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Abstract

In a fundus photograph, morphological changes of the optic disc and cup are crucial
for diagnosing optic neuropathy. To achieve an accurate pixel-wise segmentation of the
optic disc and cup, the domain-specific knowledge such as the oval shape constraint has
not been sufficiently explored in most of the existing methods, leading to unacceptable
geometric distortions in many cases. Few attempts try to consider the general convexity
constraint or specific building geometric properties, but they are still not suitable for the
typical oval shape segmentation. In this paper, an oval shape constraint based loss func-
tion (OS-loss) is proposed to improve the existing deep learning network for segmenting
optic disc and cup. A penalty point set is proposed to represent unreasonable contour
points of a target object using the oval shape constraint. These points will be penalized
and integrated into the training loss function of the baseline network. Further, an oval-
friendly metric called shape error (SE) is proposed to better reflect the fitness of two oval
contours. Experiments on the public RIM-ONE-13 dataset with 159 fundus photographs
and a private W10K dataset with 9,879 fundus photographs prove the effectiveness of
the proposed OS-loss function. Compared to the original CE-net, the mean error of the
Cup to Disc Ratio (CDR) of the proposed OS-loss method in the RIM-ONE-13 dataset
decreases 1.98%. In the W10K dataset, the mean CDR error decreases by 1.03% for the
ResU-net and decreases by 2.1% for the CE-net.

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

The automatic segmentation of the optic disc and cup is crucial for further diagnosing retinal
optic nerve diseases. The shape of the optic disc (OD) and optic cup (OC), their morpho-
logical changes, as well as the Cup to Disc Ratio (CDR), are playing an important role in
the diagnosis of ophthalmic diseases, e.g., glaucoma [1]. A glaucoma is a group of eye
diseases that damage the human eye optic nerve and it can result in vision loss and blind-
ness irreversibly. Automatic CDR estimation requires an accurate segmentation of optic
disc and cup. According to the anatomical structure of the human eyes, the optic disc and
cup are oval-shaped, and an optic cup is usually contained within an optic disc. With these
constraints, the oval-shaped prior knowledge should be sufficiently explored. Besides, oval
shapes are popular in medical images, such as cells, cataract nuclear regions, pupils and iris.

To the best of our knowledge, there are three branches of the optic disc and cup seg-
mentation methods: (1) Image processing [8] applies the RGB color information, threshold
method [11], or C-V model [3] based segmentation, etc. (2) Traditional machine learning
utilizes classical classifiers based on typical image features, such as support vector machine
[2], neural network [18], etc. (3) Deep learning is widely employed to segment optic disc
and cup. The U-net [14] uses end-to-end training for pixel-wise image segmentation. On
the small training set, it has satisfactory performance and high training speed. The ResU-net
[16] combines ResNet[7] blocks with the U-net framework. It uses residual error and block
coding and decoding operations to make a deeper network structure. The CE-net[6] proposed
by Gu et al. combines the feature encoder (the pre-trained ResNet block), context extractor
(the dense atrous convolution and residual multi-kernel pooling block) and feature decoder
to capture high-level and spatial information for medical image segmentation tasks.
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Figure 1: Failure ROI examples of segmenting optic disc and cup by the ResU-net [16] and
our proposed oval shape constraint based loss function (ResU-net+0OS-loss). For the contour
results, optic disc: in the red, optic cup: in the green. For the ground truth, optic disc: in the
blue, optic cup: in the yellow. The overlap rate IoU(%) is defined in Section 3.2.

For the pixel-wise image segmentation, due to the restrictions of the perception field
of the existing deep learning networks such as a fully convolutional network (FCN) [9], U-
net [14] or ResU-net [16] , in many cases the global shape information of an object cannot be
sufficiently explored, leading to unacceptable geometric distortions and poor segmentation
results, as shown in Figure 1. Though there are some existing works consider the convexity
constraint [5, 15, 17] or specific building geometric properties [10] in an image segmenta-
tion task, they are still not suitable for the oval shape segmentation such as optic disc and
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cup. Ravishankar et al. incorporate shape priors within the FCN segmentation framework
[12], however, its shape regularization network requires additional training data with shape
annotations in expensive costs, and it is either not tailored for oval-shape segmentation.

In this paper, an oval shape constraint based loss function is proposed to better segment
optic disc and cup in color fundus photographs. It sufficiently explores the domain knowl-
edge such as oval shape constraint to guide the network training and optimization to obtain
more reasonable and stable contours of the optic disc and cup.

