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1.1 Introduction

Heat conduction is one of the three basic modes of thermal energy transport (convection and
radiation being the other two) and is involved in virtually all process heat-transfer operations. In
commercial heat exchange equipment, for example, heat is conducted through a solid wall (often
a tube wall) that separates two fluids having different temperatures. Furthermore, the concept of
thermal resistance, which follows from the fundamental equations of heat conduction, is widely used
in the analysis of problems arising in the design and operation of industrial equipment. In addition,
many routine process engineering problems can be solved with acceptable accuracy using simple
solutions of the heat conduction equation for rectangular, cylindrical, and spherical geometries.

This chapter provides an introduction to the macroscopic theory of heat conduction and its engi-
neering applications. The key concept of thermal resistance, used throughout the text, is developed
here, and its utility in analyzing and solving problems of practical interest is illustrated.

1.2 Fourier’s Law of Heat Conduction

The mathematical theory of heat conduction was developed early in the nineteenth century by
Joseph Fourier [1]. The theory was based on the results of experiments similar to that illustrated
in Figure 1.1 in which one side of a rectangular solid is held at temperature T}, while the opposite
side is held at a lower temperature, T5. The other four sides are insulated so that heat can flow
only in the x-direction. For a given material, it is found that the rate, g, at which heat (thermal
energy) is transferred from the hot side to the cold side is proportional to the cross-sectional area,
A, across which the heat flows; the temperature difference, Ty — T5; and inversely proportional to
the thickness, B, of the material. That is:

0 o A(Ty —Ty)
* B

Writing this relationship as an equality, we have:

_RA(TI - Ty)

qx B 1.1

Insulated

Insulated

Insulated

Figure 1.1 One-dimensional heat conduction in a solid.
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The constant of proportionality, %, is called the thermal conductivity. Equation (1.1) is also applicable
to heat conduction in liquids and gases. However, when temperature differences exist in fluids, con-
vection currents tend to be set up, so that heat is generally not transferred solely by the mechanism
of conduction.

The thermal conductivity is a property of the material and, as such, it is not really a constant, but
rather it depends on the thermodynamic state of the material, i.e., on the temperature and pressure
of the material. However, for solids, liquids, and low-pressure gases, the pressure dependence is
usually negligible. The temperature dependence also tends to be fairly weak, so that it is often
acceptable to treat & as a constant, particularly if the temperature difference is moderate. When the
temperature dependence must be taken into account, a linear function is often adequate, particularly
for solids. In this case,

k=a+0T 1.2)

where a and b are constants.

Thermal conductivities of a number of materials are given in Appendices 1.A-1.E. Many other
values may be found in various handbooks and compendiums of physical property data. Process
simulation software is also an excellent source of physical property data. Methods for estimating
thermal conductivities of fluids when data are unavailable can be found in the authoritative book
by Poling et al. [2].

The form of Fourier’s law given by Equation (1.1) is valid only when the thermal conductivity
can be assumed constant. A more general result can be obtained by writing the equation for an
element of differential thickness. Thus, let the thickness be Ax and let AT =T, — Ty. Substituting
in Equation (1.1) gives:

AT

Now in the limit as Ax approaches zero,
AT dT
— % —
Ax dx
and Equation (1.3) becomes:
dT

Equation (1.4) is not subject to the restriction of constant k. Furthermore, when £ is constant, it can
be integrated to yield Equation (1.1). Hence, Equation (1.4) is the general one-dimensional form of
Fourier’s law. The negative sign is necessary because heat flows in the positive x-direction when
the temperature decreases in the x-direction. Thus, according to the standard sign convention that
q, is positive when the heat flow is in the positive x-direction, g, must be positive when d7T /dx is
negative.

It is often convenient to divide Equation (1.4) by the area to give:

. dT
Gx=qr/A=—k I (1.5)

where §, is the heat flux. It has units of J/s-m? =W/m? or Btu/h - ft?. Thus, the units of k are
W/m-Kor Btu/h-ft-°F

Equations (1.1), (1.4), and (1.5) are restricted to the situation in which heat flows in the x-direction
only. In the general case in which heat flows in all three coordinate directions, the total heat flux is



Ch01-P373588.tex 1/2/2007 11: 36 Page 4

1/4 HEAT CONDUCTION

obtained by adding vectorially the fluxes in the coordinate directions. Thus,

— N N

A

g =0qxi +£ij +a:k 1.6)

- > —

N
where ¢ is the heat flux vector and ;, j, % are unit vectors in the x-, y-, z-directions, respectively.
Each of the component fluxes is given by a one-dimensional Fourier expression as follows:

oT oT oT
gy = —-kb— G, = —-kh— q,=—h— 1.7
qx P qy 3y qz 92 1.7

Partial derivatives are used here since the temperature now varies in all three directions. Substituting
the above expressions for the fluxes into Equation (1.6) gives:

2 oT— oT— oT—
0 = -k —; + =7 4+ 1.8
(axl+ay;+azk) 19)
The vector in parenthesis is the temperature gradient vector, and is denoted by GT. Hence,
- —
q =—kvT 1.9)

Equation (1.9) is the three-dimensional form of Fourier’s law. It is valid for homogeneous, isotropic
materials for which the thermal conductivity is the same in all directions.

Equation (1.9) states that the heat flux vector is proportional to the negative of the temperature
gradient vector. Since the gradient direction is the direction of greatest temperature increase, the
negative gradient direction is the direction of greatest temperature decrease. Hence, Fourier’s law
states that heat flows in the direction of greatest temperature decrease.

Example 1.1

The block of 304 stainless steel shown below is well insulated on the front and back surfaces, and
the temperature in the block varies linearly in both the x- and y-directions, find:

(a) The heat fluxes and heat flows in the x- and y-directions.
(b) The magnitude and direction of the heat flux vector.

5cm
15°C ——» <+«—— 10°C
<«—5cm
10cm
5°C ———» l +«— 0°C
y

L.
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Solution
(@) From Table A.1, the thermal conductivity of 304 stainless steel is 14.4 W/m - K. The cross-
sectional areas are:

A, =10 x 5 = 50 cm? = 0.0050 m?

Ay =5 x 5 =25cm? = 0.0025 m?

Using Equation (1.7) and replacing the partial derivatives with finite differences (since the
temperature variation is linear), the heat fluxes are:

gL = AT g (22 2 1440 W/m?
X 0.05

Gy = T AT g <%) = —1440 W/m?

The heat flows are obtained by multiplying the fluxes by the corresponding cross-sectional
areas:

gx = gxAy = 1440 x 0.005 = 7.2W

gy = GyAy = —1440 x 0.0025 = —3.6 W

(b) From Equation (1.6):

q=0xi +dyJ

G =14407 — 1440

—

| =[(1440)2 + (—~1440)21°° = 2036.5W/m>

The angle, 9, between the heat flux vector and the x-axis is calculated as follows:

tan 6 = gy /gy = —1440/1440 = —1.0

0= —45°

The direction of the heat flux vector, which is the direction in which heat flows, is indicated in
the sketch below.
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» <

45°

1.3 The Heat Conduction Equation

The solution of problems involving heat conduction in solids can, in principle, be reduced to the
solution of a single differential equation, the heat conduction equation. The equation can be derived
by making a thermal energy balance on a differential volume element in the solid. For the case of
conduction only in the x-direction, such a volume element is illustrated in Figure 1.2. The balance
equation for the volume element is:

{rate of thermal energy in} — {rate of thermal energy out} + {net rate of thermal

energy generation} = {rate of accumulation of thermal energy} (1.10)

The generation term appears in the equation because the balance is made on thermal energy, not
total energy. For example, thermal energy may be generated within a solid by an electric current
or by decay of a radioactive material.

