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Abstract

Recent advances in the Cellular Electron Cryo-Tomography (CECT) imaging tech-
nique have enabled the 3D visualization of macromolecules and other sub-cellular com-
ponents in single cells in their near-native state. Automatic structural classification of
macromolecules is increasingly desirable for researchers to better study and understand
the features of different macromolecular complexes. However, accurate classification
of macromolecular complexes is still impeded by the lack of annotated training data
due to the limited expert resource for labeling full datasets. In this paper, we introduce
a semi-supervised classification framework to reduce annotation burden in the macro-
molecule structural classification tasks. Specifically, we propose a 3D autoencoding
classifier framework for simultaneous macromolecule structural reconstruction and clas-
sification. Our framework jointly optimizes two branches of network using both labeled
and unlabeled data during training phase. Extensive experiments demonstrate the effec-
tiveness of our approach against other semi-supervised classification approaches on both
real and simulated datasets. Our approach also achieves competitive results in terms of
macromolecule reconstruction. To our best knowledge, this is the first work to address
the task of semi-supervised macromolecule structural classification in CECT.
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It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Macromolecules play an important role in driving molecular processes in cells, which are
the basic structural and functional unit of living organisms. The structures and spatial or-
ganizations of macromolecules are critical for the functioning of many biological pathways.
However, due to data acquisition limitations, it is hard to obtain the native structural infor-
mation of macromolecules in single cells, which significantly hinders our understanding of
the machinery of the macromolecules. Recent advances in Cellular Electron CryoTomogra-
phy (CECT) imaging technique have enabled 3D visualization of sub-cellular structures at
sub-molecular resolution in a near-native state, which makes it a promising tool for 3D visu-
alization of macromolecules in single cells [20]. However, automatic classification of macro-
molecular complexes is still restricted by the highly heterogeneous structural complexity of
macromolecules and the lack of annotated data for training a well-performed classifier. Re-
searchers have proposed to use deep convolutional neural networks (CNNs) [4, 7, 14, 21, 38]
for discriminative feature extraction and supervised classification of macromolecule com-
plexes. Though these supervised approaches have achieved a promising classification accu-
racy, they require proper human annotation and expertise in specific domain which are very
costly and not easily accessible, especially for large-scale macromolecule datasets. In clini-
cal and biomedical research, the amount of data/annotation pairs is often limited due to the
insufficient expert resource for labeling full datasets. An unsupervised convolutional autoen-
coder [37] has been recently introduced to first learn the hidden representations for the input
subtomograms (A subtomogram is a cubic subvolume of a tomogram that likely to contain
a single macromolecule) using 3D autoencoder network. After that, K-means clustering is
applied to coarsely generate a structural grouping of input subtomograms. However, the un-
supervised settings in this method prevent us from obtaining the exact labels of raw input
data. The performance of this method is not even comparable to fully supervised models due
to the lack of supervision signals.

In order to reduce the annotation burden in the subtomogram classification tasks while
achieving high classification accuracy, we introduce a semi-supervised learning framework
which is able to take advantage of both labeled and unlabeled data for learning feature repre-
sentations. Specifically, we propose a 3D autoencoding classifier network for simultaneous
subtomogram classification and structural reconstruction. Our network consists of an au-
toencoder network for unsupervised feature mining and a classifier network for supervised
classification. An encoder network is utilized as a feature extractor shared by both the clas-
sifer and the decoder network. We use the output of the encoder network to train a classifier
using only the labeled data. Meanwhile, the learned representations by the encoder network
are projected back to their initial shape by the decoder network. For the unlabeled data, we
also input them into the autoencoder and the classifier but force them to not influence the
parameter updating in the classifier. Instead of training the autoencoder first and then fine-
tuning the classifier in a cascaded way, we jointly train the subtomogram classification and
reconstruction branch using both labeled and unlabeled data so that the whole network is
optimized in an end-to-end scheme. The flowchart of our joint subtomogram classification
and reconstruction process is illustrated in Figure 1. Our contributions are summarized as
follows:

