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Abstract 

Background:  Clinical notes record the health status, clinical manifestations and other detailed information of each 
patient. The International Classification of Diseases (ICD) codes are important labels for electronic health records. 
Automatic medical codes assignment to clinical notes through the deep learning model can not only improve work 
efficiency and accelerate the development of medical informatization but also facilitate the resolution of many 
issues related to medical insurance. Recently, neural network-based methods have been proposed for the automatic 
medical code assignment. However, in the medical field, clinical notes are usually long documents and contain many 
complex sentences, most of the current methods cannot effective in learning the representation of potential features 
from document text.

Methods:  In this paper, we propose a hybrid capsule network model. Specifically, we use bi-directional LSTM (Bi-
LSTM) with forwarding and backward directions to merge the information from both sides of the sequence. The label 
embedding framework embeds the text and labels together to leverage the label information. We then use a dynamic 
routing algorithm in the capsule network to extract valuable features for medical code prediction task.

Results:  We applied our model to the task of automatic medical codes assignment to clinical notes and conducted 
a series of experiments based on MIMIC-III data. The experimental results show that our method achieves a micro 
F1-score of 67.5% on MIMIC-III dataset, which outperforms the other state-of-the-art methods.

Conclusions:  The proposed model employed the dynamic routing algorithm and label embedding framework can 
effectively capture the important features across sentences. Both Capsule networks and domain knowledge are help-
ful for medical code prediction task.
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Background
Clinical notes are written by the professional medi-
cal staff and record various information of patients 
in the hospital such as their medical history, lifestyle, 

symptoms, treatment, and medications. Clinical notes 
facilitate quick access to the patients’ information by the 
medical staff and significantly contribute to the treat-
ment process of the patients [1]. A medical code refers 
to a process of converting the clinical notes from the 
medical ontology into a group of medical codes. The 
most popular medical codes are the international disease 
codes ICD 9 and ICD 10. The ICD codes standardize and 
format the disease names which is the basis for applying 

Open Access

*Correspondence:  zhyj@dlut.edu.cn
2 College of Computer Science and Technology, Dalian University 
of Technology, Dalian, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5843-4675
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01426-9&domain=pdf


Page 2 of 12Bao et al. BMC Med Inform Decis Mak  2021, 21(Suppl 2):55

clinical information systems such as medical information 
and hospital information management [2]. The ICD code 
enables the most comprehensive sharing of disease infor-
mation, reflecting the nation’s health status. It is also very 
helpful for medical research and teaching. The ICD is the 
management basis of hospital medical treatments and 
administration. Disease classification is also one of the 
vital basis of medical expenses control which is condu-
cive to cost management and insurance reimbursements. 
The international disease code ICD 9 approximately 
includes 138,000 codes.

The process of assigning the medical codes to the clini-
cal notes is often performed by trained professionals. 
Clinical notes, however, contain complex medical ter-
minology and often include spelling errors and abbre-
viations. Therefore, reading the notes and assigning the 
corresponding codes is usually challenging for the profes-
sionals and requires a significant amount of time, human 
and financial resources. An automatic medical code 
assignment system can significantly improve this process 
and reduce human errors in ICD code assignment [3].

There exist several methods for automatic medical 
codes assignment to clinical notes. These methods are 
categorized into rule-based methods, machine learn-
ing methods, and neural network methods. Instances 
are K-nearest neighbours, correlation feedback, support 
vector machines [4], Bayesian ridge regression [5], and 
various neural network models [6, 7]. In [8], the author 
developed a method based on the hierarchical tree struc-
ture of the ICD-9 ontology. Larkey et  al. [9] also used 
classifiers to obtain the candidate ICD labels, but the 
classifiers need to adjust all the parameters artificially. 
Koopman et  al. [10] used SVM for automatic ICD-10 
classification of cancer. Perotte et al. [11] mention a hier-
archy based SVM model to predict the ICD codes for the 
discharge summaries. Lita et  al. Further in [5] the ICD 
code classification performance of the SVM was inves-
tigated. In general, machine learning methods are time-
consuming to design the specific features, that are also 
significantly dependent on professional competence and 
human resources.