The rate at which thermal energy enters the volume element across the face at x is given by the
product of the heat flux and the cross-sectional area, E]x| A Similarly, the rate at which thermal

energy leaves the element across the face at x + Ax is gy |x " A A- For a homogeneous heat source

axlx—’ _>6’X'X+Ax

— AX —»

X X+ Ax
—> X

Figure 1.2 Differential volume element used in derivation of conduction equation.
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of strength ¢ per unit volume, the net rate of generation is gAAx. Finally, the rate of accumulation
is given by the time derivative of the thermal energy content of the volume element, which is
pc(T — T,r)AAx, where T, is an arbitrary reference temperature. Thus, the balance equation
becomes:

- A . oT
(Qx|x - 4x|x+Ax)A + gAAx = chAAx

It has been assumed here that the density, p, and heat capacity, ¢, are constant. Dividing by AAx
and taking the limit as Ax — 0 yields:

oT 0qr .
C— = ——
Pt o 4

Using Fourier’s law as given by Equation (1.5), the balance equation becomes:

AT _ 0 (ROTY |
Pt T\ ar ) 7O

When conduction occurs in all three coordinate directions, the balance equation contains y- and
z-derivatives analogous to the x-derivative. The balance equation then becomes:

AT _ o (RTY 8 (KT 0 (kT wiD
Pt T\ ) T\ oy ) T\ ) T '

Equation (1.11) is listed in Table 1.1 along with the corresponding forms that the equation takes in
cylindrical and spherical coordinates. Also listed in Table 1.1 are the components of the heat flux
vector in the three coordinate systems.

When £ is constant, it can be taken outside the derivatives and Equation (1.11) can be
written as:

pcdT  #T #T #T g
_ ST | 1.12
kot a2 + ay? + 822 +k (1.12)

or

SR v % (1.13)

where « =k/pc is the thermal diffusivity and V2 is the Laplacian operator. The thermal diffusivity
has units of m2/s or ft2/h.
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Table 1.1 The Heat Conduction Equation

A. Cartesian coordinates
AT 0 (T
%% T o Mo
The components of the heat flux vector, ¢, are:

N oT
ax = _kg @y =—h— @ =—k_—

B. Cylindrical coordinates (r, ¢, z)

® (xy2)=(nd 2

AT 10, 0T\ 1 (oT\ o (0T
P9 T\ ) T 2o\ ) Tz "oz

The components of ¢ are:

N T . —k 0T aT

@ . BT ¢ e 0z

C. Spherical coordinates (r, 6, ¢)

P X y.2=(r09)
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AT L0 (0T 1 o (T
PCSt 2o or ) " F2sing o6 %

N 1 9 (k3T> ny
72sin?0 0p \ 0¢ 1

N
The components of ¢ are:

o T . ROT . kT
Tr="557 9="7%% 9T " sin0 0p

The use of the conduction equation is illustrated in the following examples.

Example 1.2

Apply the conduction equation to the situation illustrated in Figure 1.1.

Solution
In order to make the mathematics conform to the physical situation, the following conditions are
imposed:
oT oT

(1) Conduction only in x-direction = T =T(x), so 5 == 0
(2) No heat source = ¢=0

oT
(3) Steady state = i 0

(4) Constant &

The conduction equation in Cartesian coordinates then becomes:

2T a:T
OZkW or W =0

(The partial derivative is replaced by a total derivative because x is the only independent variable
in the equation.) Integrating on both sides of the equation gives:

dT
Y
A second integration gives:
T=Cx+C

Thus, it is seen that the temperature varies linearly across the solid. The constants of integration
can be found by applying the boundary conditions:

1) Atx=0 T=T;
(2 Atx=B T=T,

The first boundary condition gives T = C, and the second then gives:

To=CB+T
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Solving for Cy we find:
_Th-T
C = B
The heat flux is obtained from Fourier’s law:
N dT (T> - Ty) (Ty — T3)
qx_—a_—kCl_—k B =k B
Multiplying by the area gives the heat flow:
N RA(Ty — T
= qeA = —( IB 2

Since this is the same as Equation (1.1), we conclude that the mathematics are consistent with the
experimental results.

Example 1.3

Apply the conduction equation to the situation illustrated in Figure 1.1, butlet k. =a + bT, where a
and b are constants.

Solution
Conditions 1-3 of the previous example are imposed. The conduction equation then becomes:

d (. dT
0=—(k—
dx(kdx>

Integrating once gives:

dT
k—=C
dx !
The variables can now be separated and a second integration performed. Substituting for &, we

have:
(@a+bT1)dT = Cydx

bT?
aT + T =Cix+ G
It is seen that in this case of variable £, the temperature profile is not linear across the solid.
The constants of integration can be evaluated by applying the same boundary conditions as in the
previous example, although the algebra is a little more tedious. The results are:

b 2
CQ:dT1+Tl

T, —T
Clzdwﬁ- b
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As before, the heat flow is found using Fourier’s law:

qy = —kAE =-ACy
dx

A b
=5 [Q(Tl - T) + §(T12 — TZZ)]

This equation is seldom used in practice. Instead, when %k cannot be assumed constant, Equation
(1.1) is used with an average value of k. Thus, taking the arithmetic average of the conductivities at
the two sides of the block:

k(Ty) + k(Ty)

2
_ (@+0bT1) + (a+bT3)
- 2

kave =

b
kave =0 + Q(Tl +T3)

Using this value of & in Equation (1.1) yields:

4y = kaveA(Tl - T2)
o B
[a Lo ;r Ty)

|5@-m
A
=5 [a(T1 - T3 + g(Tf - TZQ)}

This equation is exactly the same as the one obtained above by solving the conduction equation.
Hence, using Equation (1.1) with an average value of £ gives the correctresult. Thisis a consequence
of the assumed linear relationship between % and 7.

Example 1.4

Use the conduction equation to find an expression for the rate of heat transfer for the cylindrical
analog of the situation depicted in Figure 1.1.

Solution
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As shown in the sketch, the solid is in the form of a hollow cylinder and the outer and inner surfaces
are maintained at temperatures 73 and T5, respectively. The ends of the cylinder are insulated so
that heat can flow only in the radial direction. There is no heat flow in the angular (¢) direction
because the temperature is the same all the way around the circumference of the cylinder. The
following conditions apply:

oT
(1) No heat flow in z-direction = P 0

(2) Uniform temperature in ¢-direction = EZ)—(P =0
(3) No heat generation = ¢=0

(4) Steady state = aa—f =0

(5) Constant k£

With these conditions, the conduction equation in cylindrical coordinates becomes:

r or or

d(dr\ _,
ar\' dr )

or

Integrating once gives:

dT
r—==C
dr 1
Separating variables and integrating again gives:
T=Cilnr+C

It is seen that, even with constant %, the temperature profile in curvilinear systems is nonlinear.
The boundary conditions for this case are:

1) Atr=Ry T=T1=T1=CilnR; +(C
2 Atr=Ry T=To=>To=CiInRy+C

Solving for C; by subtracting the second equation from the first gives:

oo Nh-T _ Ti-T
1= lan — lnRQ N 1H(R2/R1)

From Table 1.1, the appropriate form of Fourier’s law is:
j a_ b _kh-oTy)
dr 7 7rIn(Ry/Ry)
The area across which the heat flows is:
A, =2arL
where L is the length of the cylinder. Thus,

ZJTkL(Tl — Tz)

:AA =
qr = qrAy In(Ry/Ry)
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Notice that the heat-transfer rate is independent of radial position. The heat flux, however, depends
on 7 because the cross-sectional area changes with radial position.

Example 1.5

The block shown in the diagram below is insulated on the top, bottom, front, back, and the side at

x =B. The side at x =0 is maintained at a fixed temperature, Ty. Heat is generated within the block
at a rate per unit volume given by:

qg=Te ¥
where I, y > 0 are constants. Find the maximum steady-state temperature in the block. Data are as
follows:
=10W/m® B=10m k =0.5W/m- K = block thermal conductivity
y=01m"! Ty = 20°C
Insulated
Insulated <— Insulated
T, —_
< B >
s x f |
x=0 =B
Insulated
Solution

The first step is to find the temperature profile in the block by solving the heat conduction equation.
The applicable conditions are:

® Steady state
® Conduction only in x-direction
® (Constant thermal conductivity

The appropriate form of the heat conduction equation is then:

Aty .

=0
dx

d’T _
kW +TI'e rE — 0
a:T T
dr? k

Integrating once gives:

dT" Te ™
af _1e Cy
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A second integration yields:

Fe 7%
T=-— k)/z + Cix + Co

The boundary conditions are:
1) Atx=0T=T;

dT
2) Atx i 0

The second boundary condition results from assuming zero heat flow through the insulated
boundary (perfect insulation). Thus, atx =L:

dT dT
G=—kAZ- =0 = —=0

This condition is applied using the equation for d7/dx resulting from the first integration:

e 78
0= i +CG
ky
Hence,
re 78
G =——
ky
Applying the first boundary condition to the equation for 7"
Te®
T = — + C1(0) + Gy
ky
Hence,
r
Cz = T1 + —

ky?