2 OS-loss: The Proposed Penalty Loss Function

We design a novel loss function based on the oval shape constraint to segment the optic
disc and cup. As illustrated in Figure 2, there are three main modules in our framework: the
optic disc ROI localization, the baseline deep learning network, and the oval shape constraint
based loss function (hereinafter, OS-loss) updating. First, the optic disc ROI is automatically
localized from the original fundus photograph using the Faster R-CNN [13]. Then, popular
deep learning networks such as the FCN [9], U-net [14] , ResU-net [16] or CE-net [6] can
be applied. Finally, the OS-loss penalty function will be implemented base on the shape
constraint module, which will update the current training loss function.

(1) Optic (3) 0S Loss .
Function Updating

Disc RO - > /’\ 7N i

Localization Training |:>
I:> I:> Epoch #k N :
Original Loss Final Loss 3

Training Image Optic Disc ROI Ground Truth Segmentation Map (2) Baseline Deep Learning Network

Figure 2: An overview flowchart of our proposed OS-loss function in a baseline network.

As illustrated in Figure 3, the OS-loss function updating module includes four main steps:
the contour point validation, the contour point optimization, the penalty point set verification
and the loss weight matrix updating. At a certain training epoch, the contour points of the
optic disc and cup from a segmentation mask are first verified based on the global contour
oval shape constraint. Then, an ellipse fitting is applied base on these remaining valid contour
points to achieve an optimized contour point set. Next, a penalty point set with unreasonable
contour points is formed based on the above-fitted ellipse boundary. Finally, these penalty
points are assigned as proper weights to update the training loss function.
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Figure 3: A detailed flowchart of our proposed OS-loss function module.
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Figure 4: An example of the workflow of the shape constraint module for optic disc and cup:
(a) the original fundus photograph, (b) the optic disc ROI, (c) the ground truth mask, (d) the
segmentation results in a certain training epoch, (e) optic disc contour point validation, (f)
optic cup contour point validation, (g) the optimized contour, (h) the ellipse fitting results,
(i) the penalty point set, (j) the verified penalty point set, (k) original loss weight matrix, (1)
final loss weight matrix, considering penalty points in a red color.

2.1 The Contour Point Validation

We use an optic cup as an example. Supposing the ROI of a given training image [ is in M XN
pixels, as in Figure 4(b). The contour of the optic cup is obtained from its corresponding
segmentation map S at a certain batch in the k-th training epoch, as in Figure 4(d).

Then, for the region point set of the optic cup R surrounded by the predicted contour point
set CCR, its geometric center of gravity is calculated as the coordinate origin O=(0,0). Four
intersection points between the object contour and both the x-axis and y-axis are: xi, X2, yi
and y,. To roughly reflect the average oval shape size of the optic cup in both horizontal and
vertical directions, an average shape distance D is defined as:

]
D=Z(\x1|+|x2\+|y1|+\y2|)~ 1)

Further, if a contour point is valid, it means it is reasonable based on the oval shape constraint.
As in Figure 4(e)(f), the validity of the target contour point V(p) is defined as:

_ [ 1, p<D+e,
Vip) = { 0, otherwise, )

where p is a random point in the contour point set C and € is a controlling threshold intro-
ducing a reasonable shape distortion.

2.2 The Contour Point Optimization

A strategy of dynamic tuning of the threshold € as in Section 2.1 is applied to obtain an op-
timized point set as in Figure 4(g), which is between a reasonable percentage of the original
contour point set, i.e., between 50% and 70%. At the beginning € is set as 0. According to
Equation (2), some outliers are removed and a new contour point set is formed. If the current
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portion of the remaining points is smaller than 50% of the original point set, set £ =0.01D.
If it is bigger than 70%, then set € = —0.01D. The same process will be repeated until the
size of the new point set is between the desired portion of the original contour point set.

2.3 The Penalty Point Set Verification

The ellipse fitting is carried out on the optimized contour point set to generate an ellipse as
in Figure 4(h), which is employed as an inside-safe boundary to further determine a penalty
point set, as in Figure 4(i), where all the points are unreasonable. All the optic cup region
points inside this ellipse are considered as a valid point set Rj, then all the other optic cup
region points outside it are filtered as the penalty point set R,, which will be used to update
the original training loss weight matrix as in Figure 4(k). Finally, the correctly-predicted
pixels (i.e., the prediction is the same as the ground truth) will be removed from the penalty
point set R,, resulting in a verified point set R} = {pilli(p:)#Li(p:), pi€R>} as in Figure 4(j),
where ; is the class label of ground truth for the pixel p; and [; is its predicted class label.

