional

antenna is selected. This selection is based on a node’s location and on the next hop’s

location (the selection process is described in Section 4.2.5). We rotate the selected

antenna to point into a particular direction to improve the antenna gain and to allow

a better connection to the vehicle that we want to send a message to. Then, we rotate

all antennas of the vehicle by the same angle as we turn the selected antenna, to

guarantee that the antennas of the vehicle will continue to have a 360° coverage area,

as shown in Fig. 4.2b.
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Table 4.1: NDN DATA STRUCTURES. NEW FIELDS ARE DENOTED IN ITALIC

(a)

PIT Table
Prefix
Face (MAC Address)
Expiration timer
Current geographical
coordinates
Creation time

(b)

FIB Table
Prefix
Face (MAC Address)
Latency
Current geographical
coordinates
Hop count

(c)

NDN messages
additional info
Current geographical
coordinates

4.2.4 Changes to NDN Data Structures

Each directional antenna that is placed on a vehicle is attached to a network interface

card. Therefore, a vehicle has many interfaces, each with a different MAC address. As

in [84] to exchange content in a VANET we target nodes based on their MAC addresses

to perform a unicast transmission. The main goal is to find a path between the node

that requests content (requester) and the node that holds the content (content source)

by using available information that is retrieved by surrounding vehicles.

We assume that each node has a GPS device installed on its OBU. Hence, it knows its

current position. The navigation device gives a route suggestion to the driver using

GPS and, thus, the vehicle can extract its current geographical coordinates at any

given timestamp from the GPS device. We extended the NDN stack of the Interest and

Data message by including the node’s current geographical coordinates according to

the GPS device. The new field in the NDN message structure can be seen in Table 4.1c.

Every vehicle contains only the traditional NDN data structures, i.e. PIT, FIB, and

CS. In our previous work [84] we included a new field in the PIT and FIB tables, the

MAC address. In this study, we add new fields in these data structures to include the

current geographical coordinates of the node. The structure of the PIT and the FIB

tables can be seen in Table 4.1a and 4.1b, respectively. In the PIT we added a new field,

the creation time, which indicates the time that the PIT entry was created. In the FIB

table, we added a hop count to assist us to choose the routing entry with the lowest

hop count to unicast an Interest message.
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4.2.5 Route Discovery and Forwarding

To retrieve content, we create at least one path between the requester and the content

source. To create this path, we create unicast routes between two vehicles and then

we connect these routes hop by hop to send the message to the content source via

multiple hops (if needed).

Interest Processing

Content retrieval starts by sending Interest messages into the network. As in traditional

NDN, a node checks its FIB table to identify the next hop(s) to send the Interest

message. When a requester wants to send the first Interest message for the content

to be retrieved, the FIB table is empty. Therefore, the node broadcasts the Interest

message through all its available directional antennas. When the requester broadcasts

the Interest message through one of its interfaces, it includes the corresponding MAC

address of the interface [84] and its current geographical coordinates according to its

GPS device. The extracted geographical coordinates from every vehicle’s GPS device

have ±7.1m accuracy [166].

When the first Interest, transmitted via broadcast, arrives at a node, as in traditional

NDN, the node checks its PIT to identify previous Interests that the node has already

forwarded. If the node has forwarded the Interest before, it extracts from the Interest

the MAC address and geographical coordinates, it enters this information into the

PIT, and discards the Interest. If the node has not forwarded the Interest before, it

enters the same information into the PIT. Then, it updates the Interest to contain its

own MAC address and current position and broadcasts the Interest through all its

antennas into the network. This continues until a node with the content (content

source) receives the Interest.

Data Processing

When the content source receives the Interest, it responds with a Data message. This

Data is unicast to the node that the Interest arrived from, by using the node’s target

MAC address [84]. Since the Data message is unicast, the content source should choose

an appropriate antenna for transmitting the Data. The content source extracts the

current geographical coordinates of the PIT entry, i.e. the position of the node that the

content source wants to send the Data message to. Then, the content source calculates
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the angle (by using simple trigonometric functions) between its own position (that is

known from its own GPS device) to the node that should receive the Data message,

by taking into account the other node’s position as stored in the PIT. After the angle

has been calculated the content source selects the appropriate antenna that covers

this angle with its direction pattern. In Fig. 4.3 VA wants to send a message to VB . It

calculates the angle φ, taking into account (XB ,YB ) and (X A,YA).

VA 
(xA,yA) 

VB 
(xB, yB) 

φ y

x

x

Figure 4.3: Calculation of angle φ for antenna selection.

After the appropriate interface with the correct antenna has been chosen, the content

source updates the Data message to include the MAC address of the chosen interface

and its own position. Then, the content source rotates the selected antenna to point

to the calculated angle and unicasts the Data through the selected interface and, thus,

the appropriate directional antenna to the next node.

Intermediate nodes receiving the Data message check the MAC address that is

included in it to determine if the Data is meant for them [84]. If not, the message is

discarded. Otherwise, the process of a Data message in an intermediate node is as

in Fig. 4.4 and it is the same as in a content source. In addition, intermediate nodes

increment the hop count field in the Data message by one before unicasting it to the

next hop.

When the first Interest (that is broadcast from all nodes until it reaches the content

source) is satisfied, i.e. the corresponding Data message has been received by the
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Data arrives in
node

delete Data PIT 
entry exists 

no
Create FIB entry

Calculate angle from
node's position to

previous hop

Update Data

Send Data from one
antenna according

to angle

yes

Figure 4.4: Processing of a Data message in intermediate nodes.

requester, the FIB table of the nodes that participated in the first Data retrieval

contains routes to other nodes. Thus, when the requester sends the second Interest

message, it selects a route to the content source from its FIB. The requester selects

the FIB entry with the lowest hop count and calculates an angle between its own

position (geographical coordinates that are extracted from the GPS device) and the

geographical coordinates of the selected FIB entry. After, the requester updates

the Interest message to include its own MAC address and geographical coordinates

(according to the GPS device). Having the angle and knowing the position of its own

antennas, i.e. beamwidth and coverage area of each antenna, the node selects the

appropriate network interface, rotates its antenna (the rotation takes from 50-100 ms)

and unicasts the Interest (by using the MAC address of the target node that is extracted

from the FIB entry) through this network interface (and thus, a specific directional

antenna). When the target node (next hop) receives the unicast Interest message,

it checks the Interest’s MAC address to identify if the Interest is for meant for it as

in [84]. If not, the Interest is discarded. Otherwise, the process continues as in the

requester, by inserting an entry in the PIT, checking the FIB to identify a route to a next

node, updating the Interest with its own information, calculating the angle between
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Incoming 
Interest

delete 
Interest

PIT contains
Interest

yes

Calculate angle from
node's position to

previous hop

Calculate angle from
node's position to
next hop. Update

Interest

noInsert Interest into
PIT

Insert Interest into
PIT

Data exists 
in CS

Interest 
matches a FIB

entry

Send Interest from
one antenna
according to

calculated angle

Send Data from one
antenna according
to calculated angle

Interest 
comes from PIT

tolerance
expiration

delete 
Interest

Update Interest.
Broadcast Interest

through all
directional antennas

yes

yes

no

no

yes

no

Figure 4.5: Processing of an Interest message in intermediate nodes.

itself and the target node (according to its own geographical coordinates and the

geographical coordinates from the selected FIB entry), rotating the selected antenna,

and unicasting the Interest to the next node (Fig. 4.5). This process continues at all

intermediate nodes until the Interest arrives at the content source. The content source

then processes the Interest and responds with the proper Data message by unicasting

the Data, following the same procedure as it did before (Fig. 4.4).

4.2.6 Mobility Support by Route Rediscovery and Duplicate

Suppression

Since VANETs are characterized by intermittent connectivity due to mobility, the

routes between vehicles might break unexpectedly. This leads to path breaks resulting
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Figure 4.6: Example of a V2V topology. Vc requests Data and Vd holds the Data.
Vehicles in black are intermediate nodes for Data retrieval.

in unsatisfied content. For instance, in Fig. 4.6 we assume that Vc is the vehicle

requesting content and Vd is the vehicle that holds the content. Vc sends Interest

messages according to its FIB to a next node V1 using antenna A1. Then, the

intermediate vehicle V1 sends a message to a next hop V2 and V2 sends it to V3. V2

unicasts this message by selecting the directional antenna A2 and includes the MAC

address of the next hop in the message. But due to mobility, the next node (V3) can

travel to a new geographical position and does not receive this unicast message.

Therefore, the requests of Vc remain unsatisfied.

There are several ways to deal with path breaks. The first, which is proposed in

the traditional NDN scheme, is that only the node that requests the content starts

retransmitting the Interest if the Interest is unsatisfied, i.e. if no Data message has

been delivered to the requester as a response to the Interest transmission. In that case

in Fig. 4.6 only Vc will retransmit the Interest if the path from Vc to Vd breaks. Another

way is that nodes that receive and forward the Data (as a response to an Interest)

will be responsible for guaranteeing that the Data has been delivered to the next hop

node (e.g. by exchanging of ACKs from the node that sends the Data to the node that

receives the Data). For instance in Fig. 4.6, if V3 moves from position X3,Y3 to X ′
3,Y ′

3,

then V3 is responsible for ensuring that V2 receives the transmitted Data message.

In this work, we let the decision of detecting a path break and re-establishing new
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paths to the content source to each node that forwarded an Interest message. For

instance, in Fig. 4.6 V2 is now responsible for finding a unicast path that leads to Vd .

Our algorithm uses a timer-contention-based forwarding algorithm ( [66]), where each

node decides individually when (by using timers) and where to forward a message to

find a route that leads to the content source. The idea of a timer-contention-based

forwarding algorithm is that each node sets a timer, and the node performs some

actions when this timer expires.

In eGaRP, we use the idea of timer-contention-based forwarding. In particular, when

a node unicasts an Interest, it chooses the FIB entry with the lowest hop count. Then,

the node enters the Interest’s information into the PIT and it also associates this PIT

entry to the corresponding FIB entry that has been chosen for forwarding.

This newly created PIT entry contains an expiration timer, i.e. how long a vehicle

should wait for a Data message. We define this expiration timer as the tolerance of an

Interest in a vehicle tTol (for simplicity we just call it vehicle’s tolerance and assume

that it is about the same PIT entry).

Since we associated the PIT entry to the FIB entry, we extract the hop count field h, h

∈N, i.e. how far away the content source is in terms of vehicles, from the FIB. Then,

we define tα as the minimum time that a node has to wait for a Data message to be

retrieved. Finally, we define tTol = htα, with respect that t+tTol ≤ tPI T cr eati on+tI N T li f

and tα ≤ tTol ≤ tI N T li f , where t is the current timestamp, tPI T cr eati on denotes the

time when the PIT entry was created, and tI N T li f is the Interest lifetime (when the

Interest will time out). In this case it is always t = tPI T cr eati on . The value tα can be

defined according to the requirements of the application in the requester. A high tα
means a more delay-tolerant application than a lower tα.

For instance, in Fig. 4.6 V2 selects from its FIB MAC address 4 to unicast a message

and then enters to its PIT a pointer to the selected FIB entry. Then, it extracts from the

FIB the hop count of the selected FIB entry and defines in its PIT the tTol = 3tα.

When the tolerance of a node expires, i.e. a Data message is not received by the node

in the accepted time limit tTol = htα, then the PIT entry is considered unsatisfied

and actions should be taken to satisfy this PIT entry. First, the node deletes the

corresponding FIB entry that was selected for forwarding and associated with the

expired PIT entry, because it assumes that this route is now invalid, i.e. this FIB entry

cannot satisfy its Interests because either the path is broken or there exists network
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traffic along this path. After, the node searches its FIB table to identify another FIB

entry to unicast the same Interest. If there is a FIB entry, then the node retransmits

the Interest according to the newly selected FIB entry, as described in Section 4.2.5. If

there is no FIB entry, the node does not have a unicast route to the content source,

hence it cannot unicast the Interest. In this case, since our goal is to reduce the

broadcast transmissions to reduce the number of messages that vehicles receive and

to occupy as little as possible resources, we do not broadcast an Interest from an

intermediate node. Instead, we enter a new t ′Tol = tI N T li f to the PIT entry, which is

the maximum tolerance. If the new t ′Tol expires, both the Interest and the tolerance

will expire. We, then, delete this PIT entry. So, if vehicles in a path do not have any

more unicast routes to the content source, we let only the requester to retransmit

the expired Interest. When a retransmitted Interest from the requester arrives at an

intermediate node that does not have FIB entries (i.e. no unicast paths to the content

source), then the intermediate node will broadcast the Interest as explained in Section

4.2.5 (Fig. 4.5). In Fig. 4.6 no content is retrieved after 3tα, because V3’s position has

changed to X ′
3,Y ′

3. The selected (red) FIB entry of V2 will be deleted, and since V2

does not have more FIB entries, it will redefine its tTol = tI N T li f starting from that

timestamp.

As mentioned before we define the tolerance as tTol = htα. tα is a constant and h is

the distance in terms of hop counts to the content source. Nodes that are closer (in

terms of hop count) to the content source will have a lower h than others that will be

further away, i.e. that will have a higher h. Therefore, the tolerance of nodes closer

to the content source will be shorter, compared to nodes that are further away from

the content source. These nodes will forward Interests to discover new routes sooner

than nodes that are further away from the content source (in terms of hop count).

If the node that is closer to the content source in terms of hop count does not receive

a Data message, it retransmits the Interest. Likely, some intermediate nodes that are

also further away from the content source will not receive the Data, so when their

tolerance expires, they will retransmit the same Interest. To avoid transmitting the

same Interest from many connected nodes at almost the same time, we change the

vehicle’s tolerance, when the same Interest is overheard by the vehicle. In particular,

every time that an Interest transmission is overheard by a node, even if the Interest

is not meant for this node, the node checks its PIT to identify if it has forwarded the

message before. If it has not sent the message before and the Interest is not meant for

this node, then it discards the Interest. But, if the node transmitted the Interest before,
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then there will be a PIT entry that will have an expiration timer, i.e. the vehicle has

already defined a tolerance. Then, we reset the tolerance for this PIT entry to start from

the time point the node received the Interest unless this causes the tolerance to exceed

the lifetime of the Interest. This is how we perform duplicate suppression to avoid

transmitting the same Interest messages in the network when they are redundant. For

instance in Fig. 4.6, V2 will have tTol = 3tα. Because the link from V2 to V3 breaks, i.e.

the PIT entry timer expires, the PIT entry is considered unsatisfied. Assuming that V2

has another FIB entry, V2 will unicast the Interest message to another node. V1 has

also an entry in its PIT with tTol = 4tα. When V1 receives the re-unicast Interest from

V2 after t = 3tα, the time that remains until its tTol expires is tα. So, at time t = 3tα, V1

will reset its PIT entry’s expiration timer to start again (tTol = 4tα).