With the development of artificial intelligence, deep 
learning methods have demonstrated incredible poten-
tial for automatic medical codes assignment and achiev-
ing a higher level of performance in the NLP tasks [12]. 
Neural networks with attention mechanisms [13] have 
achieved high performance in multi-label classification 
tasks [14]. Attention mechanisms [15] use one or more 
layers of the neurons to identify specific words and assign 
them different weights to obtain more accurate classifi-
cation results. However, these methods are not effective 
at dealing with long texts in document classification tasks 
[16]. In general, the document text is much longer than 

sentence text, especially as some document texts contain 
many complex sentences. How to learn potential feature 
representations from document text is still considered as 
an open problem in the NLP domain.

Using label embedding has proven effective in various 
domains and tasks such as image classification in com-
puter vision [17], multi-modal learning between images 
and text [18], and text recognition in images [19]. Label 
embedding also shows excellent performance in zero-
shot learning tasks [20], where certain classes are not 
visible and capturing label correlation in the embed-
ding space can improve predictive performance. Label 
embedding for the text multi-label classification has 
been studied in the heterogeneous networks [21]. Word 
embedding is an efficient intermediate representation for 
capturing semantic rules between the words for learning 
text sequence representations. In 2017, Hinton proposed 
the capsule network architecture [22], modifying the tra-
ditional CNN that can be used for performance improve-
ment of the ICD codes assignment. Therefore, the label 
embedding framework and capsule network are both 
useful for automatic medical codes assignment tasks.

In this paper, we propose a hybrid model based on the 
capsule network and label embedding framework to pre-
dict the ICD codes from the clinical notes. The model 
effectively captures the important syntactic features 
between the sentences and learns a comprehensive repre-
sentation of the potential features throughout the docu-
ment text. Our proposed model uses a dynamic routing 
algorithm to capture more specific features in the clini-
cal notes to improve accuracy, instead of filtering the fea-
tures using a pooling method that may lose important 
information. A label embedding framework is also pro-
posed to incorporate more information from the labels. 
Our approach is evaluated on the MIMIC-III public cor-
pus and the experimental results confirm that the model 
achieves state-of-the-art performance.

The rest of the paper is organized as follows. We briefly 
describe the medical code assignment task followed by 
the details of our proposed model in method section. 
Then in results and discussions section, we show the 
experimental results and discussion of the MIMIC-III 
corpus. Finally, in conclusions section we summarize our 
work and conclude.

Method
Medical codes assignment
The automatic medical codes assignment is a long-term 
and challenging area of research. In recent years, many 
researchers explore the use of textual data for auto-
matic ICD codes assignment [23], intended to automat-
ically and accurately predict the corresponding medical 
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code from the clinical notes. In this paper, we choose 
the MIMIC-III corpus for our experimental study.

The Medical Information Mart for Intensive Care 
(MIMIC-III) is a large, single-centre database compris-
ing information relating to the patients admitted to 
critical care units at a large tertiary care hospital [2]. 
Figure 1 and Table 1 provide examples of the MIMIC-
III corpus. Note events contain the patient’s clinical 
notes. DIAGNOSE_ICD contains the ICD codes cor-
responding to the patient’s clinical notes. MIMIC-III 
contains 59,652 discharge records from the medical 
centre. There are 942 unique 3-digit ICD-9 codes in the 
dataset. However, the distribution of the codes is highly 
unbalanced. Common codes account for 26% of all 
codes and rare codes only account for 1%. On average, 
each MIMIC-III discharge note contains about 1500 
words.

Our dataset is a collection of clinical notes. Each clini-
cal note X consists of many words, and each X has a set 
of medical codes M corresponding to that note. Besides, 
there is an external knowledge source L (Table 2), which 
contains a basic description of each ICD code. Our goal 
is to add the label embedding framework to the hybrid 
model to predict the relevant medical codes M. The 
entire experiment is a multi-label text classification task.

