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Abstract 

Background:  Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with 
epilepsy. If timely assessment of SUDEP risk can be made, early interventions for optimized treatments might be pro-
vided. One of the biomarkers being investigated for SUDEP risk assessment is postictal generalized EEG suppression 
[postictal generalized EEG suppression (PGES)]. For example, prolonged PGES has been found to be associated with 
a higher risk for SUDEP. Accurate characterization of PGES requires correct identification of the end of PGES, which is 
often complicated due to signal noise and artifacts, and has been reported to be a difficult task even for trained clini-
cal professionals. In this work we present a method for automatic detection of the end of PGES using multi-channel 
EEG recordings, thus enabling the downstream task of SUDEP risk assessment by PGES characterization.

Methods:  We address the detection of the end of PGES as a classification problem. Given a short EEG snippet, 
a trained model classifies whether it consists of the end of PGES or not. Scalp EEG recordings from a total of 134 
patients with epilepsy are used for training a random forest based classification model. Various time-series based 
features are used to characterize the EEG signal for the classification task. The features that we have used are compu-
tationally inexpensive, making it suitable for real-time implementations and low-power solutions. The reference labels 
for classification are based on annotations by trained clinicians identifying the end of PGES in an EEG recording.

Results:  We evaluated our classification model on an independent test dataset from 34 epileptic patients and 
obtained an AUreceiver operating characteristic (ROC) (area under the curve) of 0.84. We found that inclusion of mul-
tiple EEG channels is important for better classification results, possibly owing to the generalized nature of PGES. Of 
among the channels included in our analysis, the central EEG channels were found to provide the best discriminative 
representation for the detection of the end of PGES.

Conclusion:  Accurate detection of the end of PGES is important for PGES characterization and SUDEP risk assess-
ment. In this work, we showed that it is feasible to automatically detect the end of PGES—otherwise difficult to detect 
due to EEG noise and artifacts—using time-series features derived from multi-channel EEG recordings. In future work, 
we will explore deep learning based models for improved detection and investigate the downstream task of PGES 
characterization for SUDEP risk assessment.
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Background
Epilepsy is a neurological disorder where a person has 
recurrent abnormal electrical activities in the brain (sei-
zures). Even though epilepsy is widely prevalent  [1], a 
good understanding of its causes remains elusive in up to 
50% of the cases [2]. The cases of SUDEP (sudden unex-
pected death in epilepsy), a condition where an epileptic 
patient has sudden death without any specific known 
cause leading to an unignorable rate of epilepsy death 
(8-17%), remain even more unfathomable. This mark-
edly contrasts with the associated clinical importance, 
since SUDEP is the cause of premature death in about 1 
in 1000 patients with epilepsy  [3]. A line of thought for 
SUDEP is that the brain activity aberrations result in 
cardiovascular and respiratory dysfunctions, which then 
lead to death [4]. However, the cases of SUDEP are highly 
heterogeneous, appearing in contrasting cases and condi-
tions. For instance, while most of the SUDEP cases are 
found to be related to a preceding seizure event, there 
are still some other reported cases of SUDEP without an 
immediately preceding seizure [5]. Complete pathophysi-
ology of SUDEP still remains uncertain to this date.

Though SUDEP cases are heterogeneous, some bio-
markers have been found to be associated with the 
SUDEP risk [6–10]. One such biomarker being actively 
investigated is postictal generalized EEG suppression 
(PGES). As the name suggests, PGES is a suppression of 
brain activity occurring immediately (within 30 s) after 
a seizure. The suppression is commonly defined to have 
occurred when all the EEG channels have activity of less 
than 10 µV  , after properly accounting for noise and arti-
facts [11, 12]. After the suppression, there is a return of 
normal EEG activity or likely a state of slow wave activ-
ity [12]. One of the earlier works investigating the relation 
between PGES and SUDEP risk were done by the authors 
in [12]. The authors found increased occurrence of PGES 
in patients with SUDEP, compared to a control group. 
Similarly, increased duration of PGES was found to be 
directly related to SUDEP risk. Nonetheless, there have 
been some other studies that could not establish a simi-
lar relation between increased PGES duration and higher 
SUDEP risk. The study in  [11] found that neither the 
presence of PGES nor its duration were related to SUDEP 
risk. In this context, the authors in [13] observed that this 
reported inconsistency could be due to the specific nature 
of the cohort in the latter study. All the included patients 
presented temporal lobe epilepsy and were undergoing 
standard pre-surgical evaluations. In another study [14], 
the authors found PGES to be of rather shorter duration 

in patients with SUDEP, compared to the control group. 
However, it was also noted by the authors that they had 
difficulty in identifying the end of PGES. Multiple occur-
rences of closely located suppression episodes were seen. 
When the end of the last suppression episode was con-
sidered for the total duration of PGES, the patients with 
SUDEP then had longer PGES (though the difference was 
not significant). As evident from this study, detecting the 
end of PGES is complex and this complexity has impact 
on assessing the relation between PGES and SUDEP risk. 
Overall, though the exact nature of this relation remains 
contested, the general relevance of PGES for SUDEP and 
the need for further investigation has been well recog-
nized [15–19]. Given the reported difficulty in detecting 
PGES, it would be desirable to provide an automated yet 
robust method for PGES detection to assist investigations 
relating PGES to SUDEP risk.