With the above values for C; and Cy, the temperature profile becomes:

—yB
T=T4 e

ky? ky o

Now at steady state, all the heat generated in the block must flow out through the un-insulated side
at x =0. Hence, the maximum temperature must occur at the insulated boundary, i.e., at x =B.
(This intuitive result can be confirmed by setting the first derivative of T equal to zero and solving
for x.) Thus, setting x = B in the last equation gives:

'BLe VB

r —yB
Tmax=T1+W(1—ey)— ky

Finally, the solution is obtained by substituting the numerical values of the parameters:

10

N 10 x 1.0¢701
0.5(0.1)2

1— -0.1y _
(L=e™) = =501

Tmax =20

Tonax =29.4°C
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The procedure illustrated in the above examples can be summarized as follows:

(1) Write down the conduction equation in the appropriate coordinate system.

(2) Impose any restrictions dictated by the physical situation to eliminate terms that are zero or
negligible.

(3) Integrate the resulting differential equation to obtain the temperature profile.

(4) Use the boundary conditions to evaluate the constants of integration.

(5) Use the appropriate form of Fourier’s law to obtain the heat flux.

(6) Multiply the heat flux by the cross-sectional area to obtain the rate of heat transfer.

In each of the above examples there is only one independent variable so that an ordinary differential
equation results. In unsteady-state problems and problems in which heat flows in more than one
direction, a partial differential equation must be solved. Analytical solutions are often possible if
the geometry is sufficiently simple. Otherwise, numerical solutions are obtained with the aid of a
computer.

1.4 Thermal Resistance

The concept of thermal resistance is based on the observation that many diverse physical
phenomena can be described by a general rate equation that may be stated as follows:

Driving force

Flow rate = . 1.149)
Resistance
Ohm’s Law of Electricity is one example:
E
I=— 1.1
7 1.15)

In this case, the quantity that flows is electric charge, the driving force is the electrical potential
difference, E, and the resistance is the electrical resistance, R, of the conductor.

In the case of heat transfer, the quantity that flows is heat (thermal energy) and the driving force
is the temperature difference. The resistance to heat transfer is termed the thermal resistance, and
is denoted by Ry,. Thus, the general rate equation may be written as:

AT

S — (1.16)
Ry,

q

In this equation, all quantities take on positive values only, so that ¢ and AT represent the absolute
values of the heat-transfer rate and temperature difference, respectively.

An expression for the thermal resistance in a rectangular system can be obtained by comparing
Equations (1.1) and (1.16):

_ RA(Ty — T5) _ AT _ T, - T,

ket S <Al 1.1
“=TF TR Ra L
B
Ry = — 1.1
th= 7 (1.18)
Similarly, using the equation derived in Example 1.4 for a cylindrical system gives:
N ZﬂkL(Tl — Tg) _ T1 — T2 (119)

q = =
" In(Ry/Ry) Ry,
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Table 1.2 Expressions for Thermal Resistance

Configuration Ry,
Conduction, Cartesian B/RA
coordinates
Conduction, radial direction, %
cylindrical coordinates T
. . Ry — Ry
Conduction, radial direction, Pl S———
. . 4k R1R
spherical coordinates
Conduction, shape factor 1/kS
Convection, un-finned surface 1/hA
Convection, finned surface L
hn,A

S = shape factor
h =heat-transfer coefficient

Ap + Ay

=weighted effici f finned surface =
nw = weighted efficiency of finned surface A+ 4

Ay =prime surface area
Ay =fin surface area
ns =fin efficiency

In(Ry/Ry)
2kl

These results, along with a number of others that will be considered subsequently, are summarized
in Table 1.2. When k cannot be assumed constant, the average thermal conductivity, as defined in
the previous section, should be used in the expressions for thermal resistance.

The thermal resistance concept permits some relatively complex heat-transfer problems to be
solved in a very simple manner. The reason is that thermal resistances can be combined in the
same way as electrical resistances. Thus, for resistances in series, the total resistance is the sum of
the individual resistances:

Ry = (1.20)

Ry =) Ri (1.21)
i

Likewise, for resistances in parallel:

-1
Ryt = (Z 1/Ri> (1.22)

Thus, for the composite solid shown in Figure 1.3, the thermal resistance is given by:
Ry, =R4+ Rpc +Rp (1.23)
where Rpc, the resistance of materials B and C in parallel, is:

RpRc

RBC = (1/RB + 1/RC)_1 = m

(1.24)
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Figure 1.3 Heat transfer through a composite material.

In general, when thermal resistances occur in parallel, heat will flow in more than one direction.
In Figure 1.3, for example, heat will tend to flow between materials B and C, and this flow will be
normal to the primary direction of heat transfer. In this case, the one-dimensional calculation of ¢
using Equations (1.16) and (1.22) represents an approximation, albeit one that is generally quite
acceptable for process engineering purposes.

Example 1.6

A 5-cm (2-in.) schedule 40 steel pipe carries a heat-transfer fluid and is covered with a 2-cm layer of
calcium silicate insulation (¢ =0.06 W/m - K) to reduce the heat loss. The inside and outside pipe
diameters are 5.25 cm and 6.03 cm, respectively. If the inner pipe surface is at 150°C and the exterior
surface of the insulation is at 25°C, calculate:

(@) The rate of heat loss per unit length of pipe.
(b) The temperature of the outer pipe surface.

Solution

(a)

T =150°C

Insulation

Pipe

T=25C

70

AT 15025
Ry Ry

qr

Rth = Rpipe + Rinsulation

In(Ry/Ry) N In(R3/Ry)

Ry =
) > Y §
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Ry =5.25/2 = 2.625cm
Ry =6.03/2 = 3.015cm
R3=3.015+2=5.015cm
ksteer =43 W/m - K (Table A.1)
kins =0.06 W/m - K (given)
L=1m

i (3.015) I (5.015)
n|l—— nl——
2.625 3.015
Ry = 9 % 43 9 %< 0.06 — 0.000513 + 1.349723
=1.350236 K/W

125

= 1350236 = 92.6 W/m of pipe

ar

(b) Writing Equation (1.16) for the pipe wall only:

150 — Ty

@r=——
Rpipe

150 — Ty

26=-——_-2

92.6 0.000513

To =150 — 0.0475 = 149.95°C

Clearly, the resistance of the pipe wall is negligible compared with that of the insulation, and
the temperature difference across the pipe wall is a correspondingly small fraction of the total
temperature difference in the system.

It should be pointed out that the calculation in Example 1.6 tends to overestimate the rate of
heat transfer because it assumes that the insulation is in perfect thermal contact with the pipe wall.
Since solid surfaces are not perfectly smooth, there will generally be air gaps between two adjacent
solid materials. Since air is a very poor conductor of heat, even a thin layer of air can result in a
substantial thermal resistance. This additional resistance at the interface between two materials
is called the contact resistance. Thus, the thermal resistance in Example 1.5 should really be
written as:

Rth = Rpipe + Rinsulation + Rcontact (1-25)

The effect of the additional resistance is to decrease the rate of heat transfer according to
Equation (1.16). Since the contact resistance is difficult to determine, it is often neglected
or a rough approximation is used. For example, a value equivalent to an additional 5mm of
material thickness is sometimes used for the contact resistance between two pieces of the
same material [3]. A more rigorous method for estimating contact resistance can be found in
Ref. [4].

A slightly modified form of the thermal resistance, the R-value, is commonly used for insulations
and other building materials. The R-value is defined as:

B(ft)

k(Btu/h-ft-°F) (1.26)

R-value =
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where B is the thickness of the material and £ is its thermal conductivity. Comparison with Equation
(1.18) shows that the R-value is the thermal resistance, in English units, of a slab of material having
a cross-sectional area of 1 ft2. Since the R-value is always given for a specified thickness, the thermal
conductivity of a material can be obtained from its R-value using Equation (1.26). Also, since R-values
are essentially thermal resistances, they are additive for materials arranged in series.