2.4 The Training Loss Weight Matrix Updating

As in Figure 4(1), the verified penalty point set R can be utilized to update the original
training loss function to penalize possible similar mistakes, e.g., the bigger weights will be
applied. Thus, the newly-updated loss function L* can be determined as:

MxN
L* =Wpn-LSE y = Z (wix1ossSE), wi€Wyr oy and lossSEcLSE, 3)
i=1
where the updated weight of w; for the loss function is defined as:
1+w*, p;eR5(verified penalty point set),
wi = . “4)
1, otherwise.

Note: w* is a penalty weight. The pixel-wise loss$E is defined as loss¢E = —I;log(1;).

3 Evaluation

3.1 Experimental Setup

We validate our proposed OS-loss function on two datasets: (1) RIM-ONE-r3 [4]: a public
dataset including 159 stereo retinal fundus photographs. Only the monocular image from the
left part is used here. There are 111 images used for training, 24 images for validation, and
24 images for testing. (2) W10K: a private dataset with 9,879 fundus photographs collected
from our local hospital partner. The boundaries of optic disc and cup are manually labeled by
the professional ophthalmologists. As in Table 1, it is partitioned into two non-overlapping
datasets, S1 and S2, which are further divided into the training, validation and testing sets of
independent patients. As S1 is small and the potential samples with obvious shape distortion
are very few, it is not stable for the parameter optimization. For S1 and S2, we apply the
same validation and testing sets in the entire W10K dataset.

Experiments are conducted with an NVIDIA 1080Ti GPU. The disc ROIs are all resized
into 256 x256. The batch size is 8, the learning rate is 1/106, and K =360.
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Table 1: An overview of our private data set W10K. S1 and S2 are two non-overlapping
datasets, and they are also non-overlapping for the training, validation and testing subsets.

Data Set Training(70%) Validation(15%) Testing(15%) Total

S1 525 113 114 752
S2 6,391 1,368 1,368 9,127
W10K(Total) 6,916 1,481 1,482 9,879

3.2 Evaluation Metrics

Typical image segmentation metrics such as IoU, F'1 and Dice coefficient are applied. IoU
are the overlap rate, i.e., the coincidence degree between predicted results and the ground
truth, as IoU = [S,NS¢|/|SoUSG|, where S, is the predicted region, and Sg is the ground
truth. F' 1 =2 xprecisonxrecall/(precison-+recall). Dice = 2|S,N\Sa|/(|So| +|Sc]|)- Special-
ly, CDR is the optic cup to disc ratio based on vertical distances. Ecpg is defined as the
absolute difference between predicted CDR and ground truth CDR,, i.e., |CDR — CDRg|.

However, the widely-used metrics /JoU mainly computes the overlapping ratio between
the segmentation results and the ground truth, and F1 is a metric from information retrieval.
Neither of them can reflect how good the predicted shape is fitted into the ground truth. Even
if a predicted contour has an unreasonable shape, it also might have a high IoU or F1 score.

Thus, we propose a new metric for the oval shape segmentation, called Shape Error (SE).
It mainly reflects the accumulated differences between two oval shapes, i.e., the segmentation
result and the ground truth. Similar to the idea of computing D in Equation (1), the contour
geometric center is O and the object contour point set is C. Supposing C’ is the contour point
set of the ground truth. A ray 4,9 (i={1,2,---,K}, and 8 =ix360/K is the degree in the
polar coordinate system) from O has two intersection points, ¢; = (x,y) and ¢} = (x’,y’), with
the result contour and the ground truth contour, as illustrated in Figure 5(f).

(c) (e)

Figure 5: Main ideas of an oval-friendly segmentation metric. (a) an optic disc ROI example,
(b) the ground truth contour of the optic disc and cup, (c) the ground truth mask, (d) the
contour of the optic disc and cup, (e) the segmentation map, (f) a sketch example of SE (i) in
the polar system, (g) the optic disc example of the shape error SE (i) at the line 4, ¢.