o We propose a 3D autoencoding classifier network for more effective semi-supervised
subtomogram classification, which is able to significantly reduce the annotation cost
for deep model’s training. To our best knowledge, this is the first work to address
semi-supervised macromolecule structural classification in CECT.
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Figure 1: The overview of our proposed 3D autoencoding classifier network architecture.
The black arrows show the original reconstruction branch based on 3D autoencoder [37]
for subtomogram reconstruction. The red arrows indicate the extra classification branch
designed for subtomogram classification.

e In our proposed framework, we adopt a joint learning scheme for the subtomogram
classification and the structural reconstruction branch so that the two branches can
complement each other. We experimentally demonstrate that jointly training the two
branches outperforms training in a cascaded way.

e We evaluate our model on both real and simulated subtomogram datasets under set-
tings where training data are rarely labeled. Experimental results show an apparent
advantage of our approach against other semi-supervised classification approaches.
Our model also achieves a promising reconstruction performance compared to base-
line 3D autoencoder approach. Visualization results demonstrate that the reconstructed
subtomogram by our approach can significantly reduce image noise and suppress the
irrelevant image features of neighboring structures.

2 Related Work

Subtomogram classification is becoming vital to the study of macromolecular complexes.
There have been several works that address supervised classification algorithms on subtomo-
grams. Xu et al. [34] propose two 3D CNN models based on VGGNet and GoogleNet for
subtomogram feature extraction and classification. Chang et al. [18] present a three-branch
CNN framework for simultaneous subtomogram classification, structural segmentation and
recovery. This framework adopts a multi-task learning technique to jointly optimize each
individual task. Che et al. [4] propose a customized convolutional C3D [29] based CNN
structure for macromolecule classifications. This network is robust to subtomograms with
various SNRs and tilt angles. One limitation of these supervised approaches is the require-
ment of abundant labeled data, which often needs professional human time and effort. These
approaches will suffer from overfitting when only a small portion of data is labeled. On the
other hand, Lin et al. [16] propose a domain adaptation framework to improve the subtomo-
gram classification model trained on simulated data to apply to experimental data. However,
it does not make use of unlabeled data and the accuracy still has a large room to improve. In
that case, semi-supervised learning becomes more popular for being able to learn from both
labeled and unlabeled data.
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Semi-supervised learning is an important tool for automatic data annotation when only a
small portion of data is artificially labeled. Traditional semi-supervised learning approaches
are divided into self-training [27, 28], graph-based [2, 3, 40] and generative model based
[6, 10, 13]. Due to their capability to extract deep features from high-dimensional data
samples, CNN-based models are increasingly popular in the task of semi-supervised classifi-
cation. Chen et al. [5] proposes a Feed-Forward CNN architecture along with an innovative
unlabeled data selection method specialized for image classification. They construct the con-
volutional layers and fully-connected layers in an unsupervised manner where no back prop-
agation is used. Li er al. [15] proposes a disentangled Variantional Autoencoder structure
along with reinforcement learning to deal with insufficient training data. Many approaches
[11, 22, 30] divide the training phase of CNN into two disjoint steps. They pre-train the
model using both labeled and unlabeled data under unsupervised settings, which is followed
by supervised fine-tuning with only labeled data. This approach is able to well leverage both
labeled and unlabeled data in training a CNN model. One limitation of this approach is that
the learned parameters using unsupervised learning might not be an optimal initialization for
supervised classification. Others [26, 36] utilize a hybrid autoencoder structure which jointly
optimizes the two steps with both labeled and unlabeled data. However, these approaches
are still limited to 2D settings. When it comes to 3D images which contain higher dimen-
sions and more complicated structural information, these approaches might not work out as
expected.

3 Method

3.1 Overview

In general semi-supervised classification task, a large training set is given but only a small
portion is manually labeled. Our goal is to utilize such a training set to train a well-performed
classifier, which is able to significantly reduce the annotation cost.

