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Abstract

Curvature Scale Space (CSS) representations have been shown to be very
useful for recognition of noisy curves of arbitrary shapes at unknown orienta-
tions and scales [10,14]. This paper contains a number of important results on
the convergence properties of CSS representations and on the evolution and
arc length evolution of planar curves [6,12]. The processes which convolve
arc length parametric representations of planar curves with Gaussian func-
tions are referred to as the evolution or arc length evolution of those curves.
It has been shown that every closed planar curve will eventually become sim-
ple and convex during evolution and arc length evolution and will remain in
that state. This result is important since it demonstrates that the computation
of a CSS image always has a clearly defined termination point.

1 Introduction

A multi-scale representation for 1-D functions was first proposed by Stansfield [18] and
later developed by Witkin [19]. Function f(x) is convolved with a Gaussian function as
its width o varies from a small to a large value. The zero-crossings of the second
derivative of each convolved function are extracted and marked in the x — o plane. The
result is the scale space image of f(x).

The curvature of a planar curve represents that curve uniquely modulo a rigid mo-
tion [1,4]. The Curvature Scale Space image was introduced in [11,12] as a new shape
representation for planar curves. The representation is computed by convolving an arc
length parametric representation of the curve with a Gaussian function, as the width of
the Gaussian varies from a small to a large value, and extracting the curvature zero-
crossing points of the resulting curves. The representation is essentially invariant under
rotation, uniform scaling and translation of the curve. It is also very robust with respect
to noise and local distortions of shape. These properties make it suitable for recognition
of a noisy curve of arbitrary shape at any scale or orientation [10].

The Resampled curvature scale space image is a substantial refinement of the CSS
image which is based on the concept of arc length evolution [13]. The resampled CSS
image is suitable for recognition of curves with non-uniform noise or local shape differ-
ences.

Given a planar curve

[ = {(x(w), y(w)}
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where w is the arc length parameter, an evolved version of I' is defined by

I, ={Xu,0o).Y(Wu.o)}
where

X(Lt. J) = x(u) * g(h‘.cr)

Y(u,o) = y(u)xg(u,o)

and * represents the convolution operator. Function g(u, o) denotes a Gaussian of width
o [8]. The process of generating the ordered sequence of curves {I',lo 2 0} is referred
to as the evolution of I'. The generalized evolution which maps I'" to I',, is defined by:

LT, ={(XW,0).YW,0)}
where
XW.o)=x(W)sgW o)
and
YW.o) =yW)*g(W o).

Note that W =W (w, o), and W(w, o) where oy is any value of o, is a continuous and
monotonic function of w. When W always remains the arc length parameter of the
evolved curve, the evolution of I is referred to as arc length evolution. W (w, &) is given
explicitly by [3]:

a W

Ww,o)=- J‘ Jrzw,a}dea +w.

Since (W, &) is unknown, the resampled CSS image is computed as follows: A Gaus-
sian filter based on a small value of o is computed. The curve I' is parametrized by the
normalized arc-length parameter and convolved with the filter. The resulting curve is
reparametrized by the normalized arc-length parameter and convolved again with the
same filter. This process is repeated until the curve becomes simple and convex.

Curve evolution and CSS representations have been used for a number of applica-
tions. Examples include organization of image edges at multiple scales [5], robust corner
detection [16], natural scale selection [17], and constrained image segmentation [21]. A
number of evolution and arc length evolution properties of planar curves have been stud-
ied in the past [7,9,15]. Some of those results have been used in this paper to prove new
results. The existing results which have been used are as following:

Theorem 1.1 The convolution of a sine function f(u) = asin(bu) with a Gaussian of
width o is [15]:

a 3
F(H,U) = —em Sm(bu).

Theorem 1.2 The convolution of a cosine function f(u) = a cos(bu) with a Gaussian of
width o is [15]:

a
Fu,o) = P cos(bu).

Theorem 1.3 Simple planar curves remain simple during arc length evolution [13].

Theorem 1.4 Let T be a planar curve in C,. If all evolved and arc length evolved curves
I, are in C,, then all extrema of contours in the regular and resampled CSS images of T’
are maxima [7].
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Theorem 1.5 Let I' = (x(w), y(w)) be a planar curve in C, and let x(w) and y(w) be
polynomial functions of w. Let I',, be an arc length evolved version of I" with a cusp
point at wy. There is a § >0 such that T, has two new curvature zero-crossings in a
neighborhood of wy [13].