4.3 Performance Evaluation

4.3.1 Simulation Environment

Simulation Scenario

We use the LUST scenario [48] that is based on real traffic of the Luxembourg city over

24 hours. We extract an area of 1km x 1km in the city centre and choose 150 seconds

during the rush hours (6 pm) to run our algorithm. Then, in this area, we choose two

nodes that are crossing the whole area in these 150 seconds. One node is the requester

node and one is the content source.

Simulation Parameters

We evaluated our protocol by using the OMNET++ network simulator with the

vehicular framework VEINS to support vehicle communication and SUMO to support

mobility. We changed our simulator from the ns-3 to OMNET++, since ns-3 does not

support directional antennas together with the IEEE 802.11p protocol. Therefore, in

this thesis, when directional antennas are used, we use the OMNET++ simulator, and

when only omnidirectional antennas are used we use the ns-3 simulator.

Every vehicle consists of 4 interfaces and, therefore, 4 directional antennas, each

pointing into a different direction. We choose 4 interfaces as a basic configuration of

antennas in the vehicle, although installing more than 4 antennas is a viable option
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and is studied in Chapter 6. Based on Eq. 4.1 each of the antennas will have beamwidth

B = 90°. According to Eq. 4.2 the first antenna will point to 45°, the second to 135°, the

third to 225°, and the fourth to 315° (Fig. 4.2). In the presented results the geographical

coordinates that are extracted from the GPS devices running in vehicles contain an

error of ±7.1m to support realistic GPS coordinates. A synopsis of the simulation

parameters is shown in Table 4.2.

Table 4.2: SIMULATION PARAMETERS

Parameter Value
Channel Frequency 5.890e9 Hz

Sensitivity -89 dBm
Transmission Power 20mW

Propagation loss model Two Ray
Bit Rate 6Mbps

Phy Model IEEE 802.11p
Number of interfaces (antennas) 4

Number of vehicles 158
Average Vehicle Speed 20-30 m/s [48]

Area 1km2

Interest interval 1 s
Simulation time 150 s

GPS accuracy ± 7.1 m [166]

The parameters chosen for the physical and the MAC layer are proposed in the IEEE

802.11p. Since we choose a small area from the LUST scenario [48], we measure the

number of nodes entering this area during the 150 seconds of simulation time.

Simulation Metrics

We divide the performance metrics into two categories. First, the following metrics

concern the requester node and its traffic in its application layer only:

• Number of Delivered Data shows the number of received Data messages.

• Average Latency shows the mean delay of the received Data messages. This

metric denotes the average time between the transmission of an Interest

message to the reception of the corresponding Data message.
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• Interest Retransmissions denote how many times the node has to resend an

unsatisfied Interest message. An Interest message is unsatisfied, if no Data

message is received as an answer to it, or if it has timed out.

Moreover, to evaluate our algorithm we included additional metrics that concern

the whole network, i.e. all nodes that pass through the selected area during the 150

seconds. For all nodes we count their incoming and outgoing messages and display

the average number for one node in the NDN layer:

• Interests Received: The average number of Interests a node has received.

• Sent Interest Unicasts: The average number of Interests a node has unicast to

another node.

• Sent Interest Broadcasts: The average number of Interests a node has broadcast

to the network.

• Data Received: The average number of Data messages a node has received.

• Sent Data Unicasts: The average number of Data messages a node has unicast.

We additionally display on the MAC layer:

• Received Broadcast Packets: The average number of broadcast messages a node

has received in one network interface card.

• Received Unicast Packets: The average number of unicast messages a node has

received in one network interface card.

The above metrics describe the main characteristics that we consider important

to the V2V communication in a VANET for an infotainment application. ISR is a

core metric, but it is insufficient, when a VANET application has delay constraints.

Hence, latency is measured in our experiments. Moreover, we measure how many

Interests are retransmitted, to analyse how much traffic the requester node sends to

the network. Furthermore, we measure the average number of packets (both Interest

and Data messages) a node receives and sends to further analyse the impact of tα, in

the network.
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Figure 4.7: Number of Delivered Data in the application layer of the requester node.

4.3.2 Simulation Results

We compare our algorithm, eGaRP, using different tα, tα = 100ms, tα = 50ms and tα =
25ms with our previous V2V algorithm iMMM-VNDN [84], as described in Chapter

3. We reimplemented iMMM-VNDN in the OMNET++ simulator to guarantee a fair

comparison of our results. In [84] all vehicles are equipped with 4 interfaces, and in

each interface one omnidirectional antenna is attached. In all experiments, we define

tI N T li f = 1s. Figs. 4.7-4.9 present the results of the application layer of the requester

node as a function of the simulation time.

In particular, Fig. 4.7 presents the number of delivered Data messages in the

application on the requester node. We see that eGaRP outperforms iMMM-VNDN [84]

since we receive all the requested Data messages. The requester node sends 1

Interest/second from the application and receives 1 Data message almost every

second, in the case of eGaRP.

Fig. 4.8 presents the average latency of the application during the Data retrieval

process. We observe that tα affects the application delay. When tα is low, the latency is

also low. Intermediate nodes retransmit the Interest message sooner when they have

low tα (Section 4.2.6). When a node has low tα, the Interest is sent faster to the content

source (in case of Interest retransmission) and, thus, the content source responds with
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the Data message back faster than when the node has high tα.

Figure 4.8: Average Latency of the delivered Data in ms in the application layer of the
requester node.

Because we use a timer-contention-based forwarding mechanism in each node, we

Figure 4.9: Number of Interest retransmissions in the application layer of the requester
node.
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significantly reduce the Interest retransmissions in the application layer (Fig. 4.9).

With eGaRP, each node is responsible for retrieving Data via unicast. Hence, the

intermediate nodes are now also responsible for retrieving Data via unicast paths

to the requester node. Results depicted in Figs. 4.7–4.9 affect the user’s Quality of

Experience. The application responds quicker in eGaRP than in [84], reducing the

user’s waiting time for the content object to load. In addition, the application is

responsive, meaning that when it sends an Interest, then the Data message comes

back. It does not need to retransmit many Interest messages, affecting possibly the

user’s experience when, for instance, a user downloads a website. In [84] a user does

not retrieve the content object in the 150 seconds that the application runs, meaning

that the experience can be interruptive.

Figure 4.10: Packets in one node in the MAC and NDN layer.

In Fig. 4.10 the other metrics in the lower layers of a node are shown. Fig. 4.10 presents

the average number of packets that exist in the network for the total of the simulation

time in only one node. The numbers that are shown in the MAC Layer are for 1 out

of the 4 interfaces. For eGaRP, the number of messages that are received in a node’s

MAC layer depends on the tα. When we define a low tα, a node can retransmit more

Interests more often, therefore, more messages arrive in a node. After a packet has

been received in the MAC layer it is forwarded to the NDN layer. The latter is depicted

in the second bracelet of Fig. 4.10. In this layer differences in eGaRP for different tα
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and also differences between GaRP and iMMM-VNDN [84] are observed.

1 second is the maximum time a node waits to retrieve a Data message, i.e. the Interest

lifetime tI N T li f = 1s. A node with low tα receives more messages (both Interests and

Data). When the tolerance of a node is small, i.e. tTol = 25h ms, its PIT entries will

expire sooner than when tTol = 100h ms, considering that h is the same in both cases.

A node, in that case, can retransmit the same Interest, until the Interest expires, up to

tI N T li f /100h = 10h times (when having tolerance tTol = 100h ms). Similarly, a node

can retransmit an Interest up to tI N T li f /25h = 40h times, when having tolerance

tTol = 25h ms. Therefore, in the same time period, when the tolerance is low, nodes

can retransmit the same Interest message more frequently, compared to when the

tolerance is high. Hence, when tα is low, there may be more retransmissions of

messages from nodes indicating more messages existing in the network, leading to

more received Interests and Data in the MAC and NDN layer of a node.

For iMMM-VNDN [84] we see that a node receives more Interests in its NDN layer

than in eGaRP for high tα. This is highly correlated with the number of unicast and

broadcast Interests a node sends. When a node sends more Interests, other nodes

will receive more Interests. An iMMM-VNDN [84] node broadcasts in average more

Interests. Thus, other nodes receive more Interests, i.e. more messages arrive at the

MAC layer and consequently to the NDN layer. The results presented indicate that

for a content retrieval process we manage to unload traffic from a node when using

a high tα by satisfying the application requirements. In contrast, when setting the

tα to a low value, a node experiences more traffic, by again keeping its application

requirements satisfied.

4.4 Conclusions

The need to design efficient V2V protocols that do not require infrastructure is

essential to reduce infrastructure overload and to offload traffic from it. Therefore, in

this Chapter, we focus on V2V communication and manage directional forwarding of

messages in local areas to support content retrieval. We propose to use directional

antennas in vehicles to restrict the geographical dissemination area of a message and,

therefore, reduce the amount of load in a node in terms of messages. We also propose

a timer-contention-based approach to support the mobility of vehicles in case the

path between a content source and a requester vehicle breaks. In particular, we
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overcome the path breaks by introducing a timer-based retransmission mechanism

in vehicles. Our results indicate that in a realistic highly mobile environment we

retrieve all the requested Data by keeping the application latency low. By increasing

the frequency of possible Interest retransmissions in intermediate nodes, i.e. by using

lower tα, we observe a significant decrease in the average latency, which improves the

Quality of Experience in drivers, since the drivers do not experience large delays when

the requested content object loads.

The main limitation of this Chapter is that the content requester should have a direct

or an indirect connection with a content provider. This means that when a vehicle

broadcasts a request message, there should be a path consisting of 1 or more vehicles

that lead to the content source. If this path exists, then our solution is a viable solution

for content acquisition. But, if this path does not exist, the vehicle should either

utilize another network, e.g. 5G, or find another way to obtain the requested content

object. This idea will be investigated in Part II, where we will use infrastructure to

support content retrieval and investigate if and how we should use this infrastructure

to improve network performance by supporting path breaks, limit the broadcast

transmissions and reduce the dissemination area of transmitted messages.
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Part II

Vehicle to Infrastructure

Communication

In this part, we present routing solutions using Vehicle to Infrastructure (V2I)

communication. Although vehicles should be autonomous to perform their

operations, V2V communication has limitations mainly because of the proposed

standards that are proposed for vehicular networks. In Wi-Fi environments, a

large number of connected vehicles leads to channel collisions when vehicles

are transmitting messages simultaneously. Therefore, infrastructure can assist in

offloading messages from the channel. Moreover, infrastructure can assist in vehicular

connectivity by creating paths and insert necessary forwarding information to routing

tables of vehicles. In this part, in Chapter 5 we use infrastructure as a main component

of our vehicular network, which assists in the routing decisions of vehicles. We use

Road Side Units (RSUs) that are deployed on streets as a network component that can

assist in routing of requests. We propose that vehicles send their traffic towards the

RSUs when vehicles are not aware of how to forward their traffic to find their requested

content. In Chapter 6 we use RSUs together with Software Defined Networking (SDN)

as the main network component. SDN assists in performing routing path calculations

and in populating the routing tables of vehicles. Moreover, SDN instructs RSUs to

change their physical layer characteristics, for the latter to be connected with as

many vehicles as possible. Finally, we experiment with different node configurations,

by installing multiple antennas in vehicles and use infrastructure to identify which

antennas should be used for transmitting a message.





5
Infrastructure-Assisted Communication

for NDN-VANETs

5.1 Introduction

In Chapters 3 and 4 we investigated how we can use V2V communication with

NDN in VANETs for content retrieval by developing different algorithms for V2V

communication. However, the limitations of V2V communication depend on the

limitations of the proposed standards of communication, namely IEEE 802.11p.

Therefore, in this Chapter we address RQ3, as described in Section 1.2.3, which

formulates the question on whether deployed infrastructure, e.g. Road Side Units,

combined with ICN and appropriate routing protocols assist content retrieval in

VANETs. We use infrastructure, specifically Road Side Units (RSUs), to assist content

retrieval in VANETS.

In particular, we propose the use of infrastructure as a possible gateway to connect

vehicles in a VANET environment, hence, to improve connectivity, when paths

between vehicles break [80]. We use NDN to request particular content that an
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infotainment application requests in a local area inside a city centre. For routing in

NDN-VANETs, the Forwarding Information Base (FIB) tables should be populated

and updated when the configured paths are broken. The main advantage of NDN-

VANETs is content availability together with data dissemination. In this Chapter, we

propose a V2I, and in particular V2R (Vehicle to Roadside Unit), communication

architecture for content retrieval in NDN-VANETs: we use infrastructure as a main

or a back-up network component that is responsible for the routing of packets.

Compared to previous works that typically add additional data structures to the NDN

architecture [25, 29, 146], we use:

(a) already proposed data structures by NDN and

(b) RSUs deployed along roads.

We discover content sources, which then advertise their content back to the RSUs.

We highlight that the network nodes have no prior knowledge of what content other

nodes hold.

Our approach is based on a content discovery phase, which we call learning phase.

The learning phase creates routing entries in the FIB tables of nodes and the RSU.

These routing entries denote nodes that a request can be sent, for the content object

to be retrieved. During the learning phase, the RSUs broadcast Beacon messages

to discover content sources, i.e. nodes that hold the content object. The content

sources respond to the Beacons by announcing the prefix of their content object.

Then, every intermediate node creates two routes: one to the next RSU (from the

Beacon transmission) and one to the content source (from the announcement of the

prefix of the content source). The learning phase allows:

(i) the RSUs to know the route to the content sources and

(ii) intermediate nodes to create routes to both RSUs and content sources.

After the learning phase, in the forwarding phase, a node requests a content object. In

the forwarding phase, we propose two routing approaches:

• The first one redirects all data traffic requests (i.e. Interest messages) to the

infrastructure (in this work to RSUs). Given that the RSUs know how to reach
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the content sources, the RSUs forward all requests to the content source. Then,

the content source sends back the content object to the RSU, and the RSU sends

it to the requester.

• The second approach uses the RSUs only as a back-up mechanism: it first looks

for a direct route to the content source, if intermediate nodes have routes to the

content sources. If no direct route is available, it forwards the Interest message

to the RSUs. We highlight that the Beacon broadcast never stops, as the RSUs

broadcast Beacons into the network constantly.

In summary, we make the following contributions:

• We propose a V2I and in particular V2R (Vehicle to Roadside Unit) communication

architecture that exploits deployed RSU infrastructure for content retrieval in NDN-

VANETs.