Our model
A schematic overview of our model architecture is shown 
in Fig. 2. Our model consists of three main parts, includ-
ing the Bi-LSTM [24] layer, the label embedding frame-
work, and the capsule network (CapsNet) layer.

The inputs of our model are text sequences. The word 
embedding layer generates a distributed representation 
vector containing semantic information for each word. 
We use bi-directional LSTM (Bi-LSTM) with forward-
ing and backward directions to merge the information 

Fig. 1  Note events in MIMIC-III corpus

Table 1  DIAGNOSES_ICD in MIMIC-III corpus

ROW_ID SUBJECT_ID HADM_ID SEQ_NUM ICD9_CODE

1297 109 172,335 1 40,301

1298 109 172,335 2 486

1299 109 172,335 3 58,281

1300 109 172,335 4 5855

1301 109 172,335 5 4254

1302 109 172,335 6 2762

1303 109 172,335 7 45,829

1304 109 172,335 8 2875

Table 2  Example of 3-digit ICD9 description

ICD code Description

001 Cholera

002 Typhoid and paratyphoid fevers

003 Other salmonella inflections

004 Shigellosis

005 Other food poisoning (bacterial)

006 Amebiasis

007 Other protozoal intestinal diseases
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from both sides of the sequence. It can capture the 
contextual information of each word to obtain a com-
prehensive sequence of the output vectors. The label 
embedding framework embeds the text and labels 
together to leverage the label information. We then use 
a dynamic routing algorithm in the capsule network to 
extract more valuable features. Finally, we use a fully 
connected layer and SoftMax function to implement 
the text classification. The details of our model are pre-
sented in the following sections.

Word representations
The distributed representation method, also known 
as word embedding [25, 26], is based on the premise 
that semantically similar words have similar semantics. 
Word embedding has been widely used in the BioNLP 
domain to effectively capture the underlying semantic 
information of the words. Since the clinical notes are 
usually written by the medical professionals, we adopt 
the distributed representation method to obtain a word 
vector that approximates the objective word mean-
ing more closely. In this paper, the pre-trained word 
embeddings are downloaded from nlplab, using the 
word2vec tool to train the word vectors from PubMed 
and PMC texts.

Bi‑LSTM
In a sentence, the semantics of the preceding and follow-
ing words are related. Recurrent Neural Network (RNN) 
is one of the neural network models [27] which aims to 
capture the sequential patterns presented in data. It has 
however limited due to the gradient vanishing problem. 
The LSTM is a variant of RNN [28], which addresses the 
issue of long-term dependencies by introducing the gate 
mechanism and the memory cell. It can keep the long 
dependent information and conquer the gradient van-
ishing issue. The LSTM model overcomes the vanishing 
gradient problem by introducing gating mechanisms. 
Therefore, it is suitable to capture the long-term depend-
ency feature.

The LSTM unit consists of three components: the input 
gate it , the forget gate ft and the output gate ot . At the 
time step t , the LSTM unit utilizes the input word xt , the 
previous hidden state ht−1 and the previous cell state ct−1 
to calculate the current hidden state ht and cell state ct 
[24]. The equations are as follows:

(1)ft = σ
(
Wf xt +Uf ht−1 + bf

)

(2)gt = tanh
(
Wgxt + Ught−1 + bg

)

Fig. 2  Schematic overview of our model
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where W, U is weight, b is bias term, ⊙ denote element-
wise multiplication.

Figure 3 shows the architecture of the CapsNet hybrid 
model. In this paper, we use Bi-directional LSTM (Bi-
LSTM) to integrate the information from both sides of 
the sequence in a forward and backward manner. It takes 
the word representation sequence of the text as the input 
and then outputs a new word representation sequence 
that captures the contextual information of each word in 
the text.

Label embedding framework
In this section, we use ◦ for function composition, 
S = {(Xn,Yn)}

N
n=1 represents a training set, Xi represents 

the sequence of the clinical notes and Yi is the corre-
sponding ICD codes. The objective of the label embed-
ding framework hybrid model is to learn a mapping from 
X to Y that makes the formula min 1

N

∑N
n=1 δ

(
Yn, f (Xn)

)
 

minimal, where δ is the loss function that measures the 
loss between f (Xi) and Yi.