The key issue of semi-supervised classification task is to leverage unlabeled datasets in
learning generalized feature representation. Motivated by [37], we assume a 3D autoen-
coder network is an effective approach for unsupervised feature mining of subtomograms
and can be well employed to extract features from unlabeled data. In addition, we notice that
the encoder network can be utilized as a feature extractor for classification task. Based on
these assumptions, we propose a 3D autoencoding classifier network specialized for semi-
supervised classification on subtomogram datasets.

Figure 1 illustrates the general framework of our proposed 3D autoencoding classi-
fier network. This framework contains two branches specialized for two different tasks:
subtomogram reconstruction and classification. The Encoder3D network is shared by two
branches for feature extraction of the input subtomogram. The Classifier3D network takes
the feature map output by the last max-pooling as input and is trained to predict the label
(PDB ID) of the subtomogram. The Decoder3D network aims to reconstruct the 3D struc-
ture of the original subtomogram from the encoded feature vector.

3.2 Network Architecture

The network architecture of our 3D Autoencder network is shown in Figure 2. Our encoder
network takes a 28 x 28 x 28 3D subtomogram as input and outputs a 128 1-D encoded
feature vector. It consists of two 3D convolutional layers, two 3D max pooling layers and
one fully connected layer. Each convolutional layer is followed by a ReLLU activation layer
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Figure 2: Network Architecture of Encoder3D, Decoder3D and Classifier3D networks. The
function and parameter settings of each layer is shown inside the box. "32-3 x 3 x 3-1 Conv"
indicates a Convolutional layer with 32 filters. The kernel size is 3 and the stride is 1.
"2 x 2 x 2-1 MaxPool" means a MaxPooling layer with kernel size 2 and stride 1.

to increase output sparsity and prevent overfitting. We further apply L1 normalization in the
fully connected layer to encourage sparsity of the encoded features. As is shown in previous
works [23, 37], sparsity regularization can greatly improve the performance of autoencoder.

The Decoder3D network structure is symmetric to the Encoder3D network. It takes the
encoded feature vectors by the Encoder3D network as input and outputs a 28 x 28 x 28
3D structure, which is of the same dimension as the input to the Encoder3D network. It
consists of two 3D UpSampling layers corresponding to the two 3D MaxPooling layers in
the Encoder3D network. The upsampling ratio is set to 2 in all three dimensions.

The Classifier3D network takes the feature map produced by the last MaxPooling layer
of the Encoder3D network as its input. We choose not to use the encoded feature vector
from the last layer because the encoding pattern for the two tasks are different and sparse
encoding might not be well applicable for the classification task. We then introduce a Batch
normalization layer immediately after the input layer to normalize the input and improve
the generalization of the Classifier3D network. The feature maps are encoded by two fully
connected layers and a softmax layer is applied to predict the possibilities of different classes
for classification.

3.3 Semi-supervised Classification

We discuss how this architecture can be utilized for our semi-supervised classification task in
the training phase. Let D = {X},X>, ...X,, } be the training set of subtomograms and D pejeqd =
{(X1,%1),(X2,¥2),--(Xm,ym)} be the labeled subset, where m << n. Our goal is to use
the limited labeled data and large portions of unlabeled data to train a high-performance
classifier.

Our framework contains two branches which are regularized by different loss functions
during training phase. The reconstruction branch employs the Mean Square Error (MSE)
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Algorithm 1 Training procedure of 3D autoencoding classifier
Input: Training Set D = {X;,X>,...X,,}
Output: Trained Encoder3D, Decoder3D and Classifier3D
1: Initialize network parameters for Encoder3D, Decoder3D, and Classifier3D
2: fori=1tondo
Fetch data X; from training set D
4 Get decoded data X; = Decoder3D(Encoder3D(X;))
5: if X; is labeled then
6: Fetch label y; for X;
7.
8
9