• Unlike other methods [19, 117], our architecture is resilient to mobility changes, as

routes are created and updated in the learning phase.

• Our architecture retrieves messages successfully without any prior knowledge of

network topology or content availability, thus outperforming previous approaches in

terms of content retrieval.

The rest of this Chapter is structured as follows: Section 5.2 describes the architecture

of the network and the routing decisions that we made. Section 5.3 shows our

evaluation set up and presents a discussion of what we propose in this Chapter.

We finally give our conclusions in Section 5.4.

5.2 V2R Communication Architecture Description

In VANETs the paths between vehicles are frequently changing, due to the mobility

of vehicles. This means that the FIBs should be populated according to newly

created vehicle connections. In this Section, we describe the proposed NDN-VANET

architecture and analyse the two phases of our V2R communication architecture,

the learning phase (Section 5.2.1) and the forwarding phase (Section 5.2.2). Finally,

in Section 5.2.2, we describe the two proposed routing approaches: the linked and

the hybrid approach. The main difference of these approaches is how the Interest

is propagated in the network. In the linked approach, all nodes send their Interests

105



Chapter 5. Infrastructure-Assisted Communication for NDN-VANETs

to the RSU, and the RSU routes the Interests to the content source. In the hybrid

approach, nodes send their Interests to the RSU, only when nodes do not have an

entry in their FIBs towards the content source.

5.2.1 Learning Phase

Our architecture consists of vehicles and RSUs. In the learning phase, the routers in

vehicles and RSUs are initialized. We treat all routers in RSUs and vehicles as NDN

devices that support the NDN architecture, e.g. OBUs that are already deployed in

modern vehicles. This initialization is achieved by populating the FIB tables to support

the transmission of Interests to the content source. We develop two processes that are

used in this learning phase and run endlessly. These processes assist in populating the

FIBs of the vehicles and the RSU(s). We summarize the learning phase in Algorithm 3.

In the following, we describe our two approaches with more details.

Beacon Transmission. The first proposed process is called B-Tr (Beacon Transmission)

and is directly installed in the RSUs. The learning phase starts when the RSUs start

running B-Tr, i.e. broadcast a Beacon message. Specifically, the RSU sends a Beacon

message in the form of an Interest message. The Beacon has a unique prefix, i.e.

"beacon", to be distinguished from other Interest messages (which are requests for a

content object), and includes the MAC address of the node (in this case the RSU). We

broadcast this message and every node that receives such a Beacon message performs

the following steps:

1. It inserts an entry in its PIT and its FIB with the name of the Interest and the

MAC address of the node that transmitted the message.

2. It continues broadcasting this Beacon message to other nodes. Every node that

receives a Beacon message creates an entry in its PIT and FIB and sends the

message into the network.

The created PIT entry assists following the reverse path of the Beacon message back

to the RSU, when the response message to this Beacon message arrives. The created

FIB entry from the broadcast Beacon message assists in the configuration of paths

from all nodes to the RSU.

Response to Beacon Message Transmission. The second process is called Response
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Algorithm 3 Learning Phase

Input: Pr e f i x: Beacon identifier
RB M : Response to Beacon Message from content source. .
D.Pr e f i x: Data prefix of the content in the content source
M ACi : Previous Hop MAC address
M AC j : MAC address stored in the PIT

1: procedure ROUTING OF A BEACON

2: if Beacon r ecei ved at RSU then
3: Create Beacon (Pr e f i x)
4: Broadcast Beacon (Pr e f i x)
5: else if Beacon r ecei ved at Inter medi ate Node then
6: Create PITEntry (Pr e f i x, M ACi )
7: Create FIBEntry (Pr e f i x, M ACi )
8: Broadcast Beacon (Pr e f i x)
9: else if Beacon r ecei ved at content sour ce (D.Pr e f i x) then

10: Create PITEntry (Pr e f i x, M ACi )
11: Create FIBEntry (Pr e f i x, M ACi )
12: Create RBM (D.Pr e f i x)
13: end if
14: end procedure

15: procedure ROUTING OF AN RBM
16: Receive RBM (D.Pr e f i x)
17: if RB M r ecei ved at Inter medi ate Node then
18: if PI T Entr y (M AC j ) 6= ; then
19: Create FIBEntry (D.Pr e f i x, M ACi )
20: Delete PITEntry (M AC j )
21: Send RBM (D.Pr e f i x) to M AC j

22: end if
23: else if RB M r ecei ved at RSU then
24: Create FIBEntry (D.Pr e f i x, M ACi )
25: end if
26: end procedure

to Beacon Message (RBM) transmission RBM-Tr and concerns the node that holds

the content (content source). When a content source receives a Beacon message, it

responds with a new form of a Data message called Response to Beacon Message

(RBM). RBMs do not contain any content. The unique name of this message is the

name of the content object that the node holds. An RBM follows the reverse path of

the received Beacon message. When an intermediate node receives such a message it

performs the following tasks:
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1. It checks its PIT to find the MAC address to forward the RBM (as in [84]).

2. It creates a FIB entry with the name of the content (as in traditional NDN),

and the MAC address of the node that sent the RBM (previous hop), so that an

Interest message could reach a content source.

Since many nodes forward the Beacon message, the RBM will also be sent back from

the same nodes (because the RBM follows the PIT entries that the Beacon message

created). In this way, we populate the FIBs of nodes with many routes that lead to the

content source.

The learning phase assists in creating paths from the RSU to the other nodes in the

network as well as from the content source to RSU and to other nodes that could

possibly request content. Algorithm 3 shows the procedure of processing a Beacon

and an RBM message in the learning phase of our architecture. In particular, in

Algorithm 3 lines 1-14 we present the Beacon routing process. If a Beacon has been

received in an RSU, then the RSU will broadcast the Beacon with its Prefix, i.e. /RSU.

If a Beacon has been received in an intermediate node, i.e. to a node that does not

request or have the content, then the intermediate node creates a PIT and a FIB entry

and continues broadcasting the Beacon. Finally, if the Beacon has been received by a

content source, the content source creates a PIT and a FIB entry and creates the RBM

message to send it towards the RSU. In Algorithm 3 the next process described is the

RBM routing in lines 15-26. If the RBM has been received in an intermediate node,

the node checks its PIT to identify if the node received a Beacon message. If yes, then

the node creates a FIB entry, deletes the corresponding PIT entry and forwards the

RBM. When the RBM has been received at the RSU, the RSU creates a FIB entry and

stops the transmission of the RBM.

Example. We present an example of the learning phase in Fig. 5.1. The RSU initiates

the learning phase by broadcasting a Beacon message with a prefix "RSU" and its MAC

address "01". Every node in its vicinity will receive the message, create a FIB entry and

forward the message. For instance, node A receives the Beacon from RSU and creates

a FIB entry with: "/RSU, 01". Node B receives the message from node A and creates a

FIB entry: "/RSU, 02". This process continues until the Beacon arrives at the content

source. When the content source receives the Beacon message, it responds with an

RBM that contains only the content prefix and its MAC address and sends it back to

node B (Fig. 5.2). For instance, in Fig. 5.2 the RBM from the content source to node B
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Figure 5.1: FIB tables in learning phase. The RSU broadcasts a Beacon message. The
message is propagated to all nodes until it reaches the content source.

contains "/video, 04". Then, node B receives the RBM and creates a FIB entry with:

"prefix, MAC address", i.e. "/video, 04" (Fig. 5.2). The process continues until the RSU

receives the RBM, i.e. until node A forwards the RBM to the RSU, as shown in Fig. 5.2.

Figure 5.2: Node’s A and B FIBs after learning phase.
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Table 5.1: FIB OF NODES AFTER LEARNING PHASE

Prefix MAC address
RSU Beacon prefix 00:01
Content name 00:03

The FIB of nodes resulting from the learning phase (Section 5.2.1) is shown in Table 5.1.

There is no guarantee that the FIB will contain both of these entries, but the processes

described above will always run, so we can assume that after some time the FIBs of

the nodes will contain both entries.

5.2.2 Forwarding Phase

Since the FIBs are populated, a requester initializes the forwarding phase, by routing

a content request to a specific source. In our architecture, there are two possible

destinations for the Interest message: the RSU and the content source (Table 5.1).

We select the next node to route the Interest message according to these FIB entries.

This leads to the development of two different routing approaches, according to the

selection of the FIB entry: (a) linked approach, where a requester always routes the

Figure 5.3: Linked and Hybrid paths.
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Interest messages along the path to the RSU, and (b) hybrid approach, where we

exploit V2V and V2R communication by propagating messages using the path to the

content source or to the RSU if no route to the content source is available. Fig. 5.3

illustrates an example of the two approaches.

Linked Approach

In the linked approach, a node that requests content always routes the Interest

messages along the path to the RSU. In particular, it chooses the corresponding FIB

entry and sends the Interest to the RSU according to the selected next hop, including

the MAC address of the FIB. If no such entry exists, the node waits until a FIB entry

to the RSU is created. The transmission processes of the learning phase never stop,

assuring that a FIB entry is created during the request process (Section 5.2.1).

In case of multiple FIB entries, the requester and all intermediate forwarders choose

the entry that is most recently created. This ensures that the selected next node to

transmit the Interest message is in the vicinity of the previous node that forwarded

the Interest, thus avoiding out of range transmissions. When the RSU receives an

Interest message, it searches its FIB to identify routes to the content source. It chooses

the most recently created entry (i.e. MAC address) and forwards the message to the

selected node. If multiple MAC addresses are available for the same content, once

again the RSU chooses the most recently added FIB entry. Next nodes that assist in

the forwarding process select also next hops from the FIB. Selecting them ensures that

the message arrives successfully at the content source.

Each node chooses an entry from the FIB for routing an Interest. As there are two

types of final destinations (RSUs and content sources), there are two possible entries

in the prefix of a FIB entry: "RSU", when the final destination is an RSU, and "content

name", when the final destination is a content source. A node needs to know which

entry to select. We enforce that every Interest message contains a binary flag element.

The value of the flag determines the final destination of the message: "0" for RSUs,

and "1" for the content source. Therefore, each node chooses entries from the FIB,

whose path leads to the desired final destination. When an Interest message is created,

its flag is set to "0". When the flag is set to "0", all nodes send the Interest message

to the RSU, i.e. all forwarders choose the FIB entry with the RSU prefix. When the

Interest message arrives at the RSU, the latter changes the Interest message’s flag to
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"1" and routes the message according to the entry that leads to the content source.

Then by checking the flag of the Interest message that is set to "1", every intermediate

node chooses FIB entries that lead the Interest to the content source.

Hybrid Approach

After the learning phase as described in Section 5.2.1, the FIB tables of the nodes

have been populated. In our proposed hybrid approach we combine both iMMM-

VNDN (c.f. Section 3) and the linked approach by exploiting both V2V and V2R

communication models. A node that requests or forwards content objects selects the

FIB entry that corresponds to the next node that is leading to the content source.

As mentioned at the beginning of Section 5.2.2 the FIB might not contain an entry to

the content source. This can be due to various reasons: (i) the requester node requests

content before the content source responds with an RBM, (ii) the RBM has not yet

arrived at the requester, e.g. when the content source is multiple hops away, or the

message has timed out, or (iii) the Beacon message has not yet arrived at the content

source, e.g. when a new vehicle has stored new content in its CS. In these cases, the

node sends the Interest to the entry that leads to the RSU. On its way, if the Interest

encounters a node with a FIB entry to the content source, it is routed towards the

content source; otherwise, it reaches the RSU. In that way, we exploit simultaneously

the V2R and the V2V communication model: in particular, we use the RSU as a backup

mechanism for V2V to retrieve content when there is not a FIB entry to the content

source. If a FIB entry does not exist (neither to the RSU nor to the content source), the

requester node delays its request and waits for the creation of a FIB entry.

Fig. 5.3 shows the forwarding phase for both the linked and hybrid approaches. In the

linked approach, node A sends the Interest message (with its flag set to "0") to the RSU

(1st entry in Table 5.1). Then, the RSU changes the Interest flag to "1", searches the FIB

for the next hop (node C) leading to the content source, and forwards this message

to it. Afterwards, the intermediate nodes follow the same process, i.e. node C sends

the message towards node B, and node B sends it towards the content source. In the

hybrid approach, we better exploit V2V communication by searching for routes that

lead to the content source. In particular, node A has an entry to the content source

112



5.3. Performance Evaluation

through node B (2nd entry in Table 5.1). Therefore, node A sends the Interest towards

node B, and after node B sends it towards the content source.

In both approaches, the FIB table is deleted regularly in all nodes, including the RSUs.

This is a key advantage of our proposed method for two reasons: First, due to node

mobility, if no FIB entries were deleted, then nodes will have invalid entries. Using

an invalid entry to send an Interest would occupy the channel with unnecessary

transmissions and, hence, it would be a waste of resources. For instance, a node

would route an Interest to the next hop that might be not there any more, resulting in

the expiration of the Interest and waste of resources. Second, it helps to keep the size

of the FIB table manageable. For instance, if the size of the FIB is large, a node should

perform computationally expensive techniques to retrieve, edit, and/or remove a

particular entry.

5.3 Performance Evaluation

5.3.1 Simulation Environment

Simulation Scenario

We use the map of Manhattan that consists of a 1km x 1km grid. There are two lanes

for each street into different directions. Second, we use the map of Luxembourg city,

i.e. LuST scenario [47], where we isolated an area of 1km x 1km from Luxembourg city

centre and extract the mobility traces in this area for different time periods.

Simulation Parameters

In this Chapter, since we use only omnidirectional antennas to RSUs and to the

vehicles, to implement our proposed architecture, we used the ns-3 [121] based

simulator ndnSIM [18, 19, 106] (c.f.Section 4.3.1). We used the SUMO [36] simulator to

generate mobility traces of the vehicles.

For both maps and all strategies, each vehicle is equipped with three different Wi-Fi

interfaces to send and receive messages at the same time, using IEEE 802.11a Wi-Fi.

We use one requester and one content source to obtain our results. Each vehicle uses

the Least Recently Used (LRU) cache replacement technique for its Content Store. The

number of vehicles is varying from 20 to 400 for the Manhattan map and from 15 to 392
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for the Luxembourg map. We experiment with difference number of vehicles in each

scenario to test the scalability of our approach. In both maps, we place one RSU as an

additional node in the middle of the map (500m, 500m). The RSU is also equipped

with three Wi-Fi interfaces, same as in vehicles. A Beacon message is generated by the

RSU (almost) every second. We added a random variable to ensure that the Beacon

generation will not be the same in every simulation. The requester node sends 10

Interests per second. The learning phase starts from the second 0 of the simulation to

instantiate our FIBs. The forwarding phase (requests) starts at second 20. We allow 20

seconds for the learning phase assuming that this is enough time for the FIB tables to

be initialized. Our simulation runs for 145 seconds for the Manhattan scenario and

200 seconds for the Luxembourg scenario. The presented results have a confidence

interval of 95%. In our experiments, we delete the FIB table every 10 seconds.