Example 1.7

Triple-glazed windows like the one shown in the sketch below are often used in very cold cli-
mates. Calculate the R-value for the window shown. The thermal conductivity of air at normal room
temperature is approximately 0.015Btu/h - ft - °F.

0.08 in. thick glass

A //7 panes

0.25 in. air gaps

A

Triple-pane window

Solution
From Table A.3, the thermal conductivity of window glass is 0.78 W/m - K. Converting to English
units gives:

kgiass = 0.78 x 0.57782 = 0.45Btu/h - ft - °F

The R-values for one pane of glass and one air gap are calculated from Equation (1.26):

0.08/12 _
glass = W = 00148
0.25/12
= = 1.3889
“r0.015

The R-value for the window is obtained using the additive property for materials in series:

R-value = 3Ryus5 + 2Ryir
=3 x 0.0148 + 2 x 1.3889
Rvalue=2.8

1.5 The Conduction Shape Factor

The conduction shape factor is a device whereby analytical solutions to multi-dimensional heat con-
duction problems are cast into the form of one-dimensional solutions. Although quite restricted
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Table 1.3 Conduction Shape Factors (Source: Ref. [5])

Case 1

Isothermal sphere buried in [T

a semi-infinite medium ~ -z z2>D/2
T j "o

T2
Case 2 T——L

Horizontal isothermal z L>>D
cylinder of length L buried Vr g
in a semi-infinite medium e -
7D
Case 3 T
Vertical cylinder in a | } 1
semi-infinite medium — ‘ 1 L>>D
T, il
| =
Case 4
Conduction between two 5 5 L >> Dy, Do
cylinders of length L in T ¥ 2 L>>w
infinite medium i(D ;PLTZ
o~
Case 5 - i =
Horizontal circular cylinder t .
of length L midway between f ™ !
parallel planes of equal N ?.\7 B z>>D/2
length and infinite width - B ER L>>z
- sz —>
Case 6
Circular cylinder of length L "
centered in a square solid T w>D
of equal length ° L>>w
w
’Qn l
Case 7
Eccentric circular .
cylinder of length s D>d
L in a cylinder of C % L>>D
equal length z

27D

SZl—D/4z

2L
S - f
cosh™ (2z/D)

2nL

S= In(4L/D)
2nL
= 4wZ—D§ D
2L

5=z /=D)

S_ 2L
" In(1.08w/D)
S— 2nL
- D? 4 d% — 422
COS. 72Dd

(Continued)
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Table 1.3 (Continued)

Case 8
Conduction through the edge L T,
of adjoining walls D D>L/5 S=0.54D
1
—» | L
Case 9
Conduction through corner of L <<length and S=0.15L
. L .
three walls with a temperature width of wall
difference ATy — T5 across
the walls
Case 10
Disk of diameter D and 7} on a D ﬂ S=2D
semi-finite medium of thermal - T
conductivity & and T5 ‘
0
B
Case 11 w 2L
Square channel of length L . s w = 14 §= 0.785 In(W /w)
S w 27L
—>14 S=
T w 0.930 In(W /w) — 0.050
v T
s
f—w—

in scope, the shape factor method permits rapid and easy solution of multi-dimensional heat-
transfer problems when it is applicable. The conduction shape factor, S, is defined by the
relation:

q =kSAT 1.27)

where AT is a specified temperature difference. Notice that S has the dimension of length. Shape
factors for a number of geometrical configurations are given in Table 1.3. The solution of a problem
involving one of these configurations is thus reduced to the calculation of S by the appropriate
formula listed in the table.

The thermal resistance corresponding to the shape factor can be found by comparing Equation
(1.16) with Equation (1.27). The result is:

Ry, = 1/kS (1.28)

This is one of the thermal resistance formulas listed in Table 1.2. Since shape-factor problems
are inherently multi-dimensional, however, use of the thermal resistance concept in such cases
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will, in general, yield only approximate solutions. Nevertheless, these solutions are usually entirely
adequate for process engineering calculations.

Example 1.8

An underground pipeline transporting hot oil has an outside diameter of 1 ft and its centerline is 2 ft
below the surface of the earth. If the pipe wall is at 200°F and the earth’s surface is at —50°F, what
is the rate of heat loss per foot of pipe? Assume k4,4 = 0.5 Btu/h - ft -°F.

Solution
—50°F

/

200°F

/

N
=1

v _ oil — 1 ft

[ I L

From Table 1.3, the shape factor for a buried horizontal cylinder is:

_ 2L
"~ cosh~1(2 z/D)

In this case, z=2ft and » = 0.5 ft. Taking L = 1 ft we have:

S— 2nL
cosh™1(4)
q = kearnnS AT
=0.5 x 3.045 x [200 — (—50)]
q = 380 Btu/h - ft of pipe

=3.0451t

Note: If necessary, the following mathematical identity can be used to evaluate cosh™1 (x):

cosh™1(x) = ln<x + Va2 — 1)

Example 1.9

Suppose the pipeline of the previous example is covered with 1lin. of magnesia insulation
(k=0.07W/m - K). What is the rate of heat loss per foot of pipe?
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Solution

J— Ol —— 11t 14in.

Insulation

This problem can be solved by treating the earth and the insulation as two resistances in series.
Thus,

AT 200 — (—50)
Rth Rearth + Rinsulation

The resistance of the earth is obtained by means of the shape factor for a buried horizontal cylinder.
In this case, however, the diameter of the cylinder is the diameter of the exterior surface of the
insulation. Thus,

z =2ft=24in.

D=12+2=14in.

48
22/D = — —3.42
2/D = 7, = 34286

Therefore,

2nL 27 x 1

S = = =3.30121t
cosh™1(2z/D)  cosh~1(3.4286)

11
keartiS 0.5 x 3.3012

Converting the thermal conductivity of the insulation to English units gives:

= 0.6058 h - °F/Btu

Rearth =

kins = 0.07 x 0.57782 = 0.0404 Btu/h - ft - °F
Hence,

Re/Ry) In(7/6)
2nkips L 27 x 0.0404 x 1
=0.6073h -°F/Btu

Rinsulation =1n
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To infinity

Solid initially at T,

Gy —

Surface at Ty — | —» To infinity

%\

To infinity

Figure 1.4 Semi-infinite solid.

Then
250

— Y _ 906Btu/h-ft of pi
0.6058 1 0.6073 — 206 Btu/h-ft of pipe

q

1.6 Unsteady-State Conduction

The heat conduction problems considered thus far have all been steady state, i.e., time-independent,
problems. In this section, solutions of a few unsteady-state problems are presented. Solutions to
many other unsteady-state problems can be found in heat-transfer textbooks and monographs, e.g.,
Refs. [5-10].

We consider first the case of a semi-infinite solid illustrated in Figure 1.4. The rectangular solid
occupies the region from x = 0 to x = oo. The solid is initially at a uniform temperature, 7. At time
t =0, the temperature of the surface atx = 0is changed to T and held at that value. The temperature
within the solid is assumed to be uniform in the y- and z-directions at all times, so that heat flows only
in the x-direction. This condition can be achieved mathematically by allowing the solid to extend
to infinity in the £y- and +z-directions. If T is greater that T}, heat will begin to penetrate into the
solid, so that the temperature at any point within the solid will gradually increase with time. That
is, T =T (x,1), and the problem is to determine the temperature as a function of position and time.

Assuming no internal heat generation and constant thermal conductivity, the conduction equation

for this situation is:
10T 8T
- = 1.29
o ot w2 ( )

The boundary conditions are:

1) Att=0, T=T, forallx>0
2) Atx=0, T=T; forallt>0
3) Asx—oo, T—T, forallt>0

The last condition follows because it takes an infinite time for heat to penetrate an infinite distance
into the solid.

The solution of Equation (1.29) subject to these boundary conditions can be obtained by the
method of combination of variables [11]. The result is:

T, t) — T _ x
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The error function, erf, is defined by:

(i2)-

X
2Vat
2

N
0

)
e % dz

(1.31)

This function, which occurs in many diverse applications in engineering and applied science, can
be evaluated by numerical integration. Values are listed in Table 1.4.