(5]

Predict label P = Classifier3D(Encoder3D.MaxPool2(X;))
Calculate loss L = otLysg (X;, X;) + BLcE (vi, P)

: else
10: Calculate loss L = Lysg (X;, X;)
11: for each parameter w in Encoder3D, Decoder3D and Classifier3D do
12: Update w using VL(w)

loss function as follows:
Lyse(X,X) = ZHX X|? (1)

where X € R"*"*¥ is the original subtomogram and X € R"*"*" is the decoded subtomo-
gram. N = w X w X w is the size of X.
The classification branch utilizes Cross-Entropy loss function:

Lcg(y,P) = —ylog(P") )

where y € R'C is the one-hot encoding of the ground-truth label. P € R'*C is the feature
vector output by softmax layer. C represents the number of classes to predict.

We adopt an end-to-end scheme in training the proposed 3D autoencoding classifier net-
work where the two branches are jointly trained and optimized with both labeled and unla-
beled data. Consequently, joint loss is applied to optimize the whole architecture of our 3D
Autoencoder:

Ljoint = 0tLyise (Xi,Xi) + BLce (v, P) 3)

where o and f3 are the weights of the two loss values.

The training procedure for one epoch is illustrated in Algorithm 1. As we can see, the
network is optimized differently for labeled and unlabeled data. The labeled data can be
used to optimize both the reconstruction branch and the classification branch, where the final
loss is the weighted sum of MSE loss and Cross-Entropy loss. The unlabeled data can only
be used to update the parameters in the reconstruction branch with MSE loss. Therefore,
o is set to 1 and B is set to 0 in Eq 3. In testing phase for the classification task, only the
classification branch is employed to predict the actual class of testing data.

4 Experiments

We conduct experiments on both real and simulated datasets to evaluate the performance
of our proposed framework. The proposed 3D autoencoding classifier is evaluated in two
aspects. To begin, we compare the classification performance of our approach with one



LIUET AL: SUBTOMOGRAM ENCODING CLASSIFIER 7

Table 1: The experimental macromolecular complexes used for tomogram simulation

PDB ID Macromolecular Complex
IFNT Yeast 20S proteasome with activator PA26
2GLS Glutamine Synthetase
1FIB E. coli asparate transcarbamoylase P268A
2IDB | 3-octaprenyl-4-hydroxybenzoate decarboxylase
1KP8 GroEL-KMgATP
3DY4 Yeast 20S proteasome
4V4A E. Coli 70S Ribosome
5T2C Human Ribosome

supervised approach and three more semi-supervised classification approaches. We then
measure the subtomogram reconstruction performance of our approach compared with the
baseline 3D autoencoder network. We utilize visualized subtomograms to have a better
understanding of the reconstruction performance.

4.1 Dataset

Real Dataset This dataset contains 2800 subtomograms of size 28> from 7 classes of
macro-molecules, which are extracted from Noble Single Particle Dataset collected by Noble
et al. [24]. For each tomogram in the original set, subtomograms of size 283 were extracted
using a Difference of Gaussian(DOG) particle picking process [25]. We then apply a tem-
plate search approach as described in [37] to select the top 1000 subtomograms according
to the cross-correlation scores. Four hundred subtomograms are manually selected for each
class which contain clear macro-molecule structures. In our experiments, we select 1400
subtomograms for training and the remaining 1400 for testing.

Simulated Dataset This dataset consists of 8000 simulated subtomograms of size 64> from
eight classes of macro-molecules. These subtomograms are extracted from realistically sim-
ulated tomograms, which are generated by simulating the actual tomographic image recon-
struction process [25] based on well-recognized structures of macromolecular complexes.
We select eight classes of macromolecular complexes from Protein Databank (PDB) [1] for
our experiments. The eight classes of macromolecular complexes are shown in Table 1. In
addition, 1000 simulated subtomograms of size 64° and signal-to-noise (SNR) 0.03 are ex-
tracted for each class so we get 8000 subtomograms in total. In our experiment, we select
3200 subtomograms for training and the remaining 4800 for testing.