(a) (b) (d) (g)

Finally, in order to use an accumulative normalized error to reflect the fitness degree
between oval-shaped contours, the oval shape error (SE) is defined as: SE = % YX | SE(i)/D,
where the specific shape error distance SE (i) at the line A; g is defined as: SE (i) = D(c;,c}) =

D[(x,y), (¥,y)] =/ (x—x)2+ (y—y)*
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3.3 Resutls
3.3.1 Optimizing the best adding time of the shape constraint module

We first discuss the best time to add our oval shape constraint module into the baseline net-
work. It is added at different training epochs, as listed in Table 2. We choose the best adding

Table 2: The parameter optimization for the adding time of the ResU-net plus OS-loss. The
training set is S1-training (525 photographs) and the validation set is W 10K-validation.
Add Optic Disc Optic Cup

No. . - - Ecpr
titer IoU F1 Dice SE IoU F1 Dice SE

30 86.89 93.16 9271 556 72.06 8529 82.64 16.59 9.95
50 8824 94.09 9359 494 7353 8642 83.67 1524 9.83
3 100 87.65 93.68 93.15 5.11 7282 86.15 8297 1553 10.09
4% 150 88.20 94.01 93.56 490 74.01 86.59 8394 1497 9.30
5 200 87.10 9329 9280 546 72.44 8541 82.80 16.01 10.30

time as the 150-th training epoch, as this setting achieves the best performance in terms of
most metrics, and only the metrics for optic disc achieves the second best performance with
little performance loss (IoU: 0.04%, F1: 0.08%, and Dice: 0.03%).

3.3.2 Optimizing the penalty parameter w* in the OS-loss function

We also optimize the penalty parameter w* in Equation (4) as in Table 3. The shape constraint
module is added from the 150-th training epoch here. It can be seen from this table that the
best performance of the penalty parameter w* is achieved at w* =1.0 and all the metrics are
consistently the best one among different paramters.

Table 3: Parameter optimization of the penalty weight w* for the ResU-net plus OS-loss.
The training set is S1-training (525 photographs) and the validation set is W10K-validation.

y Optic Disc Optic Cup
No. w Ecpr
IoU F1 Dice SE IoU F1 Dice SE

1 0.8 86.35 9280 9235 565 71.71 8473 8243 16.64 10.67
2 09 87.18 9339 9284 523 70.72 8398 8147 1746 11.58
3 1.0 8820 9401 9356 490 74.01 86.59 83.94 1497 9.30
4 1.1 8796 93.84 9338 5.15 7359 8648 83.67 15.11 9.80
5 12 8691 9325 9272 6.06 714 8496 8203 1643 11.07

3.3.3 Evaluation of the OS-loss Framework on Two Datasets

First, for the optic disc ROI localization, the accuracy of 100% is achieved in both datasets.

(1) On the W10K dataset: To evaluate our proposed OS-loss network, we train the
baseline U-net[14] , ResU-net [16] and CE-net [6] from S1 and S2 individually. The S1
represents the case with relatively limited training data, and the S2 represents the case with
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sufficient training data. Since the medical image annotation is extremely expensive, this S2
case is often not available in real-world applications. As can be seen from Table 4 (trained
from S1) and Table 5 (trained from S2), our proposed OS-loss function can significantly
improve the performance consistently in terms of IoU, F1, Dice, SE, and Ecpg in most cases,
with OS vs. without OS. The CE-net+OS setting achieves the best performance, compared
to U-net [14] and ResU-net [16] with the OS-loss function.

Table 4: Performance(%) comparisons of different methods for segmenting OD and OC. The
training set is S1(525) and the test set is W10K-testing (1,482 fundus photographs).

Optic Disc Optic Cup

Methods ToU F1 Dice SE ToU Fl Dice SE  _CPR
U-net[14] 8620 9271 9234 630 6946 8293 8081 187 1034
U-net+0S 86.61 9309 9258 593 7135 8521 8192 1806 1032

ResU-net[16] 86.80 93.12 9271 591 7031 8344 8152 1798 10.33
ResU-net+OS  87.37 9348 93.06 5.66 7332 86.24 8354 15.58 9.30
CE-net[6] 86.36 93.04 9237 548 73.02 8596 83.24 16.18 10.99
CE-net+0S 88.69 9436 9385 475 7450 87.34 8426 1579 8.89

Table 5: Performance(%) comparisons of different methods for segmenting OD and OC. The
training set is S2(6,391), and the test set is W10K-testing (1,482 fundus photographs).