(3)ot = σ(Woxt +Uoht−1 + bo)

(4)it = σ(Wixt + Uiht−1 + bi)

(5)ct = ft ⊙ ct−1 + it ⊙ gt

(6)ht = ot ⊙ tanh(ct)

Text classification is seen as a combination of three func-
tions f = f ◦0 f

◦
1 f2 . Figure  4 shows the common methods 

of text classification, where f0 is a word embedding func-
tion, f1 is a function to aggregate word embedding to get 
text representation, and f2 is a function for classifying 
using text representation. There are two broad categories of 
approaches to designing f1 . One is to treat the process as a 
“black box” that learns mappings using various deep learn-
ing models [29, 30], while the other approaches use simple 
max pooling or mean pooling method. As it is seen, only 
f2 used the label information, hence the impact of the label 
is indirect for both f0 and f1 . Here, we propose adding the 
label information in each process.

Figure  5 shows how we joint label embedding frame-
work. In f0 , the model learns the embedding of labels as 
the key point to influence the word embedding. In f1 , the 
model uses the correlation between the labels and the 
words for word embedding splicing. Specifically, Ci repre-
sents the i -th category of label embedding as the matrix of 
label embedding. We embed both words and labels into a 
joint space. The calculation equations are shown as follows:

(7)G = C ⊗ V

(8)Z = f1(G ⊕ V )

(9)D = Z ⊗ C

Fig. 3  The architecture of CapsNet with Bi-LSTM

Fig. 4  Common methods to text classification
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where ⊗ represents cosine similarity between vectors, 
⊕ denotes concatenate among G and V  , Z and D . In the 
above C and V  similarities are concatenated to word 
embedding and fed into Bi-LSTM. The capsule net-
work is then used to extract the features and output the 
[N_CAP, CAP_DIM] features, the EMB_DIM encoded 
sentences are combined with the label embedding to cal-
culate the cosine similarity. The similarity is then added 
to the classification results.

Capsule network
In deep learning models, spatial patterns are aggregated 
at a lower level which helps to represent higher-level 

(10)Y = f2(Z ⊕ D) concepts. For example, CNN builds a convolutional fea-
ture detector to extract patterns from the local sequence 
windows and uses max pooling to select the features. The 
CNN extracts feature patterns at different levels in a hier-
archical manner. However, since the convolution opera-
tor in the CNN is a weighted representation of the lower 
layers, it is difficult to represent the features of a complex 
object where it enters the upper layer. In this work, cap-
sule networks are employed to learn the potential fea-
ture representation. Our capsule network architecture is 
shown in Fig. 6.

In the convolution layer of the capsule network, 
extracting N-gram features at different positions of a sen-
tence through various convolutional filters. The N-gram 
size K1 slide on the sentence to detect the features at 

Fig. 5  Joint label embedding method

Fig. 6  capsule network model architecture
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different positions. The filter of the convolution opera-
tion Wa ∈ RK1×e is then convolved with the word win-
dow Xi at every position to generate a column feature 
map ma , ma

i ∈ R and M can be calculated as follows:

where ◦ denotes element-wise multiplication, b0 is a bias 
term, and f  is a nonlinear activate function.

At the primary capsule layer, the capsule replaces the 
CNNs’ scalar output feature detector with a vector-out-
put capsule, it can retain more characteristic informa-
tion such as the local order of words and the semantic 
representation of words. Let pi ∈ Rd denote the capsule 
parameter information, d be the dimension of the cap-
sule, Wb ∈ RN×d be the filter shared among different slid-
ing windows. A window slides over each N-gram vector 
for each matrix multiplication, denoted as Mi ∈ RN . The 
filter Wb multiplies each N-gram vector in Mi to produce 
a column-list of the capsules p . Each capsule pi ∈ Rd and 
p are calculated as follows:

where g is a nonlinear squash function, and b1 is a bias 
term.