Theorem 1.6 Let I' = (x(w), y(w)) be a planar curve in C| and let x(w) and y(w) be
polynomial functions of w. Let ', be an arc length evolved version of I" with a cusp
point at wy. There is a & > 0 such that T,,_; intersects itself in a neighborhood of point
Wp [?].

This paper contains a number of important results on the convergence properties of
CSS representations. It has been shown that every closed planar curve will eventually be-
come simple and convex during evolution and arc length evolution and will remain in
that state. This result is very important since it shows that CSS images are well-behaved
in the sense that we can always expect to find a scale level o at which the number of
curvature zero-crossing points goes to zero and know that new curvature zero-crossing
points will not be created beyond that scale level. o can be considered to be the high
end of the CSS image. The results of this paper show that CSS computations always
converge to stable states. The results presented in this paper complement earlier results
and help promote a better understanding of CSS representations.

2 Convergence properties of 1-D functions

This section contains a number of results on the properties of 1-D functions when they
are convolved with Gaussian functions with large standard deviations. The results of this
section will be used in section 3 to prove important results about the convergence proper-
ties of planar curves. The first two theorems express facts about the convergence proper-
ties of an infinite sum of sine or cosine functions when convolved with Gaussians with
large widths.

Theorem 2.1: Let
fs(u) e Z a; sm(2k JTIJ)

k=1
where u € [0, 1] and let

Fo(u,0) = f(u)*gu,t)

be the function obtained by convolving f,(u) with a Gaussian g(u, t) such that t = o*[2.
Each of F ;(u) and its second derivative has only two zero-crossings for large t.

Proof: It follows from theorem 1.1 that

Fo(u,t) =Y, —— sinQkru).
=l ek nlt
The first sine function in F (corresponding to k = 1) is the dominant one when f is large
and determines the qualitative shape of F. The first sign function goes to zero only at
u=0.5and at u=1. All other sine functions in F, also go to zero at u=10.5 and at
u = 1. Therefore F has at least two zero-crossing points at u = 0,5 and u = 1. If F, has
any additional zeros, they must be in small neighborhoods of u = 0.5 and u = 1 since at
all other points, the first sine function which determines the shape of F is away from ze-
ro. Assume w.l.o.g. that the sign of the first sine function is positive. F can be approxi-
mated to any degree of accuracy by considering only the first N sine functions in the in-
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finite sum (N can be arbitrarily large). Therefore there is a small neighborhood of point
u=0.5 in which all the first N sine functions in F; are monotonically increasing or
monotonically decreasing. Let F,* be the sum of those sine functions which are mono-
tonically decreasing and let F';~ be the sum of those sine functions which are monotoni-
cally increasing. Note that in the neighborhood being considered, F,* is positive when
u<0.5, is zero at u=0.5 and is negative when u > 0.5. Note also that in the same
neighborhood, F~ is negative when u < 0.5, is zero at u=0.5 and is positive when
u > 0.5. For any value of u in the neighborhood under consideration, |F ;" (u)l > IF,~(u)l
since the first sine function belongs to F,*. It follows that F,* + F, is also positive for
u < 0.5 and negative for u > 0.5. Hence no additional zeros exist in a small neighbor-
hood of u =0.5. A similar argument shows that no additional zeros exist in a neighbor-
hood of u=1. Therefore F, has only two zero-crossing points. Since the second
derivative of F; has the same form as F, the same proof also holds about the second
derivative of F,. It follows that the second derivative of F, also has only two zero-
crossing points. o

Theorem 2.2: Let
f.(w) = Y by cosQkru)

k=1
where u € [0, 1] and let

Fe(u,t) = f(u)*g(u, 1)

be the function obtained by convolving f.(u) with a Gaussian g(u, t) such that t = o*[2.
Each of F .(u) and its second derivative has only two zero-crossings for large t.

Proof: It follows from theorem 2.2 that

=] bk ;
Fo(u,1) ?.:1 prrer cos(2k nu).