In all simulations, each Interest message requests a different fragment of the content,

so the cached content should not affect our results. We aim to show how our proposed

strategies should behave when an initial request is being issued by a requester. We

compare our results with other NDN routing strategies. In particular, we compare

our approaches with the flooding approach, where each node broadcasts the Interest

message and the Data message is broadcast back following the PIT entries of the

Interest [19], with our previous V2V algorithm, iMMM-VNDN [84] and with the AODV

routing protocol [117]. We allow AODV 20 seconds to configure the nodes’ routing

tables, to be comparable with our learning phase. We also used three different network

interfaces in the nodes and the interval of the HELLO messages is 1 second.

Simulation Metrics

To evaluate our proposed algorithm we used 3 metrics:

• Interest Satisfaction Ratio (ISR) (c.f. Section 3.3.1). For AODV we define the

Packet Satisfaction Ratio (PSR) as the number of packets that have been received

by the source divided by the number of Data that the source has sent.

• Latency (c.f. Section 4.3.1). We use the first time that an Interest is sent and do

not update the time when an Interest retransmission occurs.

• Delivered Data (c.f. Section 4.3.1). For AODV we measure the number of

delivered packets, without considering any other message, i.e. RREQ, RREP and

RERR.
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Figure 5.4: Interest/Packet Satisfaction Ratio as function of vehicles for the Manhattan
map.

The above metrics describe the main characteristics that we consider important in

a VANET for an infotainment application. ISR is a core metric, but it is insufficient,

when a VANET application has delay constraints. Hence, latency is measured in our

experiments. Moreover, in the ISR, if the number of retransmitted Interests is not

measured, i.e. if we only show the ratio of received Data messages at the requester

node to the number of different Interest issued, then we could not know how many

Data messages the requester node receives. Therefore, we also show how many Data

packets are delivered to the requester node.

5.3.2 Simulation Results

Manhattan Map

Fig. 5.4 presents the ISR/PSR for all strategies. By using the hybrid routing strategy we

see that RSU support clearly provides stability in the network since the ISR (for the

hybrid approach) is higher than for the others. ISR is higher than 95% for the hybrid

approach and for iMMM-VNDN when the number of nodes is low, but for many nodes,

we observe that the hybrid approach outperforms iMMM-VNDN in terms of content

retrieval. The linked approach has a high ISR for a low number of vehicles, but as the

number of vehicles increases, the ISR decreases. In Fig. 5.4 we notice that with AODV

the PSR is low. The main reason for the PSR being lower for AODV than the ISR for the

hybrid routing strategy is that when a path breaks in AODV, the network wastes a lot

of resources to reconfigure a new path by sending control and error packets. These

packets increase the congestion in the network and, thus, new routes are not used
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Figure 5.5: Average Latency as function of vehicles for the Manhattan map.

properly. In contrast, in the hybrid approach, we delete the routing information (FIB

entries) every 10 seconds (Section 5.2.2) to discover new routes or to update existing

ones. In addition, we always choose the route that has been added last to the FIB to

ensure that the path will be valid.

In Fig. 5.5 we notice that in the linked approach, the average delay is up to five times

longer than for the hybrid routing strategy for a low number of nodes. Redirecting

all Interests to the RSU creates a bottleneck around it. Thus, the RSU will reject any

message until the congestion around it is resolved. For this reason, the latency is high

since rejected Interests need to be retransmitted. For a more dense network, we see

that the latency for the linked approach is not illustrated, since almost no messages

are delivered to the destination, hence the latency cannot be calculated. We also

observe that the hybrid routing strategy results in low latency for a low number of

nodes, and as this number increases, so does the latency. This is because we broadcast

a Beacon message in the learning phase, and the more nodes exist in the network

the more nodes will rebroadcast the message. The RBM will need to pass through

more vehicles to create routes. When the number of nodes is high in the network

the routes are more vulnerable to break, since a node that moves away will cause

several path breaks. We also observe that in iMMM-VNDN the latency increases as the

number of nodes increases. This delay is due to the requester node that broadcasts an

Interest message every 10 seconds. When more nodes have to broadcast this Interest,

the traffic increases and congestion is caused, something that leads to high delay. In
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Fig. 5.5 we observe for iMMM-VNDN a decrease in the average latency for 350 vehicles.

This happens because the requester node is only a few hops away from the content

source and the path does not break, thus the latency of the path is small.

In Fig. 5.5 we see that the latency produced by AODV is much smaller than the average

latency of all other approaches for a sparse network. This is because in AODV messages

are being sent at the beginning of the simulation when paths have been established

after the routing table has been configured with paths. But as the simulation time

progresses, paths break and, thus, become invalid. As seen in Fig. 5.4 packets are

not delivered any more and the PSR for AODV is less than 1% for many nodes. For

a network with more than 100 nodes, no message is delivered to the requester and,

hence, the latency cannot be calculated and it is not illustrated. In the hybrid approach,

we see that we achieve much higher delivery ratios at the cost of increased latency,

caused by the increased number of Interests that exist in the network as the simulation

time continues.

Figure 5.6: Number of Data delivered as a function of vehicles for the Manhattan map.

In Fig. 5.6 we see the number of Data messages that arrived at the requester node. In

the linked approach for a low number of nodes and in the hybrid approach for all node

densities we manage to deliver more Data messages to the requester. This is achieved

because we exploit the number of interfaces that are installed in the requester node

(three interfaces using the same frequency) for both approaches. We developed a

process installed in the requester node that sends at the same time as many Interests

as there are network interfaces installed in a node. In this case, every time an Interest
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has been issued from one interface, the other two interfaces are also issuing Interests

(to be sent to the network). So, we send three Interest messages into the network at the

same time. We observe from Fig. 5.6 that the linked approach delivers more Data for a

low number of nodes, and while this number increases the number of Data messages

delivered decreases. This is because a bottleneck is caused around the RSU and the ISR

drops off for many nodes, as seen in Fig. 5.4. The hybrid routing strategy outperforms

all other strategies and sends five times more Interests than the flooding approach,

three times more Interests than iMMM-VNDN, and ten times more Interests than

AODV. In AODV the number of requested packets is low and almost 0 for many nodes

because the network is congested. The congestion in the network is caused by the

exchange of the control and error messages as well as the high processing load at each

node. In addition, all the control and error messages that AODV produces require a

portion of the network’s bandwidth and, thus, fewer packets from the requester can be

sent through the same channel. Therefore, fewer packets are issued by the requester

and less Data messages arrive back to the requester node.

The main advantage of the hybrid routing strategy when it is compared to the other

strategies is high throughput. The hybrid approach delivers more Data to the requester

node (Fig. 5.6) by maintaining a very high ISR (Fig. 5.4). Below, we compare the hybrid

approach with iMMM-VNDN. Let us consider that the average bandwidth is BW ,

and the simulation time is the same TS . Moreover, let us assume that the number of

received data is D . D is different when the number of nodes is different.

The number of Delivered Data for both of the approaches is shown in Fig. 5.6. From

Fig. 5.6 we may see that:

DHY BRI D ' 3Di M M M (5.1)

where DHY BRI D is the number of received data of the hybrid approach and Di M M M is

the number of received data of iMMM-VNDN. Since BWHY BRI D = BWi M M M , TS is the

same for both algorithms and Throughput can be simply defined as T hr oug hput =
D/TS . Then, it results from (1):

T hr oug hputHY BRI D ' 3T hr oug hputi M M M (5.2)

where T hr oug hputHY BRI D is the throughput of the hybrid approach and T hr oug h-

puti M M M is the throughput of iMMM-VNDN. Thus, the throughput of the hybrid

approach is almost three times higher than the throughput of iMMM-VNDN.
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Figure 5.7: Interest/Packet Satisfaction Ratio as function of vehicles for the
Luxembourg map.

Luxembourg Map

In this simulation, we used mobility traces from the Luxembourg city centre [47]. We

isolated an area and use different time slots to extract the mobility in this particular

area. We observe that depending on the time, the number of cars travelling through

this area changes. In this scenario, we also have one requester node and one node

that provides the content. Fig. 5.7 shows the ISR and the PSR for all tested strategies.

As in the Manhattan map, the hybrid approach outperforms all others since ISR is

higher than 85% for all network densities. We see that iMMM-VNDN has the second

best performance in terms of ISR followed by AODV and flooding, depending on the

density of the network.

Fig. 5.8 presents the average latency for the strategies. The linked approach has the

highest latency for a small number of nodes. For a large number of nodes, we observe

that the linked approach has low ISR and the number of Delivered Data is almost zero.

This is due to the fact that all Interest messages need to pass through the RSU, to be

routed to the node that holds the content. Moreover, we see that for 209 vehicles, the

average latency spikes for the linked approach. When 209 vehicles exist, the ISR for

the linked approach is the highest. This indicates that the RSU assists in the content

retrieval process, but this leads to increased delay. On the contrary, AODV has the

lowest latency, as in the Manhattan map. AODV performs best when the requester and

the content source are one hop away from each other. But in different cases, when
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Figure 5.8: Average Latency as function of vehicles for the Luxembourg map.

the two nodes are multiple hops away, AODV fails to receive any messages, since the

established AODV paths have changed and, thus, the latency cannot be calculated.

The hybrid forwarding strategy has the second smallest delay for almost all network

densities. iMMM-VNDN outperforms the flooding and the linked routing strategy in

terms of latency but has a higher latency than the hybrid approach and AODV.

Fig. 5.9 shows the number of Delivered Data messages to the requester node. Clearly,

Figure 5.9: Number of Data delivered as a function of vehicles for the Luxembourg
map.
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the hybrid approach delivers more messages than the other four approaches. The

linked approach, flooding, and AODV do not perform well, since they manage to

deliver a few Data messages to the requester node, sometimes, less than 100. iMMM-

VNDN, on the other hand, performs better than the aforementioned strategies, since,

due to the limited broadcast of Interests, iMMM-VNDN is almost resilient to mobility

changes. Still, the hybrid approach performs four times better than iMMM-VNDN. As

mentioned in the Manhattan scenario, the number of delivered Data is higher for the

hybrid approach, since we developed an application for the requester node that sends

at the same time as many messages as the number of interfaces that are installed in

the requester node, i.e. three messages at the same time. Thus, requesting more Data

leads to retrieving more Data to the requester node.

In our presented scenarios, for both routing strategies, i.e. hybrid and linked approach,

we start the content request from the requester after the FIBs have been populated. If

a vehicle requests a content object without having any entry in the FIB, it waits until a

Beacon message or an RBM creates such an entry. For our simulation results, we used

a window of w=20 seconds for the learning phase. We used 20 seconds, assuming that

this is enough time for the FIB tables to be initialized. We noticed that, for instance, in

the Manhattan scenario both entries are created in the FIB of our requester node after

t=17 seconds of simulation, see Table 5.1. To examine the range of time t required for

both FIB entries to be created in the requester, we experimented with various values of

the learning phase’s simulation window w . Our results show that t remains constant

and it is independent of w , indicating that varying the learning phase’s simulation

time w does not result in changes in the created time t of the FIB entries. For instance,

reducing the learning phase window to w=10 seconds results again in t=17 seconds.

This is because the creation of the FIB entry depends on both the mobility of vehicles

and the time that a beacon message will be received in a node. The mobility of vehicles

is the same, and we do not change the frequency of beacon transmission. Instead, we

only change when the content request starts. Therefore, the t remains unchanged.

5.4 Conclusions

In this Chapter, we presented a V2R approach for NDN-VANETs. We created an

architecture that consists of vehicles (in each of them an OBU is installed) and

RSUs. RSUs act as a gateway for content requesters to obtain the requested content

object. In particular, we designed a learning phase for our network, where an RSU is
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broadcasting a Beacon message that contains its MAC address and the content source

responds with a Response to Beacon Message (RBM) that contains its content prefix.

In the learning phase paths are configured from the RSU to all nodes and back, as

well as from the content source(s) to all nodes. Then, we designed the forwarding

phase, where we investigate how we can use infrastructure and the knowledge we

obtained from the learning phase to support content retrieval by reducing broadcast

transmissions and by creating paths. We developed two approaches for using the

infrastructure: the linked and the hybrid approach.

In the linked approach, we send all Interests to the RSU that is responsible for routing

all traffic. In the hybrid approach, we use the RSU as a back-up mechanism to route

requests when content requesters do not have an active entry in their routing tables.

We evaluated our approaches and our results showed that we achieved the best output

in terms of Interest Satisfaction Ratio and delivered Data messages with the hybrid

routing strategy. This is because, in the linked strategy, we see that the network, and

in particular the RSU, is congested and a bottleneck is created around it. Redirecting

all traffic to the RSU causes this congestion, and, thus, selecting the RSU as a back-up

mechanism only to retrieve a content object, as we do in the hybrid approach, could

be considered as a congestion avoidance mechanism for the RSU, and results in better

throughput for our network. We also compared our approaches with other protocols,

both using NDN and without and we highlighted that by using NDN, by dynamically

updating routing entries, and by allowing each vehicle to route messages hop by hop

(instead of using predefined paths), we obtain more content objects in less time.

The limitation of the approach presented in this Chapter lies in the fact that both

content providers, as well as content requesters, should have a direct and active

connection to the RSU. But it is possible that because of obstacles, interference,

congestion and collisions the vehicles will not have a direct connection to the

infrastructure. Therefore, in the next Chapter, we will use Software Defined

Networking (SDN) to change the physical layer characteristics of RSUs for the RSUs

to connect to as many vehicles as possible. If an RSU is connected with more cars,

the possibility of connecting to a content provider increases. Moreover, we will use

SDN to perform routing path calculation and to populate the FIBs of vehicles, when a

content object is being requested.
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6
Using SDN for FIB Population and

Transmission Power Adaptation for

NDN-VANETs

6.1 Introduction

Chapter 5 shows how we can efficiently use deployed RSUs to create paths between a

content requester and a content provider. We used omnidirectional antennas in all

nodes, something that leads to a spreading area of a message in all directions. In this

Chapter, we address RQ4, as described in Section 1.2.4, which formulates the question

on whether a centralized architecture combined with the integration of ICN improves

network performance, in terms of vehicular connectivity and content retrieval, in high

density VANETs. We investigate whether centralizing the VANET, by using Software

Defined Networking (SDN) combined with the integration of ICN, can improve the

network performance, by increasing the delivered Data in the requester nodes as well

as reducing the overall messages existing in the network.