The capsule network uses a nonlinear function called 
"squashing". This nonlinear function ensures that the 
length of the short vector can be shortened to almost 
zero, while the length of the long vector is compressed to 
close to but no more than 1. The following is the expres-
sion for this nonlinear function:

where vj is the vector output of capsule j , and sj is the 
input.

The total input for all capsules except the first layer 
capsule is a weighted sum of all vectors from the below 
layer of capsules generated by multiplying the output of 
the capsule layer by a weight matrix, as follows:

(11)ma
i = f

(
X◦
i W

a + b0
)

(12)M = [m1,m2, . . . ,mN]

(13)pi = g
(
WbMi + b1

)

(14)P = [p1,p2, . . . ,pC]

(15)vj =

∥∥sj
∥∥2

1+
∥∥sj

∥∥2
sj∥∥sj
∥∥

(16)sj =
∑

i

cijûj|i

(17)ûj|i = Wijui

where cij is the coupling coefficient and is iteratively 
updated and determined by the dynamic routing process. 
The calculation method of cij is shown as follows:

The sum of the coupling coefficients between all cap-
sules is 1 and bij is initialized to 0, where i ∈ [1, a] , 
j ∈ [1, k] , and k is the number of classes.

Results and discussions
Datasets and evaluation metrics
We choose MIMIC-III dataset to evaluate our model. The 
total number of discharge summaries is 52,722, with an 
average of 1500 words per discharge summary. We pre-
processed the data to remove the discontinued words, 
punctuation marks, and low-frequency words. The top 
three digits of the ICD codes for all patient visits were 
also aggregated then selected 344 codes from them. ICD 
9 codes descriptions contain the ICD codes and the cor-
responding disease name descriptions. For 344 ICD 
codes, we found their corresponding descriptions and we 
used Micro F1, Macro F1, Test Loss, and Top-10 Recall 
to measure the performance of the model for the auto-
matic code assignment tasks on the MIMIC-III dataset. 
Top-10 Recall is defined as the number of correct medi-
cal codes ranked in the top max(10, |M|) of the predicted 
results divided by |M|, where |M| is the number of medi-
cal codes for the note, and averaged over all test notes. 
The F1 score is the harmonic mean between the preci-
sion and the recall, in Micro-averaging, each forecast has 
the same weight and calculates the average metric over 
all instances. Therefore, the final result is dominated by 
medical codes with higher frequencies. Micro F1 gives 
a good overall indication of the model’s performance. 
The macro-average metric calculates the value for each 
medical code separately and then takes the average of 
all codes. Since all the labels are given equal weights, the 
macro-average metric places emphasis on the prediction 
of the rare medical codes. However, the distribution of 
medical codes in MIMIC-III is not even, with the most 
common 10 codes occurring 26% of all codes and the 
least common 437 codes occurring only 1% of all codes. 
Therefore, the Macro F1 value in the experimental results 
is much lower than that of the Micro F1 value.

Experimental settings
In our experiments, our model is implemented by keras 
with TensorFlow backend. To accommodate the compu-
tational complexity, we initially set the model dimension 

(18)cij =
exp

(
bij
)

∑
k exp(bik)

(19)bij ← bij + ûj|i · vj
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in word embedding to 200, the Bidirectional LSTM hid-
den units to 300, and the batch size to 16. In the capsule 
network, the capsule dimension is 50, the dynamic rout-
ing iteration number is 3, and the learning rate is set 0.01. 
All parameters of the model are optimized using Adam 
[31] to minimize the loss of categorical cross-entropy. 
To ensure that other experimental results can be repro-
duced, we perform experiments using the same dataset 
and the same splitting method. In the previous study 
[32], the dataset was divided into a training set, a valida-
tion set, and a test set of 0.7, 0.1, and 0.2, respectively. In 
our experiment, we keep the same splitting of dataset and 
compared with the previous studies. An early stop mech-
anism is also used to decide where to stop the training.