Table 1.4 The Error Function

X erfx X erfx X erfx
0.00 0.00000 0.76 0.71754 1.52 0.96841
0.02 0.02256 0.78 0.73001 1.54 0.97059
0.04 0.04511 0.80 0.74210 1.56 0.97263
0.06 0.06762 0.82 0.75381 1.58 0.97455
0.08 0.09008 0.84 0.76514 1.60 0.97635
0.10 0.11246 0.86 0.77610 1.62 0.97804
0.12 0.13476 0.88 0.78669 1.64 0.97962
0.14 0.15695 0.90 0.79691 1.66 0.98110
0.16 0.17901 0.92 0.80677 1.68 0.98249
0.18 0.20094 0.94 0.81627 1.70 0.98379
0.20 0.22270 0.96 0.82542 1.72 0.98500
0.22 0.24430 0.98 0.83423 1.74 0.98613
0.24 0.26570 1.00 0.84270 1.76 0.98719
0.26 0.28690 1.02 0.85084 1.78 0.98817
0.28 0.30788 1.04 0.85865 1.80 0.98909
0.30 0.32863 1.06 0.86614 1.82 0.98994
0.32 0.34913 1.08 0.87333 1.84 0.99074
0.34 0.36936 1.10 0.88020 1.86 0.99147
0.36 0.38933 1.12 0.88079 1.88 0.99216
0.38 0.40901 1.14 0.89308 1.90 0.99279
0.40 0.42839 1.16 0.89910 1.92 0.99338
0.42 0.44749 1.18 0.90484 1.94 0.99392
0.44 0.46622 1.20 0.91031 1.96 0.99443
0.46 0.48466 1.22 0.91553 1.98 0.99489
0.48 0.50275 1.24 0.92050 2.00 0.995322
0.50 0.52050 1.26 0.92524 2.10 0.997020
0.52 0.53790 1.28 0.92973 2.20 0.998137
0.54 0.55494 1.30 0.93401 2.30 0.998857
0.56 0.57162 1.32 0.93806 2.40 0.999311
0.58 0.58792 1.34 0.94191 2.50 0.999593
0.60 0.60386 1.36 0.94556 2.60 0.999764
0.62 0.61941 1.38 0.94902 2.70 0.999866
0.64 0.63459 1.40 0.95228 2.80 0.999925
0.66 0.64938 1.42 0.95538 2.90 0.999959
0.68 0.66278 1.44 0.95830 3.00 0.999978
0.70 0.67780 1.46 0.96105 3.20 0.999994
0.72 0.69143 1.48 0.96365 3.40 0.999998
0.74 0.70468 1.50 0.96610 3.60 1.000000
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The heat flux is given by:
. k(Ts—Tp) 9
Gy = ————exp(—x“/4at) (1.32)
=
The total amount of heat transferred per unit area across the surface at x =0 in time ¢ is given by:
t
9 _ow(ry - To)\| — (1.33)
A o

Although the semi-infinite solid may appear to be a purely academic construct, it has a number of
practical applications. For example, the earth behaves essentially as a semi-infinite solid. A solid
of any finite thickness can be considered a semi-infinite solid if the time interval of interest is
sufficiently short that heat penetrates only a small distance into the solid. The approximation is
generally acceptable if the following inequality is satisfied:

ot

77 < 0.1 (1.34)

where L is the thickness of the solid. The dimensionless group «t/L? is called the Fourier number
and is designated Fo.

Example 1.10

The steel panel of a firewall is 5-cm thick and is initially at 25°C. The exterior surface of the panel
is suddenly exposed to a temperature of 250°C. Estimate the temperature at the center and at the
interior surface of the panel after 20 s of exposure to this temperature. The thermal diffusivity of
the panel is 0.97 x 10~°> m?2/s.

Solution
To determine if the panel can be approximated by a semi-infinite solid, we calculate the Fourier
number:

ot 0.97 x 1075 x 20
Lz (0.05)2

Fo = = 0.0776

Since Fo < 0.1, the approximation should be acceptable. Thus, using Equation (1.30) with x =0.025
for the temperature at the center,

T-T, _erf( x )
To—Ts 2Vat

T-2 .02

T-20_ . 0.025 — erf(0.8974)
25 — 250 21/0.97 x 10-5 x 20

T — 250

s = 0.7969 (from Table 1.4)

T=70.7°C
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To infinity

Solid initially at Ty

2s

\_/l/\

To infinity

Figure 1.5 Infinite solid of finite thickness.

For the interior surface, x = 0.05 and Equation (1.30) gives:

T-20_ . 0.05 — erf(1.795)
—225 2/0.97 x 10-5 x 20
—=0.9891
T =275°C

Thus, the temperature of the interior surface has not changed greatly from its initial value of 25°C,
and treating the panel as a semi-infinite solid is therefore a reasonable approximation.

Consider now the rectangular solid of finite thickness illustrated in Figure 1.5. The configuration
is the same as that for the semi-infinite solid except that the solid now occupies the region from
x =0 to x =2s. The solid is initially at uniform temperature 7 and at time ¢ =0 the temperature
of the surfaces at x =0 and x = 2s are changed to T;. If T; > T}, then heat will flow into the solid
from both sides. It is assumed that heat flows only in the x-direction, which again can be achieved
mathematically by making the solid of infinite extent in the 4y- and +z-directions. This condition
will be approximated in practice when the areas of the surfaces normal to the y- and z-directions are
much smaller than the area of the surface normal to the x-direction, or when the former surfaces
are insulated.

The mathematical statement of this problem is the same as that of the semi-infinite solid except
that the third boundary condition is replaced by:

@) Atx=2s T =T,

The solution for T'(x,¢) can be found in the textbooks cited at the beginning of this section. Fre-

quently, however, one is interested in determining the average temperature, T, of the solid as a
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function of time, where:
. 2s
ﬂﬂ=§menw (1.35)
0

Thatis, T is the temperature averaged over the thickness of the solid at a given instant of time. The
solution for T is in the form of an infinite series [12]:

Ts—-T 8 1 1
s = O (¢aF0 4 Zg9aF0 | _ ,=25aFo (1.36)

T,—T, =2 9 25

where a = (7/2)? = 2.4674 and Fo = at/s%.

The solution given by Equation (1.36) is shown graphically in Figure 1.6. When the Fourier
number, Fo, is greater than about 0.1, the series converges very rapidly so that only the
first term is significant. Under these conditions, Equation (1.36) can be solved for the time to

give:
2
1/2s 8(Ts — T,
= () [ 32 T0 (1.37)
a\7m 2(Ts—T)
1

N

[N

\ 3 ]

Rectangular solid
N
P IEStrrtrrrrrrrrry o Cylinder
' 4 N yli
N
N \\ — — — Sphere
N
~ 0.1 A ~
= \
I \
S T S
= N N
4 \
[ \ AN N
| <
o \ ~ \\\
0.01 N N
AY
\
"\ -
‘\ : N
\ N
0.001 >
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fo

Figure 1.6 Average temperatures during unsteady-state heating or cooling of a rectangular solid, an
infinitely long cylinder, and a sphere.



Ch01-P373588.tex 1/2/2007 11: 36 Page 29

HEAT CONDUCTION 1/29

The total amount of heat, @, transferred to the solid per unit area, A, in time £ is:

%gzgqﬂn_n] (1.38)

where m, the mass of solid, is equal to 2psA. Thus,

%?:%mﬁ@_n] (1.39)

The analogous problem in cylindrical geometry is that of an infinitely long solid cylinder of radius,
R, initially at uniform temperature, 7;. At time ¢ =0 the temperature of the surface is changed to
T This situation will be approximated in practice by a finite cylinder whose length is much greater
than its diameter, or whose ends are insulated. The solutions corresponding to Equations (1.36),
(1.37), and (1.39) are [12]:

TS B T —5.78Fo —30.5Fo
=0.692¢ 131730
T. T, 0.692¢ +0.131e
+0.0534¢ 4-9F0 4 ... (1.40)
R? [0.692(Ts - TO)}
t= n _ (1.41)
5.78a T.—T
Q)  pcR =
jr_jrp@_n] (1.42)
where
at

Here A is the circumferential area, which is equal to 27 R times the length of the cylinder. Equation
(1.40) is shown graphically in Figure 1.6.
The corresponding equations for a solid sphere of radius R are [12]:

L-T _ 0.608¢9-87F0 | ().152¢~39-5F0
s — 40

+0.0676¢88:8F0 .. (1.44)

R? 0.608(Ts — Ty)
t= 1 _ 1.45
9.87a“[ .- T } (1.45)

4 3

QW) = gnR oc T — Tyl (1.46)

The Fourier number for this case is also given by Equation (1.43). Equation (1.44) is shown
graphically in Figure 1.6.
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Example 1.11

A 12-ounce can of beer initially at 80°F is placed in a refrigerator, which is at 36°F. Estimate the time
required for the beer to reach 40°F.