The first cosine function in F, (corresponding to k = 1) is dominant when ¢ is large and
determines the qualitative shape of F .. The first cosine function goes to zero at u =0. 25
and u = 0.75. Therefore F_ has at least two zero-crossing points in small neighborhoods
of those two points. If F, has any additional zeros, they must also be in small neighbor-
hoods of u = 0.25 and u = 0. 75. Assume w.l.0.g. that the sign of the first cosine function
is positive. F . can be approximated to any degree of accuracy by considering only the
first N cosine functions in the infinite sum (N can be arbitrarily large). Therefore there
is a small neighborhood of point u = 0. 25 in which all cosine functions are either mono-
tonic or have only one extremum. All cosine functions in this neighborhood can be di-
vided into the following four groups:

(1) Monotonically decreasing cosine functions which go to zero at u =0.25. Denote
their sum by F.

(2) Monotonically increasing cosine functions which go to zero at « =0.25. Denote
their sum by F>.

(3) Cosine functions which have a maximum at u = 0.25. Denote their sum by F5.

(4) Cosine functions which have a minimum at « = (.25. Denote their sum by F 4.

Let F = F, + F,. Since the first cosine function belongs to group (1), for any value
of u in the neighborhood under consideration, |F | («)l = |F5(u)l. Tt follows that F' is also
monotonically decreasing and has a zero at « = 0.25. Let AF be the resulting change in
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F as u varies from u; to u,, any two values of u in the neighborhood under considera-
tion. Define AF; and AF, similarly. Since the first cosine function is dominant and F
and F, have extrema at u = (.25, it follows that IAF| >> |AF;| and IAF| > |AF,4]. There-
fore F. =F + F3+ F4 is also monotonically decreasing in the neighborhood under con-
sideration. Therefore F, goes to zero only once in that neighborhood. A similar argu-
ment shows that . goes to zero only once in a neighborhood of u = 0.75. Hence F.
goes to zero only twice. Since F, has the same form as F ., the same proof also holds
about /.. It follows that the second derivative of F. also goes to zero only twice. a

The following theorem expresses the main convergence result of section 2.

Theorem 2.3: Let f(u) be a periodic function and let F(u,t) = f(u)*g(u,t) be the func-
tion obtained by convolving f(u) with a Gaussian function g(u,t) such that t = /2.
F'(u, t) has only two zero-crossing points for large t.

Proof: Since f (u) is periodic, it can be expressed as [2]:

flw)= E a;, sin(kru) + Z by coskmu).

k=1 k=1
Therefore
(u) ): 2a, kn cos(Qknu) + E =2b; k= sin(2k ru)
k=1 k=1
and

f () =Y —da, k*»? sinQRknu) + Y, —4by k> n* cos(2kxu).
k=1 k=1
In fact all derivatives of f(u) have the same form: an infinite sum of sine functions plus
an infinite sum of cosine functions. It follows from theorems 1.1 and 1.2 that:

b 2

Fu,f) = ; __4;—;"—:’— sin(2kru) + ): _4!”6#
Theorem 2.1 showed that, when ¢ is large, the sum of the sine functions in F “(u,?) is a
function F; with only two zero-crossing points. Theorem 2.2 showed that, when ¢ is
large, the sum of the cosine functions in F “(u, ) is a function F, with only two zero-
crossing points. We will now show that F “ = F, + F. also has only two zero-crossing
points. Suppose that the signs of the first sine function in F; and the first cosine function
in F, are positive. The arguments used in other cases are similar. F; has two zero-
crossing points at u = 0.5 and u = 1 and F_ has two zero-crossing points at u = 0. 25 and
u =0.75. Now consider the range of values [0,0.25] for u. F, + F_ is positive in that
range therefore there are no zero-crossings. Now consider the range [0.25,0.5]. F,; + F,
is positive at u = 0.25 and negative at u = 0.5 so there is at least one zero-crossing point
between those two values of u. Since both F; and F_ are monotonically decreasing in
that range, there can be only one zero-crossing point between u =0.25 and u=0.5.
There are no zero-crossing points between u = (0.5 and u =0.75 since both F; and F.
are negative in that range. Finally, consider the range [0.75,1]. F,+ F. is negative at
u =0.75 and positive at u = | so there is at least one zero-crossing between those two
values of u. Since both F'; and F. are monotonically increasing in that range, there can
be only one 0-crossing between u =0.75 and u = 1. Hence F ” = F, + F_ has only two
0-crossing points. o

cos(2k mu).
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3 Convergence Properties of Planar Curves

This section contains important results on the convergence properties of evolution and
arc length evolution of planar curves as defined in section 1. These results show that
evolution and arc length evolution of planar curves are well-behaved processes. Theo-
rems 3.1 through 3.4 examine the convergence properties of closed planar curves during
evolution.