Experimental results
Baseline methods
We selected three baseline models for comparison 
including CNN, LSTM [27], and capsule network. The 
model uses word embedding trained by the Word2Vec 
tool as the input. Here we briefly describe the selected 
baseline models:

Convolutional Neural Network (CNN): CNN has been 
successfully applied in NLP to extract the features which 
is a traditional method for text classification [33]. CNN 
is composed of an input layer, convolutional layer, acti-
vation function, pooling layer, and fully connected layer. 
In our work, we use three convolutional layers, the kernel 
size is 3, 4, and 5, respectively. Hidden dim is set to 200 
and the dropout probability is set to 0.2.

Long Short-Term Memory (LSTM): LSTM is a special 
RNN which is mainly used to solve the problem of gradi-
ent vanishing and gradient explosion in the training pro-
cess of the long sequences. Compared with the general 
CNN, LSTM performs better on the longer sequences. 
An LSTM unit has three gates including forget gate, 
input gate, and output gate. In our experiments, we set 
the hidden dim to 200, the batch size is set to 32, and the 
dropout is set to 0.2.

Capsule Network (CapsNet): CapsNet was originally 
used in the imaging field and showed excellent perfor-
mance. In our work, we use a CNN-based capsule net-
work to process text, where the scalar output of the 
traditional neural network is replaced with the vector 
output of the capsule network, and dynamic routing 
algorithm is used instead of the traditional pooling layer 
to train the neural network. The capsule vector dimen-
sion is set to 50 and the dynamic routing iteration is set 
to 3. The capsule network mainly consists of the convolu-
tional layer, primary capsule layer, capsule layer and fully 
connected capsule layer.

We compared our proposed BiCapsNetLE method 
with CNN, LSTM, and capsule network models [11]. The 

performance of each model on the MIMIC-III dataset is 
shown in Table 3. The performance of the CNN model in 
the data set is general, with a Micro F1 score of 62.6%, the 
capsule network effectively improves the Micro F1 score 
from 62.6 to 64.7%. The results show that the capsule 
network’s dynamic routing algorithm can capture more 
features from the textual information. The LSTM model 
relies on three gating units to have much better results for 
processing long text, with a Micro F1 value of 65.3%. Our 
proposed model is superior to the other three models in 
terms of all micro-measurement indicators. The value of 
Micro F1 is increased by 4.9% compared to CNN, 2.2% 
compared to LSTM, and 2.8% compared to capsule net-
work. Macro F1 is 4.7% higher than CapsNet, 5.1% higher 
than CNN, 6.1% higher than LSTM. The result indicates 
that our model has a better improvement on rare coding 
prediction, and it achieves the smallest loss value among 
all models. This means the misclassification rate of our 
model is the lowest.

To visually demonstrate the impact of introducing the 
external knowledge sources on the experimental results, 
we divided medical codes into four groups according to 
the frequency of their occurrence in the dataset, i.e., [1, 
10], [11,50], [51,100], and [100, + ∞). We further calcu-
late the Macro AUC for all models on each group, where 
the Macro AUC is the unweighted average AUC over all 
labels. The results in Fig.  7 indicate that our model can 
improve the AUC of low-frequency labels in the data-
set. In particular, since the medical codes with higher 
frequency have more examples in the learning process, 
they benefit less from the external sources. Conversely, 
because the rare codes have few examples, they can learn 
more from the external knowledge sources.

Comparison with related work
We compared our model with several state-of-the-
art medical code assignment methods. The results are 
shown in Table  4. In [32], Bai et  al. presented a model 
that incorporates the external resources of Wikipedia 
knowledge framework (KSI) into the model to predict 
ICD codes and implements the optimal performance on 
the MIMIC dataset. In [16], Mullenbach et al. presented 

Table 3  The performance of  our model and  the  baseline 
models on the MIMIC-III dataset

Methods Macro F1 (%) Micro F1 (%) Test loss (%) Top-10 
recall 
(%)

CNN 21.4 62.6 4.0 75.3

LSTM 20.4 65.3 3.2 77.2

CapsNet 21.8 64.7 3.5 76.1

BiCapsNetLE 26.5 67.5 2.9 82.3
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the Convolutional Attention for Multi-Label classifi-
cation (CAML) model which combines the attention 
mechanism with CNN to achieve state-of-the-art perfor-
mance in medical codes prediction. In [13], Wang et al. 
presented a label embedding attentive model (LEAM) to 
improve the text classification.