123



Chapter 6. Using SDN for FIB Population and Transmission Power Adaptation for
NDN-VANETs

In Chapter 5 we concluded that the connectivity between Road Side Units (RSUs) and

a large number of vehicles is disrupted in a vehicular environment. In particular, when

an RSU tries to communicate with many vehicles, then collisions around the RSU

create huge packet loss leading the RSU to reject all incoming messages. Keeping that

in mind, in this Chapter we investigate if SDN can be applied into such an environment

to decrease the collisions around RSUs by adapting its transmission power [82] and

by assisting in the routing of messages in the VANET when a request is issued by

a vehicle. SDN decouples forwarding functions (data plane) from network control

(control plane), allowing for the development of robust adaptable forwarding schemes,

where network components, such as switches, can be configured remotely [93]. SDN’s

remote management offers convenient deployment, centralized control, reliability

and flexibility [93, 150].

Hence, by changing the transmission power of an RSU we change its radius. We

highlight that tuning the RSU to always function to its highest transmission power

might not allow the latter to connect with the highest number of cars. This happens

because highest transmission power creates more interference into the network, and

this creates higher collision probability leading to rejection of messages. SDN is

applied to the network. RSUs are used as switches and we deploy an SDN centralized

controller for programming all network components.

To perform so, we use an SDN controller application (which is deployed away from

city streets) to change characteristics (transmission power) of Road Side Units (RSUs)

and to assist in message routing. In general, the scope of SDN is to centralize the

network. The role of an SDN controller is to:

• have a global network knowledge to assist (future) applications.

• instruct vehicles about satisfying their requests, i.e. service establishment and

message transmissions.

• notify vehicles about emergencies, such as road accidents.

We install in vehicles and RSUs multiple antennas to allow vehicles either to perform

simultaneous message transmissions or to increase their range (via beamforming

techniques). Vehicles are communicating via the control channel using one

omnidirectional antenna with each other and with the deployed RSUs. For content

retrieval, we investigate two different antenna configurations.
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In the first configuration, named Multiple Interfaces Configuration (MIC), a content

object is retrieved via directional antennas installed in vehicles and RSUs listening

to service channels. By using directional antennas we can improve the coverage area

of a vehicle and limit the dissemination area of messages. But, installing multiple

directional antennas can increase interference. We also allow the rotation of these

directional antennas. The difference between the rotation of the directional antennas

between this Chapter and Chapter 4, is that the rotation of antennas in the MIC is

performed via rotating their beams, instead of mechanical rotation used in Chapter 4

(c.f. Section 4.2.3).

In the second configuration, named SU-MIMO, multiple omnidirectional antennas

are installed in vehicles and RSUs and we use them as a Single-User Multiple Input

Multiple Output (SU-MIMO) system. A SU-MIMO system improves communication

by mainly reducing the bit error rate and increasing the bandwidth of the channel [115].

But, nodes can communicate only with one node at a time.

Furthermore, the SDN controller is connected to the RSUs and collects information

about vehicular and network traffic from them. Then, the SDN controller calculates

the number of connected cars to an RSU and decides whether to change its

transmission power, if it calculates an RSU can connect with a higher number of cars.

Finally, the SDN controller having both local and global knowledge of the network

topology assists in path calculation, when a content request is being issued, and

populates the routing tables of nodes participating in the content object exchange

process.

The rest of this Chapter is structured as follows: Section 6.2 describes our proposed

system model and Section 6.3 describes the content retrieval process. In Section 6.4

we present our results and in Section 6.5 we draw our conclusions.

6.2 System Model

In our proposed system we assume that RSUs are deployed in city streets. These RSUs

are connected to an SDN controller, as shown in Fig. 6.1. In this work, we populate the

routing tables of vehicles (FIB tables). For this, we choose to utilize an SDN controller.

The SDN controller (we will refer to it also as controller) has sufficient computational

power and can calculate routing paths, as well as instruct the RSUs to change their

transmission ranges. The controller instructs the RSUs to change their transmission
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power when it calculates that the RSUs can connect with more vehicles than they are

already connected.

Figure 6.1: Application Scenario

For an SDN controller to identify if it needs to change the transmission range of an

RSU, it should know the number of connected vehicles to all RSUs that it controls

and the total number of cars (connected or not) inside the coverage area of all RSUs.

Therefore, vehicles should have an active connection with an RSU, when they are in

its range.

6.2.1 Communication Between Network Components

In Chapter 5 every RSU sends periodical messages in its coverage area to discover

potential content sources. In this work, we use this periodical message exchange also

to identify the vehicular traffic inside an RSU’s coverage area. We experiment with

two different antenna configurations in nodes (both on vehicles and on the RSUs), as

shown in Fig. 6.2.

In the first configuration (Fig. 6.2a) named MIC (multiple interfaces), we assume that

all vehicles and RSUs are equipped with multiple wireless interfaces, each equipped

with a different antenna, running IEEE 802.11p as their communication protocol.

We assume that we have N interfaces and N antennas installed in nodes. For these
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Figure 6.2: Different node configurations. Figure (a) presents the multiple interface
configuration (MIC) and Figure (b) presents the SU-MIMO configuration

antennas we choose N − 1 antennas to be directional antennas and one to be an

omnidirectional antenna. Every interface that has a directional antenna attached is

listening on a particular service channel of IEEE 802.11p to communicate with other

vehicles for content object exchange. The interface attached to the omnidirectional

antenna listens to the Control Channel.

In the second configuration, named SU-MIMO, we assume that a vehicle has one

wireless interface installed, in which N omnidirectional antennas are installed (we

adopt the native design of MIMO systems), as shown in Fig. 6.2b. For the one installed

interface, we use these N omnidirectional antennas as a SU-MIMO system, to focus

their power towards a particular direction. In addition, for both configurations, we

install in each RSU an additional interface to communicate with the SDN controller.

The communication, therefore, is defined as follows:

• The communication between vehicles for content object exchange via V2V

is performed for the MIC configuration via their interfaces equipped with

directional antennas. For the SU-MIMO configuration, this communication is

performed via the MIMO system, i.e. via the one installed interface that exists

on vehicles by steering its antennas towards the destination vehicle. We make
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this design choice to reduce the dissemination area of messages when a content

object is requested.

• The communication between vehicles and RSU is performed for the MIC

configuration only with the interface equipped with the omnidirectional

antenna and listening permanently to the control channel. As shown in Fig. 6.2a

we use only the interface marked with a dashed line.

For the SU-MIMO configuration, the communication between vehicles and

RSUs is performed via the one interface installed, without performing any

actions to configure the installed antennas. As shown in Fig. 6.2b, we only

have one interface installed in vehicles and RSUs, and the communication

is performed via this interface. For this communication, the interface is also

listening permanently to the control channel. For both configurations, we never

change channels, since control messages in IEEE 802.11p are exchanged via the

control channel.

• The communication between RSUs and the SDN controller is performed via a

fixed network.

6.2.2 Data Collection by the SDN Controller

The SDN controller should collect all the required data to perform its operations

(path calculation and transmission power adaptation). The collection of these data is

performed via the RSUs that are deployed on the streets. For this collection, we use for

the MIC configuration only the interface with one omnidirectional antenna installed

and for the SU-MIMO configuration the interface without applying any beamforming

techniques. Hence, we leave the SU-MIMO system intact.

First, an RSU sends periodic broadcast messages to vehicles. These messages contain

the MAC address and the geographical coordinates of the RSU. This is depicted in

Fig. 6.3a. As in Chapter 5, when a vehicle receives a message from the RSU it creates

a FIB entry containing the MAC address of the RSU, its position and the Signal-to-

Interference-plus-Noise Ratio (SINR). The vehicle, then, responds with a unicast

message to the RSU, named Response to Beacon Message (RBM), Fig. 6.3b. For the

MIC configuration, i.e. when a vehicle is equipped with both omnidirectional and

directional antennas, the RBM contains the vehicle’s identifier, e.g. MAC address, the

vehicle’s current geographical coordinates and a list of the vehicle’s neighbours. The
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Figure 6.3: Data collection from the RSU and, therefore, from the SDN controller

list of neighbours indicates the surrounding vehicles (their MAC addresses and their

geographical coordinates) that are connected (1 hop distance) to a vehicle. If a vehicle

is a content provider, the message also includes the name of the provided content
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object. We assume that a vehicle is equipped with a GPS device and, therefore, knows

its current geographical position [81]. When the vehicle has multiple omnidirectional

antennas (SU-MIMO system) the RBM contains all the fields mentioned before

together, i.e. the MAC address, the geographical coordinates and the list of neighbours

of the vehicle, with the required information for the SU-MIMO, i.e. how the periodic

broadcast message that the RSU sent reached all the antennas of the vehicle. This

process is shown in Fig. 6.3b. In Fig. 6.3b we assume that node B holds a content

object in its Content Store named /video. Node’s B RBM contains the name of the

content object /video, MACB , which is node’s B MAC address, XB ,YB , which are node’s

B geographical coordinates and LN , which is the list of node’s B neighbours. In this

case, the neighbours are node A and node C. For the SU-MIMO configuration the RBM

contains an additional field MC , which describes how the beacon message arrived

at node’s B antennas. We can assume that the beacon message serves as the Null

Data Packet and the RBM has a field indicating the feedback matrix as in Wi-Fi 802.11

ac [67].

A vehicle responds with an RBM, which is unicast to the RSU via the antenna that

points to the RSU. Other vehicles that are around the sender will overhear the RBM

transmission. Vehicles overhearing messages that are intended for the RSU, extract

the source MAC address and the geographical coordinates of the RBM and insert this

information into their FIBs. The name of the created FIB entry is either "/neighbour

(indicating that this MAC address is a neighbour) if the vehicle is not a content provider,

or the content object name "/video" if a vehicle is a content provider. When a vehicle

unicasts a message to the RSU, it checks its FIB for identifying neighbours and inserts

this list of MAC addresses and their corresponding coordinates in the RBM message.

In Fig. 6.3a node D does not receive a beacon message because it is outside of the

coverage area of the RSU. Hence, it does not respond with an RBM, but node C

responds with an RBM (Fig. 6.3b). Therefore, since nodes D and C are connected with

each other, node D will overhear node’s C transmission and enter node’s C information

(MACC , XC ,YC ) into its FIB as a neighbour node (/neighbour). When the RSU receives

an RBM message it forwards it to the controller through the corresponding fixed

network interface. Processing of these messages in the controller is described in

Section 6.2.3.
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6.2.3 SDN Controller Functionality

The first function of the SDN controller is to decide whether an RSU should change its

transmission range by changing its transmission power to be able to communicate

with more cars. As in [132] we can calculate the received power of an RSU considering

all losses in vehicular communications:

Pr = Pt +Gr +Gt −
∑

Lx , (6.1)

where Pr , Pt are the reception and transmission power, Gr and Gt are the gains of

the receiver and the transmitter, and Lx are all the losses of the signal. Losses occur

because of obstacles, noise, interference, weather conditions, and thermal noise.

The limitations in the physical layer of the communicating devices depend on the

wireless standard that is used. The controller knows that the maximum characteristics

of a network device correspond to a certain coverage area.

For the controller to decide whether it needs to change the coverage area of an RSU, it

needs to decide whether the number of cars connected to all RSUs can be increased.

Therefore, the controller should change the RSUs’ transmission power taking into

account the total number of cars existing in the RSUs’ coverage areas. To change the

transmission power, Fig. 6.4 shows how many cars are connected to one RSU in terms

of the number of antennas that are installed in the RSU and the vehicles. The results of

Figs. 6.4–6.5 are derived from experiments performed in the Luxembourg scenario [48].

The Luxembourg scenario consists of vehicles moving through the Luxembourg city

for 24 hours. From the city of Luxembourg, we choose an area of 2km x 2km in the

city centre, where we run our algorithm for 300 seconds. The total number of vehicles

that pass through the selected area for these 300 seconds is 608. Specific parameters

of the selected scenario are shown in Table 6.3. In addition, inside this selected area

we install 1 RSU that is connected to the SDN controller and the vehicles. For the

experimental results shown in Figs. 6.4–6.5 no content object is requested. Hence,

the RSU does not perform any beamforming technique to its antennas and does not

use its antennas as a MIMO system. The beamforming technique and the MIMO

system are only used in the content retrieval process. So, the presented results are the

same for both configurations, since the communication between RSU and vehicles is

performed for both using omnidirectional antennas. For the path loss model, we use

the two ray model [131, 134], where the gain of the transmitted signal depends also on
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Figure 6.4: Total number of connected cars to the RSU as a function of the number of
installed antennas in vehicles and the RSU

the position of the car and the reflection of the signal from roads. Together with the

two ray model we use the obstacle path loss model [132, 133], where the signal gain is

reduced when it passes through obstacles (such as buildings).
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Figure 6.5: The distance of the furthest away connected vehicle from the RSU, when
there are 36 antennas installed at the RSU
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For the same scenario, we measure the distance between the furthest away vehicle

that is connected to the RSU. We present this in Fig. 6.5. Hence, in Fig. 6.5 we indicate

approximately the transmission range of the RSU. We compare the simulation results

with the free space path loss equation (Equation 6.1). From Figs. 6.4–6.5 we see that

when the number of antennas increases we have a minor reduction in the number of

cars that the RSU can connect for both configurations. But, we can compensate for

this decrease of connected cars by increasing the transmission power of the RSU. The

transmission range of an RSU can slightly increase also by increasing the transmission

power of the device.

From Fig. 6.4 we can define when the controller should change one RSU’s transmission

power, based on the number of cars connected to all RSUs at the current time. This

means that the controller can change the transmission power of an RSU based on

current and previous measurements of the number of cars connected to the RSU. In

addition, when the SDN controller is connected with multiple RSUs, it changes the

transmission power of each RSU separately, if the total number of connected cars to

all RSUs decreases compared to the last time step. In that case, the SDN controller

will change the transmission power of each RSU to the value that corresponds to

the maximum number of connected cars for each RSU and for the whole network

(Algorithm 4). Specifically, Algorithm 4 takes as input the number of connected cars

Algorithm 4 Transmission Power adaptation

Input: V c: number of connected cars to all RSUs
V s: previous number of vehicles connected to all RSUs
i indicates the ith RSU
V ci : number of connected cars to RSUi

ti : map<Tx,connected Cars> of RSUi

NRSU : number of RSUs the SDN controller is connected to
T xi : transmission power of RSUi

T xi new : new transmission power of RSUi

1: if V c <V s then
2: for i → 1 : NRSU do
3: find T xi new 6= T xi : ti→ti [T xi new ] >V ci

4: V s =V s +V ci

5: return T xi new

6: end for
7: ti .insert(T xi ,V ci )
8: end if
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to an RSU at the current timestamp and the number of connected cars to this RSU in

the previous timestamp, i.e. how many cars the SDN controller counted that where

connected to this RSU. The SDN controller takes this input for every RSU. Then, the

controller will change the transmission power of each RSU, if it calculates that the

number of cars each RSU is connected to, can be increased. This is performed by

mapping each transmission power the RSU has to the number of connected cars in

this RSU.