Theorem 3.1: Let " =(X(u, o), Y(u,0)) be a simple and convex closed planar curve.
Functions X (u,o) and ¥ (u, o) (which are periodic) each has two zero-crossing points.

Proof: Since I' is a simple and convex closed planar curve, the total change in the direc-
tion of its tangent vector as I is traversed one full cycle is equal to 2x. Let 8 be the angle
that the tangent vector makes with the positive x-axis. 6 takes on each value in the range
[0,360] only once. It follows that the tangent vector becomes horizontal only twice and
becomes vertical only twice. Each time the tangent vector is horizontal, function Y (u, o)
has an extremum and each time the tangent vector is vertical, function X (1, o) has an ex-
tremum. Hence each of X(u,o) and Y (4, o) has two extrema. Since these functions are
periodic, each of X(u, o) and ¥ (u, o) has two zero-crossing points. a

Theorem 3.2: Let " = (x(u), y(u)) be a closed planar curve such that functions x(u) and
y(u) are periodic functions and each of ¥(u) and §(u) has two zero-crossing points. I is
simple and convex.

Proof: Reparametrize I" by arc length 5. Since %(u) and ¥(u) each intersect zero only
twice and u is a monotonic function of s, ¥(s) and ¥(s) also intersect zero only twice.
Note that on a curve with arc length parametrization, the magnitude of curvature x is
given by:

el = V@ + )%

Therefore at each inflection point of the curve, ¥#(s) = ¥(s) =0.

Assume by contradiction that I' is not simple and convex. Suppose that I" is not con-
vex. There can be only two inflection points on I'. Let P and P be those inflection
points (Figure 3.1). Let T be the tangent line at point P and let 7 * be the tangent line at
P’. Let L be the line going through P and P . The curvature of I' changes sign at P
therefore I' will turn to the right of line T. Since curvature of I" does not change sign
again, I" will continue to turn until it intersects line L at point Q different from P. Simi-
larly, I” changes sign of curvature at P and will intersect L at point Q " different from
P’. Suppose line L is not vertical. Note that the x-coordinate of Q is larger than the x-
coordinate of P and that the x-coordinate of Q * is smaller than the x-coordinate of P . It
follows that the maximum and minimum of x(s) lie outside segment PP ". So there is at
least one zero-crossing point of ¥(s) which is not at P or P ". Hence #(s) has more than
two zero-crossing points which is a contradiction. If line L is vertical, a similar argument
can be applied to J(s) and a contradiction will be reached again. It follows that I" must
be convex.

Now suppose that I is not simple. Therefore I intersects itself in at least one point.
Let P be the point of self-intersection (Figure 3.2) and let 7 and T * be the tangent vec-
tors at P. Note that function x(s) has at least one extremum inside the loop since the val-
ue of that function is equal to the x-coordinate of point P for two different values of s, s,
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and s, and takes on different values when s is between s, and s,. Follow the curve in the
direction of T'. Since I' is convex, it will continue to turn in the same direction until the
tangent to the curve becomes vertical. Let that point be Q. Also follow the curve in the
direction of T *. Again I" will continue to turn in the same direction until its tangent be-
comes vertical at point Q ". There is an extremum of x(s) at each of Q and Q. Hence
there are at least three extrema on x(s). This is a contradiction since %(s) is a periodic
function with only two zero-crossing points and therefore x(s) has only two extrema. It
follows that I must also be simple. It was shown earlier that I is convex. It follows that
I' is simple and convex. o

Figure 3.1

Figure 3.2
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Theorem 3.3: Simple and convex planar curves remain simple and convex during
evolution.