Solution

Application to this problem of the equations presented in this section requires a considerable amount
of approximation, a situation that is not uncommon in practice. Since a 12-ounce beer can has a
diameter of 2.5in. and a length of 4.75in., we have:

4.75
L/D=—=1
/ 2.5 I

Hence, the assumption of an infinite cylinder will not be a particularly good one. In effect, we will
be neglecting the heat transfer through the ends of the can. The effect of this approximation will
be to overestimate the required time.

Next, we must assume that the temperature of the surface of the can suddenly drops to 36°F when
it is placed in the refrigerator. That is, we neglect the resistance to heat transfer between the air in
the refrigerator and the surface of the can. The effect of this approximation will be to underestimate
the required time. Hence, there will be at least a partial cancellation of errors.

‘We must also neglect the heat transfer due to convection currents set up in the liquid inside the can
by the cooling process. The effect of this approximation will be to overestimate the required time.

Finally, we will neglect the resistance of the aluminum can and will approximate the physical
properties of beer by those of water. We thus take:

k =0.341Btu/h - ft- °F T, =36°F
o = 62.41bm/ft° Ty = 80°F
¢ =1.0Btu/lbm - °F T =40°F

With these values we have:

ML 0.0055{t*/h
pC

T,-T 36-40
T,—To  36-80

= 0.0909

From Figure 1.6, we find a Fourier number of about 0.35. Thus,

ot

Fo=— =035
R2

~ 0.35R*  0.35(1.25/12)*

«  0.0055 =0.69h

¢
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Alternatively, since Fo > 0.1, we can use Equation (1.41):

o R? n 0.692(Ts — To)
" 5.78« T,—T
_(1.25/12)% | 0.629
T 578x0.0055 | 0.0909
t=0.66h

This agrees with the previous calculation to within the accuracy with which one can read the
graph of Figure 1.6. Experience suggests that this estimate is somewhat optimistic and, hence,
that the error introduced by neglecting the thermal resistance between the air and the can is
predominant. Nevertheless, if the answer is rounded to the nearest hour (a reasonable thing to do
considering the many approximations that were made), the result is a cooling time of 1h, which
is essentially correct. In any event, the calculations show that the time required is more than a
few minutes but less than a day, and in many practical situations this level of detail is all that is
needed.

1.7 Mechanisms of Heat Conduction

This chapter has dealt with the computational aspects of heat conduction. In this concluding section
we briefly discuss the mechanisms of heat conduction in solids and fluids. Although Fourier’s law
accurately describes heat conduction in both solids and fluids, the underlying mechanisms differ. In
all media, however, the processes responsible for conduction take place at the molecular or atomic
level.

Heat conduction in fluids is the result of random molecular motion. Thermal energy is the energy
associated with translational, vibrational, and rotational motions of the molecules comprising a
substance. When a high-energy molecule moves from a high-temperature region of a fluid toward
a region of lower temperature (and, hence, lower thermal energy), it carries its thermal energy
along with it. Likewise, when a high-energy molecule collides with one of lower energy, there is a
partial transfer of energy to the lower-energy molecule. The result of these molecular motions and
interactions is a net transfer of thermal energy from regions of higher temperature to regions of
lower temperature.

Heat conduction in solids is the result of vibrations of the solid lattice and of the motion of free
electrons in the material. In metals, where free electrons are plentiful, thermal energy transport by
electrons predominates. Thus, good electrical conductors, such as copper and aluminum, are also
good conductors of heat. Metal alloys, however, generally have lower (often much lower) thermal
and electrical conductivities than the corresponding pure metals due to disruption of free electron
movement by the alloying atoms, which act as impurities.

Thermal energy transport in non-metallic solids occurs primarily by lattice vibrations. In general,
the more regular the lattice structure of a material is, the higher its thermal conductivity. For exam-
ple, quartz, which is a crystalline solid, is a better heat conductor than glass, which is an amorphous
solid. Also, materials that are poor electrical conductors may nevertheless be good heat conductors.
Diamond, for instance, is an excellent conductor of heat due to transport by lattice vibrations.

Most common insulating materials, both natural and man-made, owe their effectiveness to air or
other gases trapped in small compartments formed by fibers, feathers, hairs, pores, or rigid foam.
Isolation of the air in these small spaces prevents convection currents from forming within the
material, and the relatively low thermal conductivity of air (and other gases) thereby imparts a low
effective thermal conductivity to the material as a whole. Insulating materials with effective thermal
conductivities much less than that of air are available; they are made by incorporating evacuated
layers within the material.
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Notations
A Area
Af Fin surface area (Table 1.2)
Ap Prime surface area (Table (1.2)
A, 2mrL
Ay, Ay Cross-sectional area perpendicular to x- or y-direction

SR Qb m I | NS

QiQ'Q)
I

2

N

N SENCTSEICSEN
A

2
—~

Constant in Equation (1.2); constant equal to (r/2)? in Equation (1.36)
Thickness of solid in direction of heat flow

Constant in Equation (1.2)

specific heat of solid

Constants of integration

Diameter; distance between adjoining walls (Table 1.3)
diameter of eccentric cylinder (Table 1.3)

Voltage difference in Ohm’s law

Gaussian error function defined by Equation (1.31)
Fourier number

Heat-transfer coefficient (Table 1.2)

Electrical current in Ohm’s law

Unit vector in x-direction

Unit vector in y-direction
Thermal conductivity

Unit vector in z-direction

Length; thickness of edge or corner of wall (Table 1.3)
Total amount of heat transferred

Rate of heat transfer

v, 4y, ¢ Rate of heat transfer in -, y-, or r-direction

Heat flux
Rate of heat generation per unit volume

Heat flow vector
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Heat flux vector

Resistance; radius of cylinder or sphere

Thermal resistance

Ratio of a material’s thickness to its thermal conductivity, in English units
Radial coordinate in cylindrical or spherical coordinate system
Conduction shape factor defined by Equation (1.27)

Half-width of solid in Figure 1.5

Temperature

Average temperature

Time

Width

Width or displacement (Table 1.3)

Coordinate in Cartesian system

Coordinate in Cartesian system

Coordinate in Cartesian or cylindrical system; depth or displacement (Table 1.3)

Greek Letters
a=Fk/pc Thermal diffusivity

r Constant in Example 1.5
y Constant in Example 1.5
AT, Ax, etc. Differencein T, x, etc.
n Efficiency
nf Fin efficiency (Table 1.2)
Nw Weighted efficiency of a finned surface (Table 1.2)
e Angular coordinate in spherical system; angle between heat flux vector and
x-axis (Example 1.1)
0 Density
1) Angular coordinate in cylindrical or spherical system
Other Symbols
v T Temperature gradient vector
. T A : :
v2  Laplacian operator = — + — + — in Cartesian coordinates
w2 9z
—  Overstrike to denote a vector
|y Evaluated at x
Problems

(1.1) The temperature distribution in a bakelite block (¢ =0.233 W/m - k) is given by:

T(x,y,2) =+° — 29% + 2% —xy + 2y2

where T «°C and x,y,z « m. Find the magnitude of the heat flux vector at the point
(x,9,2) =(0.5, 0, 0.2).

Ans. 0.252W/m?.

(1.2) The temperature distribution in a Teflon rod (¢ =0.35W/m k) is:

T(r,¢,2) =rsing + 2z
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1.3

1.4

(1.5)

where

Tx°C

r =radial position (m)

¢ = circumferential position (rad)

z = axial position (m)

Find the magnitude of the heat flux vector at the position (7, ¢,z) = (0.1,0, 0.5).