4.2 [Experiments on Semi-supervised Classification

In this experiment, we compare the classification performance of our proposed 3D autoen-
coding classifier with supervised 3D CNN, self-trained 3D CNN [27, 28], pre-trained 3D
CNN [11, 22, 30] and deep generative model [13].

Supervised 3D CNN We utilize the classification branch of our proposed 3D autoencoding
classifier network as the bottleneck architecture of the supervised 3D CNN. This network is
trained in an end-to-end scheme using only the labeled data and regularized with Eq 2.
Self-trained 3D CNN This method is based on the supervised 3D CNN as a classifier.
During each training epoch, the unlabeled data is classified by the trained classifier and the
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Table 2: Classification accuracy (%) on real and simulated testing sets. The classification
performance is evaluated under three settings of labeled proportions: 5%, 10% and 20%

Real Dataset Simulated Dataset
5% 10% | 20% 5% 10% | 20%
Supervised 3D-CNN 14.29 | 30.78 | 87.71 | 17.78 | 28.92 | 33.56

Self-trained 3D-CNN [27, 28] 28.57 | 42.86 | 57.57 | 17.35 | 25.56 | 32.19
Pre-trained 3D-CNN [11, 22, 30] | 14.29 | 71.57 | 94.03 | 38.04 | 59.19 | 75.15
Deep Generative Model [13] 72.14 | 76.86 | 76.64 | 16.67 | 18.00 | 17.19
Our approach 78.21 | 84.64 | 95.36 | 50.27 | 71.44 | 77.85

data with the top confidence score is added to the training set. We set the threshold as
0.6 in the real dataset’s experiment and 0.95 in the simulated dataset’s experiment. These
thresholds are derived using grid search on validation set.

Pre-trained 3D CNN The network architecture is the same as our proposed 3D autoencod-
ing classifier model except that the two branches of the network are trained in a cascaded
way. The network is pre-trained with the unlabeled data, which is followed by supervised
fine-tuning with only labeled data.

Deep Generative Model We implement this approach using the source code published by
[13] and evaluate it on our subtomogram datasets.

Experiment settings The network architecture we use for real dataset is shown in Figure
2. As for the simulated dataset, we change the dimensions of the last fully connected layer
of Classifier3D network to be eight, thus corresponding to the total number of classes. In
response to the increased dimensions and complexities of the simulated data, we add two
additional (Convolution3D + MaxPooling) layers to Encoder3D network and two additional
(Upsampling3D + Convolution3D) layers to Decoder3D network. The hyperparameters of
the newly added layers are the same as those of the original architecture.

In terms of the hyperparameters for training, we set learning rate to 0.0001 and branch
size to 64. Adam [12] is applied as an optimizer with decay rate 1 = 0.9 and 2 = 0.99.
We randomly sample 10% of the training set as a validation set and the validation loss is
used as a metric for early stopping. All the models are trained for 100 epochs on the training
set. Both @ and f in Eq 3 are set to 1.0 in our approach for labeled data. These settings are
applied across all the experiments using CNN. As for the deep generative model approach,
we strictly follow all the parameter settings in [13].

Testing results We evaluate our model using three labeled settings:5%, 10% and 20%, which
are the proportions of the labeled data in training set. The testing results of the five ap-
proaches on the real dataset and the simulated dataset are shown in Table 2. Our approach
clearly outperforms all the other methods under all settings of the labeled proportions on
both real and simulated datasets. Our model significantly outperforms supervised 3D-CNN
model, which means that 3D autoencoder network is an effective way to leverage unlabeled
data in learning generalized feature representation. Besides, the apparent advantage over the
Pre-trained 3D-CNN indicates that the joint optimization of the two branches is a more suit-
able scheme for training proposed model. We notice that the classification accuracy on the
simulated dataset is lower than on the real dataset of all three settings. It is primarily because
simulated dataset contains subtomogram with higher resolutions and smaller voxel spacing,
which makes this dataset more challenging than the real dataset. Compared with deep gen-
erative model, our approach is more robust to input subtomogram with higher resolution and
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original reconstructed
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Figure 3: Reconstructed apoferritin macromolecular structure by our proposed 3D autoen-
coding classifier network. (a) Comparison of original and reconstructed apoferriti subto-