Finally, when the SDN controller receives an RBM it creates a map based on the

MAC address of the RBM and on the MAC address of all the neighbour nodes the

RBM contains. This map is updated with every newly received RBM and is used for

calculating routing paths for content retrieval, as described in Section 6.3.

6.3 Content Retrieval

For content retrieval, three possible cases are defined based on the system model,

c.f. Section 6.2. A vehicle requesting a particular content object (requester) issues an

Interest and checks its FIB to identify a next hop to send the Interest, for the Interest

to reach a content provider. Since vehicles exchange periodic messages with an RSU,

they have populated their FIBs with entries pointing either to content sources, RSUs

and/or neighbour nodes.

1. The first case is when a vehicle has direct communication with a content provider

(a node that has the content object), i.e. the vehicle has a FIB entry defined by the

content object name. If it has, as in native NDN, the Interest is unicast using the

MAC address of the FIB entry. To perform the unicast, first, for the MIC configuration,

the node sending the Interest will calculate the angle between its own position and

the target node based on their geographical coordinates. Then, the requester will

choose the interface with a directional antenna that points to the target vehicle. After,

the requester will change the beam of this antenna to the calculated angle. Finally,

the requester will change the beam of all directional antennas by the same angle,

to continue to have a coverage of 360°and will transmit the Interest. For the SU-

MIMO configuration, the node will calculate the steering angle of its antennas (how to

calculate the steering angle and how to enable MIMO in vehicular networks can be

found in [22, 42, 111, 115, 147]), will steer its antennas based on this steering angle and

will transmit the Interest.
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Table 6.1: FIB population (FIBPop) message

Name Source Destination RAntenna FIBdest FIBcoord VAntenna SChannel

2. In the second case, a vehicle does not have direct communication with the content

provider, but it has a FIB entry to an RSU. If a vehicle has FIB entries to multiple RSUs,

it chooses the entry with the highest SINR. Then, the vehicle unicasts its request to

the chosen RSU. The RSU forwards this request to the SDN controller, which:

• searches the created map of vehicular connections to identify possible paths

between the content requester and every content source,

• selects one path based on the lowest hop count using the Dijkstra shortest path

algorithm,

• creates FIB population (FIBPop) messages to send to the RSU. FIBPop messages

are used to populate the FIB (routing) tables of vehicles,

• selects for the MIC configuration the interface of the RSU that the FIB message

should be transmitted from. For the SU-MIMO configuration, the controller

calculates the steering angle of the MIMO system of the RSU.

The structure of a FIB population message is shown in Table 6.1. The FIB message

contains fields regarding the RSU and the target vehicle. This message contains the

following fields:

(a) The name of the content object requested as it should be shown in a node’s FIB

table.

(b) The Source of the message (which is the RSU).

(c) The Destination of the message that indicates the MAC address of the node that

should receive the message.

(d) For the MIC configuration, RAntenna (RSU antenna) shows the antenna that

the RSU should use to transmit the message. For the SU-MIMO configuration,

RAntenna indicates the steering matrix that the RSU should use.

(e) FIBdest indicates the MAC address that the node receiving the FIBPop should

enter in its FIB.

(f) FIBcoord indicates the coordinates of the FIBdest. This field is intended for the

node receiving the FIBPop message and should be entered to the same FIB entry.
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(g) For the MIC configuration, VAntenna (Vehicle antenna) shows the interface that

the vehicle should choose to forward a message. For SU-MIMO configuration,

VAntenna indicates the steering matrix that the vehicle should use.

(h) SChannel that indicates the selected channel of communication.

V2V
V2I

I2I

Interest
FIB population

A

B

C

D

E

SDN 
controller

RSU

Obstacles

Figure 6.6: Communication and message exchange

Let us assume that as shown in Fig. 6.6 the SDN controller receives an Interest message

from node A. The controller checks its map to identify a path between node A and

content provider E. It selects a path from node A via node B to node E. Then, the SDN

controller sends to the RSU two FIB population messages, as the number of hops

that the Interest should go through to reach the content provider (node A and node

B). For the MIC configuration, the first RBM is sent from a directional antenna n to

node A and the second from the directional antenna j to node B. For the SU-MIMO

configuration, the first RBM is sent to node A using the steering matrix n and the

second RBM is sent to node B using the steering matrix j . The FIBPop messages are

defined in Table 6.2. If node B requests a content object, it will send the Interest to

node E directly, since there is V2V communication between node B and node E.
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Table 6.2: Examples of 2 FIB Population (FIBPop) messages

\video\v1\1 RSU node A n node B xb , yb k sch1
\video\v1\1 RSU node B j node F x f , y f y sch1

3. The third case is when there is neither a FIB entry to the content provider nor to an

RSU. In this case, the node selects a neighbour node from the FIB table and it unicasts

the Interest there. Every neighbour receiving the Interest unicasts it either to a content

source, an RSU or a neighbour. This process continues until the Interest reaches a

node with a FIB entry either to a content provider or to the RSU. In Fig. 6.6, if node

C requests a content object, it will send the Interest either to node A or node D. We

note that since the exchange of RBM messages depends on the periodic messages an

RSU sends, it is possible that a node will not have a FIB entry. This will happen when

a vehicle and all of its neighbours do not have an active connection to an RSU. In

that case, we consider that the node can download the content object using another

network (e.g. 5G) if the message is urgent (i.e. safety information) or it can wait until

there is an entry to its FIB (to a content source, an RSU or a neighbour node). In our

case, we choose to wait until a node has an entry to its FIB to unicast the Interest.

We highlight that we do not use any broadcast message transmissions for content

retrieval. We use broadcast messages for the periodic message exchange from an

RSU as it is defined in the IEEE standards as basic safety messages [50]. This avoids

overhead in the network, broadcast storms and collisions as well as saves network

resources.

6.4 Performance Evaluation

This Section describes the evaluated scenarios, the evaluation parameters that were

used and the experimental results.

6.4.1 Simulation Environment

Simulation Scenarios

Our algorithm was evaluated using the Luxembourg city scenario [48], by selecting an

area of 2km x 2km in the city centre. Inside this area, we take into account two different

RSU placements. In the first, we place 1 RSU to the centre. In the second, we add 5
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RSUs distributed inside this area and we connect the SDN controller with all RSUs. For

both RSU placements we run our algorithm for 300 seconds during rush hours (6 pm).

During the simulation, the controller collects information from vehicles (through

the RSU(s)) and assigns new transmission power values to the RSU(s), as described

in Section 6.2.3. Random vehicles request a content object for these seconds, and

the SDN controller is responsible for creating and choosing routing paths. Vehicles

request 150 Interests during the 300 seconds period simulation time, when being

inside the selected area. A vehicle may leave the area before sending all 150 Interests.

In that case, we assume that there will be another RSU outside of this area for the

vehicle to continue the content retrieval process.

We run our algorithm for two different scenarios and for two different RSUs

placements (1 RSU in the area and 5 RSUs inside the area), defined by different

percentages of content requesters and content providers. In both scenarios, the

total number of vehicles during the simulation is 608 and each vehicle, requesting a

content object, issues 150 Interests during the 300 seconds simulation time.

1. In the first scenario, 25% of all vehicles request a content object (requesters)

and 25% of all vehicles are content providers (producers). All other vehicles act

as forwarders, i.e. they can forward Interest and Data messages according to their

FIB and connect to the RSU (as described in Sections 6.2.2 and 6.3). We notice that

as vehicles move in space and time, they can leave our selected area of 2km x 2km.

All vehicles with content objects may leave this area during the simulation period.

Hence, to avoid for the content object to disappear if all content providers leave the

area, every time a vehicle enters into the selected area, we assign a 25% probability

to possess the content object or a 25% probability to request this content object. We

also highlight that we store the content object neither on the RSUs nor on the SDN

controller.

2. With our second scenario, we wanted to evaluate the scalability of our network,

by increasing the percentages of content requesters and content providers to 40%.

We also assumed that a vehicle enters the area has a 40% probability to request the

content object or a 40% probability to possess the content object. Vehicles that do not

request or possess the content object act as forwarders. As in the first scenario, to avoid

for the content object to disappear, we assign a 40% probability for a vehicle entering

the selected area to request the content object, and 40% probability to possess the

content object.
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Table 6.3: SIMULATION PARAMETERS

Parameter Value
Channel Frequency 5.890e9 Hz

Minimum power level -109 dBm
Propagation loss model Two Ray and SimpleObstacleShadowing

Bit Rate 6Mbps
Phy Model IEEE 802.11p

Number of vehicles 608
Average Vehicle Speed 20-30 m/s [48]

Area 2km2

Interest interval 1s
Simulation time 300s

GPS accuracy ± 7.1 m
RBM interval 1s

Simulation Parameters

We evaluated our protocol by using the OMNET++ network simulator with the

vehicular framework VEINS to support vehicular communication using the IEEE

802.11p as the physical model and SUMO to support mobility. We use the OMNET++

network simulator because in the MIC scenario we use directional antennas.

OMNET++ supports directional antennas in the IEEE 802.11p standard, whereas ns-3

does not (c.f. Section 4.3.1). In OMNET++ we also customize and use a modified

version of NDNOMNeT [12] with a modified version of the OpenFlow protocol [13].

Details about the evaluation parameters can be found in Table 6.3.

Simulation Metrics

For evaluating the proposed scheme we used the following metrics:

• Interest Satisfaction Rate (ISR) (c.f. Section 5.3.1).

• Interest retransmissions (c.f. Section 4.3.1).

• Average hop count of an Interest denotes the average hop count that one Interest

message should travel to find a content source.

• Number of transmitted Interests denotes how many Interests are transmitted

through the FIB towards a content source on average and how many towards
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RSUs, and, hence, to the SDN controller.

• Number of RBMs denotes on average how many RBMs one node transmits

towards the RSUs during the whole simulation.

• Tx adaptation messages denotes how many messages the controller sends to the

RSUs for the latter to change its transmission power.

• FIBPop messages denotes the number of messages that the SDN controller sends

to the RSUs for the latter to transmit them to vehicles to populate their FIBs.

The above metrics describe the main characteristics that we consider important in the

SDN-NDN VANET for an infotainment application. Together with ISR, we measure

how many times an Interest is retransmitted from requester nodes, to see how much

traffic the requester nodes produce. We highlight, that the traffic produced from the

requester nodes is very important, since it drives more than half of the messages

existing in the network (Interest, Data, Interest transmission from the RSU to the

SDN controller, SDN controllers’ response with FIBPop messages to the RSU and

transmission of FIBPop messages from the RSU to vehicles). Moreover, we count the

average hop count of an Interest to test whether our different node configurations

increase the transmission range of a vehicle and whether the SDN controller calculates

a short path. Then, we analyse where the Interests are sent to test whether the SDN

controller impacts the routing of messages. Finally, we measure the traffic the SDN

controller produces (Tx adaptation and FIBPop) to measure its impact in the network.

6.4.2 Simulation Results

The simulation results are shown in Figs. 6.7–6.13. Figs. 6.7–6.13 are presented as a

function of the number of installed antennas, which are the same for the vehicles and

the RSUs.

Fig. 6.7a shows the average ISR of all requester nodes when 1 RSU is placed in the

selected area. For the MIC configuration, for both percentages of requesters and

providers, the ISR remains the same at around 0.95 with small fluctuations at around

0.01. We see that although the percentage of producers is higher in the second scenario,

the ISR for the MIC configuration remains almost the same independent of the number

of antennas that we install on RSU and vehicles. For the SU-MIMO configuration,

we observe for both scenarios with 25% and 40% requesters and producers the ISR
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Figure 6.7: ISR in relation to number of installed antennas
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drops significantly compared to all other scenarios. This is because the selected

configuration is a Single-User MIMO (SU-MIMO) system. This means that a node

and/or an RSU can only exchange Interests and/or content objects with one vehicle

in a particular time interval. Hence, if a content provider receives many Interests from

different requesters at the same time, it can only satisfy one request, leading to lower

ISR. In addition, because we use a SU-MIMO system when a node steers its antennas

towards a particular direction, its power towards other directions becomes smaller,

leading to a smaller range and coverage area. The latter leads to high fluctuations of

the ISR that is varying from 85% to 90% and is being caused because of the antenna

array that we used. In our case, we placed the antennas circularly on top of a vehicle

and on the RSU.

Fig. 6.7b shows the average ISR of all requester nodes when 5 RSUs are placed in the

selected area. We observe that the ISR for all node configurations drops and fluctuates

from 0.86 to 0.93. When more RSUs are placed, more messages exist in the network.

RSUs send beacons and nodes respond with RBMs. More beacons result in higher

interference, especially since we do not fine tune the transmission of the beacon

messages, only the transmissions of Interests. Therefore, nodes that are connected

to more than one RSUs could receive at the same time beacon messages resulting in

packet loss due to bit errors.

On the other hand, Fig. 6.8a shows the Interest retransmissions when 1 RSU is placed in

the 2km x 2km area. We observe that the Interest retransmissions are not the same for

our scenarios. For the MIC configuration, we see that as the percentage of requesters

increases the number of message transmissions is higher. More nodes try to retrieve

content objects leading to more collisions in the same channel, leading to lost Interests.

Thus, nodes need to transmit the same Interest more than once to retrieve a content

object successfully. For the SU-MIMO configuration, the number of retransmitted

Interests is high, when the ISR is low (Fig. 6.7). When a content requester does

not receive the requested content object, it produces low ISR, and it retransmits the

Interest. When 16 antennas are installed we observe a peak in Interest retransmissions,

because with this number of antennas the ISR is very low. Low ISR means that a node

sends many times the same Interest to retrieve the content object, but the Interest

remains unsatisfied. On the other hand, the number of retransmissions is low when

there are 5 installed antennas since the ISR is high. Moreover, Fig. 6.8b shows the

Interest retransmissions when 5 RSU are placed in the area. We observe that when

the ISR is low, the number of Interest retransmissions is high. A node retransmits
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Figure 6.8: Interest Retransmissions in relation to number of installed antennas
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its Interest when it is not received, leading to low ISR. Also, we show that for the SU-

MIMO the lowest ISR occurs, when the Interest retransmissions are high compared to

other scenarios and configurations.