Ans. 0.78 W/m?.
The rectangular block shown below has a thermal conductivity of 1.4 W/m - k. The block
is well insulated on the front and back surfaces, and the temperature in the block varies

linearly from left to right and from top to bottom. Determine the magnitude and direction
of the heat flux vector. What are the heat flows in the horizontal and vertical directions?

30C — <«— 10C

20 cm

50C —— +«<— 30C

Ans. 313 W/m?2at an angle of 26.6° with the horizontal; 1.4 W and 5.76 W.

The temperature on one side of a 6-in. thick solid wall is 200°F and the temperature on the
other side is 100°F. The thermal conductivity of the wall can be represented by:

k(Btu/h - ft-°F) = 0.1 4+ 0.001 7T (°F)

(a) Calculate the heat flux through the wall under steady-state conditions.
(b) Calculate the thermal resistance for a 1 ft? cross-section of the wall.

Ans. (@) 50Btu/h-ft2. (b) 2h-ft2-°F/Btu
A long hollow cylinder has an inner radius of 1.5in. and an outer radius of 2.5in. The

temperature of the inner surface is 150°F and the outer surface is at 110°F. The thermal
conductivity of the material can be represented by:

k(Btu/h - ft-°F) = 0.1+ 0.001 T (°F)

(a) Find the steady-state heat flux in the radial direction:
(1) At the inner surface
(i) At the outer surface

(b) Calculate the thermal resistance for a 1 ft length of the cylinder.

Ans: (a) 144.1Btu/h - ft?, 86.4 Btu/h -ft?>.  (b) 0.3535h - ft? -°F/Btu.
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1.6)

1.7

1.8

1.9

Arectangular block has thickness B in the x-direction. The side atx = 0 is held at temperature
T; while the side at x =B is held at 7. The other four sides are well insulated. Heat is
generated in the block at a uniform rate per unit volume of I'.

(@) Use the conduction equation to derive an expression for the steady-state temperature
profile, T'(x). Assume constant thermal conductivity.

(b) Use the result of part (a) to calculate the maximum temperature in the block for the
following values of the parameters:

Ty =100°C k=02W/m-k B=10m
T, =0°C T =100W/m®

(b) Topax =122.5°C atx =0.3m

2
Ans.(a)T(x)=T1+<T2—T1 FL) Tx

B ‘o) o

Repeat Problem 1.6 for the situation in which the side of the block at x =0 is well
insulated.

Ans. (a) () =Ty + % (B2 —x2).  (b) Typae = 250°C

Repeat Problem 1.6 for the situation in which the side of the block at x = 0 is exposed to an
external heat flux, §,, of 20 W/m?. Note that the boundary condition at x = 0 for this case
becomes

dar _
dc k'
&0 r 2 2 o
Ans. (a) T(x) =T+ ?(B—x) + ﬁ(B —x2).  (b) Tyax =350°C
Along hollow cylinder has inner and outer radii R; and R, respectively. The temperature of
the inner surface at radius R; is held at a constant value, Ty, while that of the outer surface at
radius Ry is held constant at a value of T». Heat is generated in the wall of the cylinder at a rate

per unit volume given by ¢ = I'7, where 7 is radial position and I is a constant. Assuming con-
stant thermal conductivity and heat flow only in the radial direction, derive expressions for:

(a) The steady-state temperature profile, T'(7), in the cylinder wall.
(b) The heat flux at the outer surface of the cylinder.

Ans.

{TZ ~-Ti+ 9—Fk(R§ —Rf)} In(r/Ry)

_ 3,3
@T(r) =Ty + (T/9%) (R} — 7°) + In(Ry/Ry)

TR} k(Ty — T, — (T/9%) (RS — R3)}

®) rlr=p, = 3=+ RyIn(Ro/Ry)
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(1.10)

1.11)

1.12)

(1.13)

Repeat Problem 1.9 for the situation in which the inner surface of the cylinder at R; is well
insulated.

T'R31n (r/R»)
L DRy In O/Ry)

I (RS — R%)
3k '

Ans. (@) T(r) =T, — (I'/9%) (Rg’ —7%) 3R,

®) 4rlr=r, =

Ahollow sphere has inner and outer radii Ry and Ry, respectively. The inner surface at radius
R; is held at a uniform temperature T4, while the outer surface at radius R, is held at tem-
perature T». Assuming constant thermal conductivity, no heat generation and steady-state
conditions, use the conduction equation to derive expressions for:

(@) The temperature profile, T (7).
(b) The rate of heat transfer, ¢,, in the radial direction.
(c) The thermal resistance.

Ans.

1 1
RuRy(Ty — T) (— - —)
7 R1

@TH="T1+ -

. 4JTkR1R2 (T1 — T2)
B Ry — Ry '

(c) See Table 1.2.

®) g,

A hollow sphere with inner and outer radii R; and Rohas fixed uniform temperatures of 7}
on the inner surface at radius R and 7% on the outer surface at radius K. Heat is generated
in the wall of the sphere at a rate per unit volume given by ¢ = I'7, where 7 is radial position
and T is a constant. Assuming constant thermal conductivity, use the conduction equation
to derive expressions for:

(@) The steady-state temperature profile, T'(), in the wall.
(b) The heat flux at the outer surface of the sphere.

Ans. o
RiRo{Ty — Ty — (I'/12k) (RS — RY)} <; _ _>

Ry
Ry — Ry

@ T(r) =Ty + (T/12k) (R} — 7°) +

. IR} 3_ p3
(0) Grlr=r, = —= + (kR /Ro(Ry — RO} (T — Tz — (I/12k) (R; — R})}.

Repeat Problem 1.12 for the situation in which the inner surface at radial position Ry is well
insulated.

Ans. \
I'R 1 1
@ T(r) =To+ (I/12k) (RS — %) + (4_k1) (172 _ ;>,
R4 _ R4
®) iryop, = 2 — KD

2
4R?
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(1.14) When conduction occurs in the radial direction in a solid rod or sphere, the heat flux must

(1.15)

(1.16)

(1.17)

be zero at the center (»=0) in order for a finite temperature to exist there. Hence, an
appropriate boundary condition is:

dT

— =0 atr=0
dr

Consider a solid sphere of radius R with a fixed surface temperature, Tp. Heat is gener-

ated within the solid at a rate per unit volume given by ¢ =TI"y + I's7, where I'1 and I's are

constants.

(a) Assuming constant thermal conductivity, use the conduction equation to derive an
expression for the steady-state temperature profile, T'(7), in the sphere.
(b) Calculate the temperature at the center of the sphere for the following parameter values:

R=15m Ty;=20W/m® Ty =20°C
k=05W/m-K  TI'y=10W/m*

Ans. () T(r) = Tg + (T'1/6k) (R? — %) 4+ (I'y/12k) (R® — 7%).  (b) 40.625°C.

A solid cylinder of radius R is well insulated at both ends, and its exterior surface at » =R
is held at a fixed temperature, Tp. Heat is generated in the solid at a rate per unit volume
given by g =I'(1 — 7/R), where I = constant. The thermal conductivity of the solid may be
assumed constant. Use the conduction equation together with an appropriate set of bound-
ary conditions to derive an expression for the steady-state temperature profile, T'(r), in the
solid.

Ans. T'(r) = Tg + (I'/36k) (GR? + 47° /R — 97?).

A rectangular wall has thickness B in the x-direction and is insulated on all sides except the
one at x = B, which is held at a constant temperature, T,,. Heat is generated in the wall at a
rate per unit volume given by ¢ =T"(B — x), where T is a constant.

(a) Assuming constant thermal conductivity, derive an expression for the steady-state
temperature profile, T (x), in the wall.

(b) Calculate the temperature of the block at the side x = 0 for the following parameter
values:

r=03x10°W/m* B=01m

Ty =90°C k=25W/m-K

¥ x*B B3

Ans. @) T'(x) = Ty + (T/k) <E - + ?> (b) 94°C.

The exterior wall of an industrial furnace is to be covered with a 2-in. thick layer of high-
temperature insulation having an R-value of 2.8, followed by a layer of magnesia (85%)
insulation. The furnace wall may reach 1200°F, and for safety reasons, the exterior of the
magnesia insulation should not exceed 120°F. At this temperature, the heat flux from the
insulation to the surrounding air has been estimated for design purposes to be 200 Btu/h - ft2.
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(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(@) What is the thermal conductivity of the high-temperature insulation?