Optic Disc Optic Cup
Methods ToU Fl Dice SE ToU F1_ Dice SE PR
U-net[14] 9043 9526 9493 341 7795 8802 8694 1353 627

U-net+OS 90.19 95.13 9479 3.27 80.71 9043 88.73 11.21 5.88
ResU-net[16] 90.66 95.24 95.04 329 7892 89.20 87.60 12.58 6.17
ResU-net+OS  90.52 95.16 9497 341 82.19 91.37 89.63 10.29 5.55
CE-net[6] 90.35 95.19 9488 3.04 82.04 9150 89.62 10.62 543
CE-net+0S 91.04 9555 9527 2.83 8334 9196 9045 9.74 532

Further, we offer several typical examples to prove the effectiveness of our method, as in
Figure 6. The CDR of the ground truth ranges from 25.95% to 91.52% and the actual size of
the optic disc or cup varies among different examples. As in Figure 6(4)(6)(8), the predicted
optic disc contours of the original ResU-net trained on S1 have strong geometric distortions
with relatively sharp corners and non-convexity shape. For other examples, these distortions
become weaker but there are still the optic cup contours having unacceptable parts. The
ResU-net using our OS-loss function trained on S1 can improve these results significantly.

When training based on S2 with relatively sufficient data, the performance of the original
ResU-net improves significantly compared to the same model trained on S1. In this case, the
ResU-net using the OS-loss function does not have significant improvements as the current
baseline has achieved relatively good segmentation results, resulting in a limited improving
space. Besides, compared to ResU-net+0OS(S1) to ResU-net(S2), our method with limited
training data still can get comparative results.

From these results, conclusions can be made that our OS-loss framework can achieve
reasonable shape contours, which can avoid the geometric distortions in most cases.
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Figure 6: Predicted Results of the optic disc and cup segmentation on the W10K dataset.
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(2) On the RIM-ONE-r3 dataset: We also evaluate our method on the public RIM-ONE-
r3 dataset. As shown in Table 6, the method using the OS-loss function outperforms the
baseline networks (U-net [14] , ResU-net [16] , and CE-net[6] ) in most cases, except for
the best IoU and Dice for the optic disc using U-net and the best IoU for the optic cup using
ResU-net. Due to the small data size and the lacking cases of obvious geometric distortions,
three baseline networks already have relatively high performances, and our OS-loss function
does not have significant improvements for three comparing groups (using OS-loss or not,
i.e., line 2 vs. 1, line 4 vs. 3, line 6 vs. 5). Compared to the original CE-net, the mean CDR
error of the CE-net+OS method in the RIM-ONE-r3 dataset decreases around 1.98%, and
IoU and Dice for the optic disc and cup improve significantly. There is also a similar case
for the ResU-net, except for a slight increase (0.06%) in terms of the mean CDR error.

Table 6: Performance (%) comparisons of different methods on the public RIM-ONE-r3 [4].

Optic Disc Optic Cup
IoU Dice 1IoU Dice

U-net[14] 94.63 97.23 86.07 91.60 3.30
U-net+OS 9443 97.12 8643 91.83 3.55
ResU-net[16] 9434 97.08 88.00 91.34 2.68
ResU-net+OS  94.52 97.17 86.38 91.83 2.74
CE-net[6] 93.78 96.76 84.48 91.03 4.94
CE-net+0OS 94.57 97.19 87.18 92.38 2.96

No. Methods Ecpr

AN N WD =

As a summary, the experiments on both the public RIM-ONE-r3 and the private W10K
datasets prove that the proposed method using the OS-loss function is better than the original
U-net [14] , ResU-net [16] , and CE-net [6] , especially for the baseline network that outputs
more unreasonable segmentation results with strong geometric distortions.

4 Conclusions

For the pixel-wise segmentation of the optic disc and cup in fundus photographs, we have
proposed a novel loss function, called OS-loss, which sufficiently explores the oval shape
constraint into a baseline deep learning network. At a certain training epoch, the loss function
will be updated to assign bigger penalty weights for the misleading pixels from the verified
penalty point set. Also, an oval-friendly metric called shape error (SE) is proposed to better
reflect the fitness of two oval contours. Experiments on the public RIM-ONE-r3 dataset with
159 fundus photographs and a private W10K dataset with 9,879 fundus photographs show
that our proposed OS-loss function outperforms the state-of-the-art method.
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