Fig. 6.9a shows the average hop count of one Interest message when 1 RSU is placed

in the selected area. The SDN controller calculates the shortest path for an Interest to

travel according to the lowest number of hops. Hence, the average hop count is less

than 2, meaning that on average content requesters have direct communication (1-

hop communication) to the content sources. When there is no direct communication,

Interests need to pass some intermediate nodes to reach a content source. Moreover,

we see an increase in this hop count when the percentage of content requesters and

content producers decreases. With fewer producers in the network, fewer paths exist

for Interest routing and, thus, the number of hops that an Interest passes is higher.

For the MIC configuration, we also observe a peak when 21 antennas are installed

on all nodes. This directly correlates with Fig. 6.13 and will be discussed in the next

paragraphs of this Chapter. For the SU-MIMO configuration, we observe a lower hop

count compared to the MIC configuration. This happens because MIMO systems

can increase the transmission range of a node [65]. When the transmission range is

increased, nodes have higher probabilities of connecting directly to a content source,

hence, the number of hops that the Interest should pass is decreased.

When installing 5 RSUs in the selected area, we show in Fig. 6.9b that the hop count

increases for both configurations and scenarios and is around 2.5. This is because

when a node does not have a FIB entry to the content source directly, it sends the

Interest towards an RSU. If a node has a connection with many RSUs, the RSU is

selected based on the highest SINR. Therefore, a node can send an Interest message

to an RSU that is far away but has a better connection (higher SINR) compared to

another RSU that is closer. Therefore, if the selected RSU is further away, it is more

likely that a message should pass by more cars to reach a destination. We highlight

that this does not affect the ISR significantly. But we can assume that the more hops a

message passes (the path of the message), the more likely it is for this path to break,

hence the ISR drops slightly.
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Figure 6.9: Average hop count of an Interest in relation to number of installed antennas
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Figure 6.10: Transmitted Interests through the FIB towards a content source and an
RSU in relation to number of installed antennas
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Fig. 6.10a shows the average number of Interests a node sends to the RSU and to a

content source when 1 RSU is placed in the selected area. A node sends an Interest

to the content source when there is a FIB entry with the requested name. If there is

no FIB entry towards a content source, the node sends the Interest to the RSU for the

RSU to send it to the SDN controller for path calculation. For the MIC configuration,

in average a node sends a little less than 10% of its Interests to the RSU. This shows

that the calculation of the paths by the SDN controller has an impact in the network

since all content retrieval related transmissions are unicast. In case of absence of

the proposed infrastructure (SDN and RSUs) this 10% traffic could be directed either

towards cellular interfaces or towards other nodes via broadcast transmissions. For the

SU-MIMO configuration, we observe that the number of Interests sent towards an RSU

is small, i.e. around 5%, because nodes have increased transmission range, leading to

more connections to content sources. Hence, content requesters can directly transmit

Interests towards a content source. This is depicted also in Fig. 6.10a, where the

number of Interests towards a content source is much higher than towards an RSU.

Again though, the 5% make an impact on the network, because in case of absence

of the RSU and the SDN controller this traffic would be redirected towards another

network, e.g. cellular. In both configurations (MIC and SU-MIMO) this traffic would

burden the network by creating either huge bandwidth utilization by downloading the

content object via another network (e.g. cellular) or by excessive channel utilization

from the wireless broadcasts.

When 5 RSUs are placed in the selected area as shown in Fig. 6.10b, the destination of

the Interests are almost the same as in Fig. 6.10a with one exception. In the SU-MIMO

configuration, we observe that the Interests redirected towards a content source are

lower when 5 RSUs are placed than when 1 RSU exists and also the Interest towards

the RSUs are higher when 5 RSUs are placed compared to when 1 RSU is placed. In

the SU-MIMO configuration, a node changes the configuration of its antennas when

the node sends an Interest message. Therefore, during the content retrieval process,

a requester will have steered its antennas towards a particular direction, where the

content source is. If the connection to the content source breaks, the node will redirect

its Interests to an RSU. When more RSUs exist, a node is more likely to have a FIB

entry pointing to an RSU, therefore, it can redirect more Interests towards an RSU.

Moreover, if a node does not have a connection to a content source, then it is more

likely that the node will have a connection to an RSU when many RSUs are installed

in its travelling area.
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Figure 6.11: Average number of RBMs an SDN controller receives from all nodes and
from only connected to all RSUs nodes in relation to number of installed antennas
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Fig. 6.11 shows the number of RBMs a node sends on average. We distinguish two

cases. The first case is for all network nodes. As mentioned in Section 6.2.3 the

number of nodes connected to an RSU (and hence, to the SDN controller) is limited.

When calculating the average number of RBMs per node, we take into account all

network nodes, meaning also the ones that are not connected to the RSU. Fig. 6.11a

and Fig. 6.11b show the results of our algorithm when 1 and when 5 RSUs are placed

in the selected area, respectively. Fig. 6.11a shows that for the MIC configuration a

node sends around 16 RBMs for the whole 300 seconds of communication, whereas as

shown in Fig. 6.11b, for 5 RSUs a node sends around 25 RBMs. This is expected since

more RSUs send more beacon messages, therefore, more nodes are connected with

them. For the SU-MIMO configuration, a node sends around 5 RBMs when 1 RSU

is installed and 15 when 5 RSUs exist, during the total simulation time. Practically,

this means that for the MIC configuration all nodes have an active connection with

the RSU for 16 seconds when one RSU is installed and 25 seconds when 5 RSUs

are installed. For the SU-MIMO configuration, all nodes during the 300 seconds

simulation time have a connection with the RSU for 5 seconds and 15 seconds when 1

and 5 RSUs are placed, respectively. The second case is when we calculate the average

number of RBMs that a node directly connected to the RSU sends. When a node is

directly connected to an RSU, it does not mean that there is connectivity for the whole

300 seconds of the simulation time. This means that we take into account nodes

that have a stable connection with an RSU, as well as nodes that have an interrupted

or short connection with an RSU. We observe that for the second case, for the MIC

configuration, the number of RBMs per node is more than 4 times higher, around

63 messages per node when 1 RSU is placed and around 50 when 5 RSUs are placed.

The connection, therefore, of every connected node is shorter with an RSU, but more

nodes are connected with an RSU. For the SU-MIMO configuration, the number

of RBMs per node is 5 times higher, at around 25 RBMs per node when 1 RSU is

placed and around 20 when 5 RSUs are placed in the selected area. Even with this

limited connectivity in both cases, the RSU offloads around 10% of traffic for the MIC

configuration and 5% for the SU-MIMO configuration allowing the network to be more

flexible in frequent mobility changes. In addition, we see that the network is scalable,

meaning that the number of RBMs is almost the same for both of our scenarios.
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Figure 6.12: Transmission adaption messages from an SDN controller to the RSU(s) in
relation to number of installed antennas
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Figs. 6.12–6.13 show the traffic that the SDN controller produces and sends towards

the RSUs. Fig. 6.12 shows the number of transmission power adaptation messages the

SDN controller sends to an RSU (Fig. 6.12a) or to 5 RSUs (Fig. 6.12b). Using Algorithm 4

the SDN controller always tries to find a transmission power value, where the number

of connected vehicles is higher than at the current time. The SDN controller sends

adaptation power messages even when it knows it reached the maximum number of

connected cars, to try and adapt the transmission power value, i.e. the transmission

range of an RSU, to the mobile environment of our scenarios. This is because the

SDN controller always tries to increase the number of connected cars to an RSU. We

notice that for both when 1 RSU and 5 RSUs are placed the MIC configuration as the

number of antennas installed in network components increases, the transmission

power adaptation messages decrease. More antennas create on the one hand more

interference, but on the other hand, the SDN controller learns that even if it changes

the transmission power value of the RSU the number of connected cars to the RSU will

not be increased. Hence, it saves resources and does not send as many transmission

power adaptation messages, compared to fewer antennas installed. For the SU-MIMO

configuration, we observe that the number of transmission adaptation messages

is much lower than for the MIC configuration. This is because using SU-MIMO

configuration, an RSU will steer its antennas towards different areas, making the

number of cars that it communicates smaller. But, the controller is not aware of the

total number of cars that can potentially connect to an RSU. Hence, it saves resources

and does not instruct an RSU to change its transmission power. As expected, the

number of transmission adaptation messages that an SDN controller sends is much

higher, when 5 RSUs are installed compared to when 1 RSU is installed. This is because

when 5 RSUs are installed the controller tries to maximize the maximum number of

connected cars to all RSUs and send messages to either one when it calculates that

the overall number of connected cars can increase.
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Figure 6.13: FIB population messages from the SDN controller to the RSU(s) in relation
to number of installed antennas
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Fig. 6.13 shows the total number of FIB population messages that the SDN controller

sends to the RSUs. Each of these messages represents a FIBPop message as described

in Section 6.3. For the MIC configuration in Fig. 6.13a, we notice a peak with high

fluctuations, if 21 antennas are installed. This is because many nodes around the

RSU send messages to the RSU requesting paths, and the controller responds with

these paths. A node sends an Interest message to the RSU (and through the RSU to

the SDN) when the node does not have a FIB entry that points to the content source.

Hence, the Interest should pass through multiple hops to reach the content source.

Therefore, this peak in Fig. 6.13 is correlated with Fig. 6.9, where we observe that the

hop count of an Interest message also peaks when 21 antennas are installed. Since the

SDN controller sends more FIB adaptation messages, the requesters do not have a

direct connection to a content source (1-hop communication). Hence, the Interest

should pass through multiple nodes to be satisfied. For the SU-MIMO configuration

in Fig. 6.13a we observe that the number of FIBPop messages that the controller sends

is much smaller than for the MIC configuration. This is because using MIMO nodes

can increase their transmission ranges, reaching content sources directly. This is

highly correlated with the results depicted in Fig. 6.9 and Fig. 6.10, where the hop

count of an Interest message is small leading to the number of transmitted Interests

towards the RSU to be small. Hence, when the SDN controller receives fewer Interests

from the RSU, it will create less FIBPop messages. In Fig. 6.13b, we present the

number of FIBPop messages from the controller to all RSUs. First, we show that for

the MIC configuration the number of FIBPop messages is higher than in Fig. 6.13a,

when 25% of nodes request the content object. This happens also for the SU-MIMO

configuration. More RSUs result in more interference in the network, meaning that

more messages are lost, leading to fewer nodes to have a direct connection to a

content source. Hence, more nodes that are now connected to an RSU (Fig. 6.11b)

redirect their messages towards an RSU. Moreover, higher hop count means that the

path that the SDN controller calculates, requires more FIBPop adaptation messages.

Moreover, for the MIC configuration, when 40% of nodes request the content object,

the number of FIBPop messages drops compared to Fig. 6.13a. This is because more

RSUs will connect more nodes to the SDN controller. At the same time, more RSUs

transmit more beacon messages. When content sources respond with RBMs to the

RSUs, as described in Section 6.2.2, these RBMs contain the content names of the

content object the content sources have. Nodes overhear this transmission and enter

an entry into their FIB indicating that they have a connection to a content source.

Therefore, more RSUs send more beacons, reaching more content sources, triggering
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more RBMs, resulting in nodes to enter more FIB entries into their FIBs (that point

towards a content source).

6.5 Conclusions

Software Defined Networking (SDN) has made a huge impact on modern network

architectures by making networks components programmable. We use SDN in an

NDN-VANET, where a content object is retrieved based on its name for decoupling

host and content location. We study the impact of SDN when network nodes request

content objects, without broadcasting neither requests nor content objects. Hence,

we avoid broadcast transmissions and use them only for broadcasting 1 hop beacon

messages as defined in the IEEE 802.11p standard. We show that SDN assists in the

scalability of the vehicular network, as more requests are issued into the network,

its performance is not affected. We also support path breaks, by making the SDN

controller responsible for finding routing paths and populate the routing tables of

vehicles.

We also study two different node configurations for reducing the spreading area of

a message. In particular, for the first configuration, we use both directional and

omnidirectional antennas installed in vehicles and RSUs. The communication

between the RSUs and the vehicles is performed via the omnidirectional antenna

and the V2V communication for content retrieval is performed via the directional

antennas. For the second node configuration, we use only omnidirectional antennas

in vehicles and RSUs. Then, we use these antennas as a MIMO system to target their

energy in a particular direction.

The presented results show that content requesters on average have direct

communication with content sources. But when this is not the case, 5% to 10% of

traffic, when using different node configurations, is sent to an SDN controller instead

of broadcasting these messages to the network. In addition, nodes retrieve from

85% to 95% on average of their requested content object, depending on the different

node configurations. The SDN controller adapts the transmission power of an RSU

successfully, allowing it to connect with as many nodes as possible.
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7
Conclusions and Outlook

7.1 Main Contributions

The main goal of this thesis is to answer the research question that were posed in

Chapter 1.2. Table 7.1 presents the research question and our proposed solutions to

solve them. In this Section, we summarize the contributions of this thesis.

The first research question (RQ1) addressed in the thesis is how to reduce the

number of broadcast transmissions of messages in VANETs when the number of

interconnected cars is high (Section 1.2.1). Broadcast transmissions lead to waste

of resources since unnecessary transmissions occupy the channel and reduce the

bandwidth of the network. Moreover, broadcasting on the same channel leads to

message collisions. To answer RQ1, in Chapter 3 we presented two routing protocols

for NDN-VANETs, named Multihop, Multipath and Multichannel routing protocol

for NDN-VANETs (MMM-VNDN) and improved MMM-VNDN, iMMM-VNDN. Both

of these protocols introduce multihop communication between a requester vehicle

and a content source. In MMM-VNDN we broadcast every message. We include

two new fields into the NDN messages. These fields contain MAC addresses that
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Table 7.1: Research Questions and Answers

RESEARCH QUESTIONS ANSWERS

How to reduce the number
of broadcast transmissions

of messages in VANETs when
the number of

interconnected cars is high?
(Section 1.2.1)

We introduce new routing protocols for
NDN-VANETs that unicast messages. The

unicast transmissions of messages are based
on different next hop selection techniques.

(Chapter 3)

How to limit the
dissemination area of

transmitted messages in
VANETs when the number of
interconnected cars is high?

(Section 1.2.2)

We propose using multiple directional
antennas to support simultaneous message
transmissions towards particular directions.
We develop a routing protocol to choose the

appropriate antenna based on the position of
nodes.