Proof: Let I' = (x(u), y(u)) be a simple and convex closed planar curve. It follows from
theorem 3.1 that functions ¥(u) and §(u) each has only two zero-crossing points, It is
known that the number of zero-crossing points on #(u) and #(u) will not increase when
x(u) and y(u) are convolved with Gaussian functions [20]. Therefore each of the coordi-
nate functions of evolved versions of I'" also has only two zero-crossing points of the sec-
ond derivative. It follows from theorem 3.2 that evolved versions of I" are also simple
and convex. Hence I" remains simple and convex during evolution. o

The following theorem expresses the main result of this section on evolution. It fol-
lows from this theorem that the correct stopping criterion when computing the CSS im-
age of a planar curve is when the curve becomes simple and convex.

Theorem 3.4: Let I" be a closed planar curve. " becomes simple and convex during evo-
lution and remains simple and convex.

Proof: Let I', =(X(u, o), Y (u,0)) be an evolved version of I' and let & be large. Theo-
rem 2.3 showed that X(u, o) and ¥ (u, o) each has only two zero-crossing points. It fol-
lows from theorem 3.2 that I', must be simple and convex. It follows from theorem 3.3
that I" remains simple and convex. O

The remaining theorems in this section explore the convergence properties of planar
curves during arc length evolution.

Theorem 3.5: Simple and convex planar curves remain simple and convex during arc
length evolution.

Proof: Suppose I' is a simple and convex planar curve. Theorem 1.3 states that simple
curves remain simple during arc length evolution. Therefore I" remains simple during
arc length evolution. To become non-convex, I' must form new curvature zero-crossings.
It follows from theorems 1.4 and 1.5 that every planar curve must form a cusp point just
before formation of new curvature zero-crossings during arc length evolution and theo-
rem 1.6 states that every planar curve must intersect itself just before formation of a cusp
point during arc length evolution. It follows that every planar curve must intersect itself
just before formation of new curvature zero-crossings during arc length evolution. Since
I" remains simple during arc length evolution, formation of new curvature zero-crossings
on I' is not possible. Therefore I" also remains convex. o

The next theorem expresses the main result of this section on arc length evolution of pla-
nar curves.

Theorem 3.6: Let I be a closed planar curve. I becomes simple and convex during arc
length evolution and remains simple and convex.

Proof: Let [, = (X(W,o),Y (W o)) be an arc length evolved version of I and let o be
large. The proof of theorem 2.3 also applies to each of X(W,o) and Y (W, &) and there-
fore each of X(W, o) and ¥ (W, o) has only two zero-crossing points. To see this, note
that it was shown in [15] that the process of arc length evolution of I" is equivalent to
convolving an arc length parametric representation of I with a Gaussian filter based on a
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small width oy, resampling the output curve by the arc length parameter, reconvolving
the resampled curve with the same filter and repeating this procedure many times. It fol-
lows from theorem 2.3 that when I' is convolved with a Gaussian, X (W, ty) can be repre-
sented as:

L]

XW,tp) = sz e“} - sinQkaW) +§f em =
where 1y = o2 /2. Y (W, to) can be represented in a similar way. When the output curve is
resampled by the arc length parameter, function X (W, ) is mapped to a new function
Xr(-w. tl}):

cos(2k=W).

X,(W. 1) = 5_‘, efk’ff sm(2,(;rW)+Z kf,

where ¢, and d; are multiplied by the old constants to obtain the new ones. When the re-
sampled curve is reconvolved with the same filter, we obtain:

cos(2krW)

X, (W1 = ): sin(2kzW) + E

k=
where #; > ;. Observe that as this procedure is repeated many times, the ¢ in the denom-
inator becomes larger and larger but the coefficients in the numerator remain bounded by
upper and lower bounds determined by the original function (since resampling does not
alter the shape of the curve). Therefore, as stated earlier, theorem 2.3 applies to each of
X(W,o) and Y(W, o). From theorem 3.2, it follows that I", must be simple and convex,
and from theorem 3.5, it follows that I remains simple and convex. o

cos(ZkrW).

4&’ 2: 4&’ 21,

4 Conclusions

A number of important results on the convergence properties of curvature scale space
representations were presented in this paper. CSS representations have been shown to be
very useful for recognition of noisy curves of arbitrary shapes at unknown orientations
and scales. The results of this paper show that the computation of these representations
always converges to stable states. It was shown that every closed planar curve eventually
becomes simple and convex during evolution and arc length evolution and will remain in
that state. These results shows that evolution and arc length evolution of planar curves
are well-behaved processes, and that the computation of a CSS image always has a clear-
ly defined termination point.
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