mogram. Red arrow indicates the neighbor structure in original subtomogram, which is
alleviated by reconstruction (b) Reconstructed apoferritin 3D structure from two side views

reaches significantly better performance.

4.3 Experiments on Subtomogram Reconstruction

In this experiment, we compare the reconstruction performance of our approach with the
baseline 3D autoencoder model on the two datasets.

Experiment settings All the network architecture and the experiment settings are the same
as in Section 4.2 for semi-supervised classification. Our proposed model is trained in the
same way as in Section 4.2. The 3D autoencoder model utilizes the structure of the recon-
struction branch of our method as its bottleneck architecture, which is regularized by Eq 1 in
training phase. We use three settings of the labeled proportion (5%, 10%, 20%) to evaluate
the reconstruction performance of our method. The reconstruction performance is measured
by Mean Square Error as in Eq | in testing set.

Testing results Table 3 shows the reconstruction performance of our approach and the 3D
autoencoder model. All settings of our approach outperform the original 3D autoencoder
in terms of reconstruction performance. It is also observed that our approach reaches the
best reconstruction performance when only 10% of the subtomograms are labeled. In the
real dataset, there exists little difference in the reconstruction performance of all three set-
tings. However, in the simulated dataset, the reconstruction performance greatly improves
when the labeled portion is increased to 10%. And this performance decreases slightly when
increased to 20%. This demonstrates that proper portions of labeled data will benefit the re-
construction performance. However, excessive labeled data will in some ways compete with
the reconstruction branch in feature learning, which will adversely affect the reconstruction
performance. Figure 4.3 shows the reconstructed apoferritin structure generated by our best
performed model as an example. We can see that the reconstructed subtomogram contains
less noise compared to the original input subtomogram. Besides, the signal of neighbor-
ing structure features is suppressed in our reconstructed subtomogram, which is primarily
attributed to the discriminative feature representations learned through supervised classifica-
tion of labeled data. The reconstructed subtomograms are promising to be utilized for further
segmentation and course recovery.
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Table 3: Reconstruction performance on real and simulated testing sets. The performance
of our model is evaluated under three settings of labeled data proportions in training set:
5%, 10% and 20%. The performance is measured using mean square error between original
subtomogram and the reconstructed subtomogram
Real set | Simulated set

3D Autoencoder 0.0147 1.2464
Our approach (5% labeled) | 0.0050 0.8357
Our approach (10% labeled) | 0.0049 0.1491
Our approach (20% labeled) | 0.0054 0.1793

5 Conclusion

In this paper, we introduce semi-supervised classification to reduce annotation burden in
the subtomogram classification tasks. Specifically, we propose a 3D autoencoding classifier
based deep learning framework for simultaneous subtomogram reconstruction and classifi-
cation. In training phase, we jointly optimize the two branches of network using both labeled
and unlabeled data. Extensive experiments demonstrate that our approach is not only able
to accurately label the subtomogram but can also improve the reconstruction performance of
3D autoencoder network. The reconstructed subtomogram can greatly reduce image noise
and the overlapping with the neighboring structure. Our works act as an important step
toward automated structure classification and recovery in CECT. As a future work, we will
evaluate our approach on more challenging subtomogram datasets with higher resolution and
smaller voxel spacing. We will also integrate our approach to complement other tasks such
as subtomogram alignment [19, 33], averaging [8, 39], pattern mining [35], segmentation
[17, 31, 32], and tomogram reconstruction [9].
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