(Chapter 4)

How deployed infrastructure
combined with the

integration of ICN and
appropriate routing

protocols assist content
retrieval in VANETs?

(Section 1.2.3)

We develop routing protocols using Road Side
Units (RSUs) as deployed infrastructure. RSUs
participate in the content exchange process,
acting as a gateway, when a requester node

cannot retrieve the requested content object
through V2V communication.

(Chapter 5)

Does one centralized
architecture combined with

the integration of ICN,
improves network

performance, in terms of
vehicular connectivity and

content retrieval, in high
density VANETs?

(Section 1.2.4)

We propose using Software Defined
Networking (SDN) as a centralized solution for
VANETs. SDN enables performing all routing

decisions in the SDN controller. The SDN
controller calculates paths, to avoid the

unnecessary occupation of the channel as well
as to save network resources.

(Chapter 6)
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point to the previous node and the next node of the message. Based on these fields

nodes accept or reject incoming messages. When nodes reject incoming messages,

the number of broadcast transmissions of messages is reduced. In iMMM-VNDN,

transmissions can be either broadcast or unicast. In both of these protocols, we

introduce two new fields in the node Data structures, i.e. FIB, PIT and CS. These

fields assist the routing of Interest and Data messages towards a particular node.

Then, we introduce three strategies to choose the best path from the requester to the

content source. This selection is performed in every node that receives a message,

i.e. every node decides according to its routing table (FIB) which is the next node

that should receive the message. The first strategy instructs every node to choose the

next hop in a round robin manner. Hence, we distribute the traffic uniformly to all

nodes in the network. The second strategy is to choose the next node based on the

communication latency. The latency is defined as the time passed from the time a

node sent an Interest message to the time that the node received the corresponding

Data message. This strategy allows reducing the latency of the requester during the

content retrieval process. The third next hop selection strategy is the combination of

the above. A node chooses the least used next hop. If next hops in the routing table

have been used the same number of times, the node selects the one with the lowest

latency. Hence, we distribute the traffic uniformly and at the same time we reduce

the latency. Our results show that MMM-VNDN outperforms the flooding strategy by

rejecting incoming messages and constructing paths based on the MAC addresses of

nodes. In addition, iMMM-VNDN outperforms MMM-VNDN, the flooding strategy

and other state of the art routing protocols in terms of Interest Satisfaction Rate (ISR).

iMMM-VNDN also reduces the average latency of up to 12 seconds in the requester

node while keeping average jitter less than 1 ms. Therefore, iMMM-VNDN is an

effective solution for applications requiring high ISR, low latency and jitter.

The second research question (RQ2) addressed in the thesis is how to limit the

dissemination area of transmitted messages in VANETs when the number of

interconnected cars is high (Section 1.2.2). When a message is transmitted through

a wireless device, the direction of the electromagnetic waves is determined by the

type of antennas installed in vehicles or by techniques to steer these antennas

towards the desired location. Usually, vehicles and Wi-Fi routers have omnidirectional

antennas installed, meaning that the signal is transmitted towards all directions with

the same strength. This omnidirectional transmission can lead to the redundant

occupation of the channel. When the channel is busy, nodes can experience large
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delays competing for channel occupation. Therefore, in Chapter 4 we limit the

dissemination area of messages by installing directional antennas in vehicles and

using V2V communication. We presented a routing protocol called enhanced

Geographical Aware Routing Protocol (eGaRP) for NDN-VANETs. We designed eGaRP

for small local areas inside cities, where communication between vehicles can be

disruptive. eGaRP introduces V2V directional communication between vehicles,

by installing directional antennas in each vehicle. Consequently, nodes can send

messages towards particular directions reducing the channel occupation of vehicles

outside of the spreading area of messages. In addition, to establish a better connection

between vehicles, we mechanically rotate the selected antenna of communication

by a particular angle to point to the location of the vehicle that we want to send a

message. By this rotation, we allow stronger signal and better connection between the

two nodes. Our results indicate that eGaRP outperforms the iMMM-VNDN routing

protocol when applied in city centres during rush hours. Specifically, the number of

delivered Data messages in the requester node is increased up to 40%, the average

latency is reduced up to 100 ms, and the number of request retransmissions are

decreased by 9 times in the requester node. Therefore, eGaRP is an advanced solution

that further improves iMMM-VNDN by providing better results in the overall content

retrieval process using only V2V communication.

The third research question (RQ3) addressed in the thesis is how deployed

infrastructure with ICN and appropriate routing protocols assist content retrieval

in VANETs (Section 1.2.3). To answer RQ3, in Chapter 5 we present two routing

strategies that use infrastructure, in particular Road Side Units (RSUs), as a network

component in the NDN routing process. The proposed routing strategies consist

on two phases. The first phase is called learning phase and it is based on beacon

transmission between vehicles and the message transmissions between vehicles and

infrastructure. In the learning phase an RSU periodically broadcasts beacon messages.

Nodes receiving these beacon messages respond with a Respond to Beacon Message

(RBM) message. RBMs assist the RSU to identify the content sources that exist around

it. During the learning phase, when the content sources broadcast RBMs, they include

the name of the content object they produce or hold in their CSs. Therefore, when

nodes and the RSU in the vicinity of content sources receive RBMs, they enter into

their FIB the content object name and the MAC address of the content source. In

addition, all vehicles during the learning phase identify their neighbours, i.e. other

vehicles that are connected with them. In the second phase, called forwarding phase,
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a node requests a content object. For the content retrieval process, we developed

two approaches. In the first, named linked approach, the requester always sends its

request to the RSU. The RSU already knows a content source (from the learning phase)

and, hence, it can transmit directly this request to the content source. The content

source responds with the content object to the RSU and the latter sends it to the

requester node. In the second approach, called hybrid approach, the requester checks

its FIB to identify if there is an entry with the requested content name. If such an

entry exists, the requester unicasts its request to the node specified in the FIB entry. If

there is not such a FIB entry, the requester sends its request to the RSU. Hence, we use

the RSU as a backup mechanism when the requester cannot retrieve the requested

content object through V2V communication. Our results indicate that in the linked

approach many requests remain unsatisfied. In particular, when the number of

vehicles is high, the linked approach does not deliver any messages to the network,

because we create congestion around the RSU when too many messages compete for

the same resources. With the hybrid approach, we outperform our previous routing

protocol iMMM-VNDN, the flooding strategy and the AODV routing protocol [117].

In particular, the number of Delivered Data messages is around 5 times higher than

with the other protocols, the ISR increases up to 3 times more and the latency is kept

lower than the other approaches around 25 ms. Therefore, we highlight that using

infrastructure, and in particular RSUs as a main network component, fails because

congestion is created, especially with a large number of cars. On the other hand, we

highlight that using RSUs as a back-up mechanism in VANETs to assist the content

retrieval process improves network performance compared with other V2V routing

algorithms.

Finally, the fourth research question (RQ4) addressed in the thesis is whether a

centralized architecture combined with the integration of ICN improves network

performance in high density VANETs (Section 1.2.4). To answer RQ4, in Chapter 6 we

use Software Defined Networking (SDN) architecture to centralize the network and we

investigate the impact of SDN in an NDN-VANET. We deploy an SDN controller outside

of city centres that is connected with RSUs, which act as switches. We assume RSUs are

already deployed in city roads. Then, first, we deal with the heavy traffic that is created

around an RSU, when many vehicles try to connect to it, by adapting its transmission

power. This adaptation allows for an RSU to change its range, when necessary.

The SDN controller gathers network information by cars connected an RSU and

is responsible for instructing the RSU to change its range according to the connected
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vehicles. This prevents collisions and broadcast storms around the RSU. Moreover, we

employ the native SDN functionality, which is to perform routing decisions. Vehicles

requesting content objects send their request to the RSU, and the latter sends it to the

SDN controller. The SDN controller, then, is responsible for identifying paths between

nodes and to send messages to the vehicles participating in the content exchange to

populate their routing tables. Thus, vehicles that participate in the content retrieval

process, have entries in their FIBs and unicast messages. We experiment with two

different node configurations, both for vehicles and RSUs. In the first, we install on

them an omnidirectional and many directional antennas. Communication between

vehicles and RSU is performed using the installed omnidirectional antenna. Content

retrieval is performed by using one directional antenna that points to the desired

location. In the second configuration, we install multiple omnidirectional antennas

in vehicles and RSUs. The communication is performed via these antennas, that we

use as a MIMO system. Our results show that by using SDN to deal with connectivity

problems in the VANET, we keep the ISR around 0.9, independent of the networking

and vehicular traffic. We also show that 5%-10% of network traffic is directed towards

the SDN controller that makes the routing decisions. Thus, the usage of SDN highlights

the efficiency of our proposed solution, since we avoid broadcasting messages and

instead we save network resources by sending 5% to 10% of traffic to an SDN controller.

7.2 Future Work

Although VANETs have been introduced since 2001 [139], as communication

technologies advance, so should the communication solutions for vehicular

environments. In this thesis, we propose communication techniques and routing

algorithms when using NDN for VANETs. Nevertheless, there are still enhancements

that can improve their application performance or adjustments to cope with the

requirements of specific applications.

A vehicle should be autonomous and rely solely on its own knowledge about its

surrounding environment. Therefore, the need for efficient schemes that use only

what a vehicle could know is necessary. Studies have been focusing on utilizing

Multiple-User Multiple-Input-Multiple-Output (MU-MIMO) techniques in wireless

communications [75, 130] to improve channel performance in both MANETs and

VANETs. The addition of MU-MIMO techniques in the vehicular communication

scheme enables the communication of a base station with multiple users, increases
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Table 7.2: Comparison of IEEE 802.11p and IEEE 802.11bd [112]

Feature IEEE 802.11p IEEE 802.11 db
Radio bands of operation 5.9 GHz 5.9 GHz & 60GHz

Channel coding BCC LDPC
Re-transmissions None Congestion avoidance

Countermeasures against
Doppler shift

Node Midambles

Sub-carrier spacing 156.25 kHz
312.5 kHz, 156.25 kHz,

78.125 kHz
Supported relative speeds 252 kmph 500 kmph

Spatial streams One Multiple

the utilized bandwidth, as well as the channel capacity.

Wireless LANs, such as the most recent 802.11ac support the SU-MIMO approach [37].

However, the current IEEE 802.11p protocol that is used for vehicular communication,

does not provide a specialized version for MIMO. The results of enabling SU-MIMO

in VANETs have been studied in the literature over the last years and are promising

[89, 111]. Nevertheless, some remarks should be made:

• The MIMO Physical layer model should be developed in detail for the current

standard used in VANETs.

• Channel access control functions should be properly designed for improved

system performance, especially in highly dense situations, when many nodes

are competing for channel access.

• When increasing the bandwidth, larger packets can be forwarded without

excessive retransmissions. The packet is divided in fewer chunks and these

can be transmitted probably in a noisier channel.

Moreover, a new standard for V2X connectivity is currently being developed by

the 802.11 task group, named IEEE 802.11bd. The goal of IEEE 802.11bd is to

double the throughput of vehicular networks, support high speeds (up to 250

km/h), improve transmission range by having at least one module that achieves

twice the communication range of the IEEE 802.11p standard, and reduce channel

collisions [33]. The IEEE 802.11bd is expected to increase the data rates it can achieve
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by adopting some of the existing PHY technologies such as LDPC, MIMO, 256 QAM

modulation, and 20 MHz bandwidth [33].

Furthermore, another interesting line of work refers to the interoperability between

the two standards, i.e. the IEEE 802.11bd and the IEEE 802.11p. For instance, the IEEE

802.11p devices shall be compatible with the IEEE 802.11bd devices by decoding

(at least one mode of) the transmissions from 802.11bd devices, and vice-versa.

To achieve compatibility between the different standards, IEEE 802.11p and IEEE

802.11bd, the packet format in IEEE 802.11db changes by including some fields from

the IEEE 802.11p packet format together with new ones [112]. To summarize, the

key differences between the two standards are shown in Table 7.2. Therefore, the

introduction of IEEE 802.11bd is expected to improve the reliability and stability of

vehicular applications.

Finally, the integration of DTN and ICN in VANETs can increase network performance

and reliability. DTN can bind different internetworks and incorporate devices

and applications with limited and/or local functionality, which require a form of

internetworking capability [125]. The core advantage of DTN is that it supports

the store-carry and forward mechanism, meaning that nodes can store a packet in

their cache, carry the packet and forward it to the destination. This can improve the

connectivity in a VANET, and reduce the overall number of message transmissions

since vehicles could act as agents to transfer packets from one location to another.

Furthermore, DTN supports custody transfer of a message: A node receiving a

message should assure that this message will reach its destination. This offers many

advantages in NDN, where the requester node is the one deciding on whether to

retransmit a request. Custody transfer could offer flexibility in NDN-VANETs, reduce

the number of retransmitted messages from the requester node, and, therefore,

reduce the overall number of messages in the network. The integration of DTN

with NDN for opportunistic environments has been proposed in the UMOBILE

architecture [9]. One significant challenge that needs to be addressed, though, is

that forwarding is performed in the DTN layer. This will violate a main NDN design

principle that Data packets always follow the PIT entries of nodes to be forwarded to

the requester node.

As a next step, an architecture integrating NDN and DTN in a centralized way, i.e.

using SDN, could be considered. This architecture could exploit the core advantages

of both approaches and cohesively integrate them:
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• SDN could perform PIT population to nodes, where a Data message should pass

to reach the requester node. This would allow routing to be performed in the

NDN layer, without violating NDN principles.

• SDN could collect traces from vehicles and find their mobility patterns. Then,

an SDN controller could take all routing decisions (multihop path construction)

based on the application requirements and the mobility of nodes.

• SDN could be used to install critical entries to vehicles when the message is

urgent. For instance, if an agent carrying a Data packet with a small lifetime

(e.g. video feed of a traffic camera) becomes unavailable, the SDN could be

immediately notified and act according to the application requirements.

• SDN could decide on whether a message should be transmitted via the DTN

layer or the NDN layer. This separation is important since applications define

their delay-tolerance. For instance, an application, such as a map of a city, could

be delay-tolerant and could be performed in the DTN layer. On the other hand,

a critical application or an application with a small lifetime, such as finding an

optimal travel route for a geographical destination, depends on the gathered

information (e.g. traffic congestion, closed roads, traffic lights signalling, etc).

This information is only valid for a short duration, therefore, utilizing the NDN

layer could be considered a more efficient solution.

Taking into account the above, albeit the improved physical layer of the vehicular

nodes, the integration of ICN with real-life applications of VANETs is still an open

issue. But with improvements and combination with other technologies (such as DTN,

SDN), ICN in VANETs could be an efficient, applicable solution in the near future.
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