(b) What thickness of magnesia insulation should be used?

(c) Estimate the temperature at the interface between the high-temperature insulation and
the magnesia insulation.

Ans. (a) £k =0.0595Btu/h-ft-°E.  (c) 640°F.

A storage tank to be used in a chemical process is spherical in shape and is covered with a
3-in. thick layer of insulation having an R-value of 12. The tank will hold a chemical intermedi-
ate that must be maintained at 150°F. A heating unit is required to maintain this temperature
in the tank.

(a) What is the thermal conductivity of the insulation?

(b) Determine the duty for the heating unit assuming as a worst-case scenario that the
exterior surface of the insulation reaches a temperature of 20°F.

(c) What thermal resistances were neglected in your calculation?

Ans. (a) £=0.02083 Btu/h -ft-°E.  (b) ¢ = 7900 Btu/h.

A 4-in. schedule 80 steel pipe (ID =3.826in., OD =4.5in.) carries a heat-transfer fluid at
600°F and is covered with a %-in. thick layer of pipe insulation. The pipe is surrounded by
air at 80°F. The vendor’s literature states that a 1-in. thick layer of the pipe insulation has an
R-value of 3. Neglecting convective resistances, the resistance of the pipe wall, and thermal
radiation, estimate the rate of heat loss from the pipe per foot of length.

Ans. 453 Btu/h - ft pipe

A pipe with an OD of 6.03 cm and an ID of 4.93 cm carries steam at 250°C. The pipe is cov-
ered with 2.5 cm of magnesia (85%) insulation followed by 2.5 cm of polystyrene insulation
(k=0.025W/m - K). The temperature of the exterior surface of the polystyrene is 25°C.
The thermal resistance of the pipe wall may be neglected in this problem. Also neglect the
convective and contact resistances.

(a) Calculate the rate of heat loss per meter of pipe length.
(b) Calculate the temperature at the interface between the two types of insulation.

Ans. (a) 63W/m of pipe. (b) 174.5°C.

It is desired to reduce the heat loss from the storage tank of problem 1.18 by 90%. What
additional thickness of insulation will be required?

A steel pipe with an OD of 2.375in. is covered with a %-in. thick layer of asbestos
insulation (¢ =0.048 Btu/h -ft-°F) followed by a 1-in. thick layer of fiberglass insulation
(k=0.022Btu/h - ft -°F). The temperature of the pipe wall is 600°F and the exterior surface
of the fiberglass insulation is at 100°F. Calculate:

(@) The rate of heat loss per foot of pipe length.
(b) The temperature at the interface between the asbestos and fiberglass insulations.

Ans. (a) 110Btu/h - ft pipe. (b) 471°F.
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(1.23) A building contains 6000 ft* of wall surface area constructed of panels shown in the sketch

(1.29)

(1.25)

(1.26)

below. The interior sheathing is gypsum wallboard and the wood is yellow pine. Calculate
the rate of heat loss through the walls if the interior wall surface is at 70°F and the exterior
surface is at 30°F.

Ans. 22,300 Btu/h

Pine 1.75 in.
Wallboard
1 | Rock .

Brick .
wool 13.25 in.
insulation

1in. 3.5in. 4 in.

A 6in. schedule 80 steel pipe (OD =6.621n.) will be used to transport 450°F steam from a
boiler house to a new process unit. The pipe will be buried at a depth of 31t (to the pipe
centerline). The soil at the plant site has an average thermal conductivity of 0.4 Btu/h - ft - °F
and the minimum expected ground surface temperature is 20°F. Estimate the rate of heat
loss per foot of pipe length for the following cases:

(@) The pipe is not insulated.
(b) The pipe is covered with a 2-in. thick layer of magnesia insulation.

Neglect the thermal resistance of the pipe wall and the contact resistance between the
insulation and pipe wall.

Ans. (a) 350 Btu/h - ft of pipe. (b) 160 Btu/h - ft of pipe.

The cross-section of an industrial chimney is shown in the sketch below. The flue has a
diameter of 2ft and the process waste gas flowing through it is at 400°F. If the exterior
surface of the brick is at 120°F, calculate the rate of heat loss from the waste gas per foot
of chimney height. Neglect the convective resistance between the waste gas and interior
surface of the flue for this calculation.

Common
brick —— >

4 ft

Flue — l

fe— 4t —

Ans. 910 Btu/h - ft of chimney height.

A new underground pipeline at a chemical complex is to be placed parallel to an existing
underground pipeline. The existing line has an OD of 8.9 cm, carries a fluid at 283 K and
is not insulated. The new line will have an OD of 11.4cm and will carry a fluid at 335 K.
The center-to-center distance between the two pipelines will be 0.76 m. The ground at the
plant site has an average thermal conductivity of 0.7 W/m - K. In order to determine whether
the new line will need to be insulated, calculate the rate of heat transfer between the two
pipelines per meter of pipe length if the new line is not insulated. For the purpose of this
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1.27)

(1.28)

1.29)

calculation, neglect the resistances of the pipe walls and the convective resistances between
the fluids and pipe walls.

Ans. 42W/m of pipe length.

Hot waste gas at 350°F will be transported from a new process unit to a pollution control
device via an underground duct. The duct will be rectangular in cross-section with a height
of 3 ft and a width of 5 ft. The top of the duct will be 1.25 ft below the ground surface, which
for design purposes has been assigned a temperature of 40°F. The average thermal con-
ductivity of the ground at the plant site is 0.4 Btu/h - ft -°F. Calculate the rate of heat loss
from the waste gas per foot of duct length. What thermal resistances are neglected in your
calculation?

The following shape factor for a buried rectangular solid is available in the

literature:
~0.59 ~0.078
s—arssifn(14)] " ()

L>>hab

T2

f
h

R
Teap

An industrial furnace wall will be made of diatomaceous refractory brick (a=1.3228 x
10~ m?/s) and is to be designed so that the exterior surface will remain cool enough for
safety purposes. The design criterion is that the mid-plane temperature in the wall will not
exceed 400 K after 8 h of operation with an interior wall surface temperature of 1100 K.

(a) Assume that the furnace wall can be approximated as a semi-infinite solid. Calculate
the wall thickness required to meet the design specification assuming that the wall is
initially at a uniform temperature of 300 K.

(b) Using the wall thickness obtained in part (a), calculate the exterior wall surface
temperature after 8 h of operation.

(c) Based on the above results, is the assumption that the furnace wall can be approxi-
mated as a semi-infinite solid justified, i.e., is the wall thickness calculated in part (a)
acceptable for design purposes? Explain why or why not.

Ans. (@) 26.8cm. (b) 301.7K.

The steel panel («=0.97 x 107> m?2/s) of a firewall is 5cm thick and its interior surface
is insulated. The panel is initially at 25°C when its exterior surface is suddenly exposed
to a temperature of 250°C. Calculate the average temperature of the panel after 2 min of
exposure to this temperature.

Note: A wall of width s with the temperature of one side suddenly raised to 7 and the
opposite side insulated is mathematically equivalent to a wall of width 2 s with the temper-
ature of both sides suddenly raised to Ts. In the latter case, dT/dx =0 at the mid-plane due
to symmetry, which is the same condition that exists at a perfectly insulated boundary.

Ans. 192°C.
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(1.30) Anun-insulated metal storage tank at a chemical plant is cylindrical in shape with a diameter

(1.31)

(1.32)

of 4ft and a length of 25 ft. The liquid in the tank, which has properties similar to those of
water, is at a temperature of 70°F when a frontal passage rapidly drops the ambient temper-
ature to 40°F. Assuming that ambient conditions remain constant for an extended period of
time, estimate:

(@) The average temperature of the liquid in the tank 12 h after the frontal passage.
(b) The time required for the average temperature of the liquid to reach 50°F.

Ans. (a) 59°FE.  (b) 92h.

Repeat Problem 1.30 for the situation in which the fluid in the tank is

(a) Methyl alcohol.
(b) Aniline.

Repeat Problem 1.30 for the situation in which the tank is spherical in shape with a diameter
of 4.2 ft.

Ans. (a) 63°F.  (b) 207h (From Equation (1.44). Note that Fo <0.1.).
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