Compared to other deep neural network-based 
approaches, our method achieves the highest Micro F1 
and Macro F1 scores of 67.5% and 26.5% for the MIMIC-
III dataset. Our proposed model also outperforms other 
competitive models in all measurements. Comparing 
the results from other experiments, we improved Micro 
F1 by 11.8% compared to LRKSI, 1.3% compared to 
RNNKSI, 3.8% compared to CNNKSI, 1.9% compared 
to CAML, 2.6% compared to LEAM, and Macro F1 is 
increased by 6.9% compared to LRKSI, 2.1% compared to 
RNNKSI, 2.8% compared to CNNKSI, 0.8% compared to 

CAML, 1.6% compared to LEAM. Our proposed model 
also achieved the smallest loss value amongst the inves-
tigated models. In addition to using label embedding 
framework to acquire more important features, we use 
the Bi-LSTM and capsule network to automatically and 
efficiently capture the valuable features from documents. 
More importantly, our model is relatively simple, unlike 
the integrated model which requires the construction of 
a large number of neural network models that requires 
more time and effort to be integrated.

Ablation study
To examine the contribution of each component of the 
model, we conducted an ablation study. The experimental 
results are shown in Table 5.

It is seen that removing the Bi-LSTM layer or the label 
embedding framework results in reducing the model’s 
performance. This suggests that both layers can learn 
effective features. By adding the Bi-LSTM layer to the 
capsule network model, the Micro F1 value is increased 

Fig. 7  Macro AUC by label frequency groups for different models. X-axis represents the label frequency groups and y-axis represents the Macro 
AUC​

Table 4  Comparison with related works

Methods Macro F1 (%) Micro F1 (%) Test loss (%) Top-10 
recall 
(%)

LRKSI [32] 19.6 55.7 5.5 73.8

RNNKSI [32] 24.4 66.2 3.0 79.8

CNNKSI [32] 23.7 63.7 3.9 77.5

CAML [16] 25.7 65.6 3.2 80.6

LEAM [13] 24.9 64.9 – –

BiCapsNetLE 26.5 67.5 2.9 82.3

Table 5  Ablation studies for our model

Methods Macro F1 (%) Micro F1 (%) Test loss (%) Top-10 
recall 
(%)

CapsNet 21.8 64.7 3.5 76.1

BiCapsNet 23.1 67.0 3.1 81.9

BiCapsNetLE 26.5 67.5 2.9 82.3
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by 2.3%, and by adding the label embedding framework, 
the Micro F1 is increased by another 0.5%.

Using the capsule network alone also leads to the 
smallest F1 score and the largest loss. This is mainly due 
to its intrinsic shortcomings in dealing with long texts. 
In the MIMIC-III dataset, the average length of the dis-
charge summaries exceeds 1000 words. The capsule net-
work cannot remember features of long text sequences 
well. This may lead to poor performance. In particular, it 
is seen that when the capsule network is combined with 
the Bi-LSTM layer, the performance has been greatly 
improved. This indicates the effectiveness of Bi-LSTM 
and shows that the hybrid model can learn more long 
text features. The label embedding framework can signifi-
cantly improve the scores of other test results, the results 
illustrate that the label embedding framework can pro-
vide more useful label information to add to the model 
label prediction task, and also effectively improves the 
sparsity of rare ICD codes distribution.

Relational visualization
To show the strength of the connection between the cap-
sule layers, we use the primary capsule layer to directly 
connect the last fully connected capsule layer, where the 
primary capsule represents the N-gram words in the 
form of a capsule. The connection strength can show 
the importance of each primary capsule for the text cat-
egory, like attention mechanism. This allows the capsule 

network to recognize multiple medical codes in the clini-
cal notes.

In Table  6, we have manually annotated several 
words related to the ICD disease labels (e.g., "acid" and 
"atrium"), highlighted in bold for reference. We used 
WordCloud to visualize 3-g words for the ICD 276 
and ICD 427 categories. The stronger the connection 
strength, the larger the font size. In Table  7, from the 
results, we observe that the capsule network correctly 
identifies and clusters the important words about the text 
category. Histograms are also used to show the strength 
of the connections between the primary capsule and the 
fully connected capsule.

Error analysis
To better understand our proposed model, we performed 
an error analysis of the final output. There are two main 
types of errors: False-positive (FP) errors and True-nega-
tive (TN) errors. We list some examples to analyze these 
errors and find that most of the FP occur in similar ICD 
codes. Prediction performance heavily depends on the 
frequency of code occurrences in the data. This means 
that the higher the frequency of ICD code, the higher 
the AUC values. In contrast, low-frequency labels exhibit 
random performance. For two similar codes, if one 
occurs more frequently than the other, the low-frequency 
code may be easily predicted to be a high-frequency 
code, the least common 437 codes in the MIMIC-III 

Table 6  Partial clinical note

Clinical note

Fluids, electrolytes and nutrition—Initial dehydration was treated with intravenous fluids. She tolerated p.o. throughout her placement and was 
placed on a thin pureed diet with supplemental Boost at breakfast, lunch and dinner. This was following swallow and nutrition evaluations for 
malnutrition. Acid fast sputums times three were taken for acid fast bacilli. On hospital day #4 sputum [**Doctor Last Name 1770**] from hospital 
day #2 showed positive acid fast bacilli. Infectious Disease consult was called. Cardiovascular—As noted above, the patient was in rapid atrial 
fibrillation initially. By hospital day #2 and throughout course the patient remained in rate control atrial fibrillation. Chronic atrial fibrillation. 
Intermittent left bundle branch block

Table 7  WordCloud visualization

Disorders of fluid electrolyte and acid–base balance (ICD 276) Atrial fibrillation and flutter (ICD 427)
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dataset accounted for only 1% of the occurrences. For 
example, "007" (protozoal intestinal disease, frequency 
19) was incorrectly predicted as "008" (pathogenic intes-
tinal infection, frequency 579). The reason why the actual 
positive prediction was negative is that some strong posi-
tive keywords were missing, or positive indicators did 
not appear in the article. In cases where there are few (or 
no) expressions in the training set, it is extremely difficult 
to accurately classify real positive labels. For instance, a 
certain clinical note describes amoebiasis, but common 
discriminating keywords, such as "ameba", rarely appear 
in the training set. On the contrary, other disease-related 
words appear frequently. Our model incorrectly classifies 
positive instances as negative ones. In the future, we will 
consider better pre-processing and post-processing tech-
nologies to address the abovementioned issues.

Conclusions
Prediction of medical codes for clinical notes is one of 
the pivotal tasks of biomedical NLP. The capsule net-
work is a highly promising neural network model which 
has its unique advantages in biomedical text classifica-
tion. In this paper, we propose the application of capsule 
network in the field of medical code prediction studies 
of clinical notes and propose the inclusion of the label 
embedding framework. We also compare our proposed 
model with various models and demonstrate that the 
capsule network hybrid model is indeed useful for medi-
cal code prediction. Besides, we propose a more efficient 
label embedding framework, which not only alleviates 
the problem of sparse distribution of rare medical codes 
but also leads to higher classification accuracy. Experi-
mental results show that our hybrid model can effectively 
combine the advantages of capsule network and label 
embedding frameworks, and our hybrid model achieves 
state-of-the-art performance on the automatic medical 
code assignment task.

Current state-of-the-art methods in ICD code predic-
tion are mainly based on supervised machine learning 
and a key challenge in the field is to reduce the model’s 
reliance on the tag training data. As a future research 
direction, we would try to employ semi-supervised or 
migration learning in medical code prediction task and 
integrate biomedical knowledge to further improve the 
performance of our experiments.
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