A standard definition of PGES has been commonly 
used to identify its onset. As stated earlier, a general sup-
pression in EEG activity (less than 10 µV  in all the EEG 
channels) occurring immediately after the seizure marks 
the onset of PGES. However, detecting the end of PGES 
can be problematic due to noise and artifacts from vari-
ous sources (i.e., movement, sensor error, breathing, etc.) 
This was for example acknowledged in the work of  [20] 
for automated detection of PGES. In their work, features 
derived from the energy in different frequency bands of 
the EEG signal were used to classify if a given EEG seg-
ment was PGES. The authors noted that the identifi-
cation of the end of PGES is very challenging, even for 
trained clinicians. Proper judgment has to be made, oth-
erwise, a mere artifact could be detected as transition out 
of PGES. An example of an EEG signal snippet annotated 
by a clinician identifying the end of PGES is shown in 
Fig. 1. As it can be seen, detecting the end of PGES exclu-
sively from visual features is not trivial as EEG recordings 
are inevitably noise-prone. A trained clinician is usually 
relying on his/her experiences, information in multiple 
channels, and other contextual information (e.g. patient’s 
history) when doing a retrospective assessment for 
PGES. As transition out of PGES could be confused with 
aberrations due to noise and artifacts, the authors in [20] 
used heuristics to get rid of false detection of the end 
of PGES. The difficulty in correctly identifying the end 
of PGES could also have been a reason for the authors 
in  [14] to have observed multiple PGES occurring close 
to each other (which might rather just have been a sin-
gle period of PGES). A robust system for identifying the 
end of PGES, in conjuction with PGES onset detection, 
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will lead to accurate characterization of the PGES and 
SUDEP risk assessment.

In this work, we investigate the feasibility of detecting 
the end of PGES using EEG signal features. The features 
were constrained to be computationally inexpensive, 
thus suitable for real-time and low-power solutions. 
We trained a classification model that can identify if 
a given EEG signal snippet consists of an end of PGES. 
The model was trained using recordings obtained from 
134 patients with epilepsy and evaluated in an inde-
pendent test set consisting of recordings from 34 epi-
leptic patients. Recently, the authors in  [21] have also 
proposed a system for automatic PGES end detection 
using a diverse set of EEG signal features. In contrast to 
the work in [21], we use only temporal signal features and 
correlation features which are computationally cheap. 
Further, we consider the possibility of PGES transition-
ing immediately to normal EEG pattern (instead of slow 
wave activity only) [20] and thus retain a wider frequency 
band of EEG signals for analysis. Additionally, we employ 
patient-independent evaluation for PGES end detection 
which reflects the clinical deployment scenario of model 

evaluation on unseen patient’s data. Finally, in this work, 
we also evaluate the contribution of different EEG chan-
nels for the task of PGES end detection which gives some 
insights on optimal measurement setup for SUDEP mon-
itoring systems.

Methods
SUDEP dataset
The analysis in this work was done using the SUDEP 
dataset. The patient cohort information is described in 
the hackathon editorial paper. The SUDEP dataset con-
sists of EEG recordings with 13 electrodes (Fig. 2), with 
signals obtained at varying sampling frequencies of 200–
250 Hz. All the recordings were converted to a sampling 
frequency of 200 Hz using frequency re-sampling. EEG 
recordings are processed to obtain 10-channel bipolar 
montages. These bipolar montages consists of: Fp1–F7, 
F7–T7, T7–P7, P7–O1, Fp2–F8, F8–T8, T8–P8, P8–O2, 
Fz–Cz, and Cz–Pz. In this work, we refer to a channel in 
the bipolar montage by the name of its first electrode for 
brevity (e.g. FP1–F7 will be referred as FP1). The record-
ings in the SUDEP dataset were annotated by medical 

Fig. 1  SUDEP EEG pattern. An example of an EEG signal snippet annotated by a clinician as containing the end of PGES (top), and not containing 
any such PGES state transition (bottom). The differentiation can only be made by experienced clinical professionals after thorough and contextual 
assessment of the recordings. These assessments are still often done only retrospectively (with the assistance of video). A real-time automated 
detection of PGES state transition will enable PGES characterization for SUDEP risk assessment
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experts, marking the timing of the end of PGES. The 
SUDEP dataset is separated into a training records set 
(for developing models and algorithms) and a test data-
set (for independent validation). The training records set 
consist of recordings from 134 patients with epilepsy. 
Average duration of the EEG recordings in the training 
records set, which were obtained from peri-ictal period 
for each patient, is 46.90± 33.04 s. The test dataset is 
derived from a separate group of 34 epileptic patients. 
The dataset consists of 12,345 short EEG snippets, each 
10 s in length corresponding to the maximum latency for 
detecting the end of PGES. Of the 12,345 snippets, 3219 
snippets contain the end of PGES. We posed the problem 
of detecting the end of PGES as a classification task i.e. to 
classify whether a given snippet includes an end of PGES 
or not. We trained a classification model using a training 
dataset obtained from the training records in the SUDEP 
dataset as described next.

Training dataset
We used the raw EEG records (provided for training) to 
create a customized training dataset consisting of sev-
eral EEG snippets, each 10 s in duration (corresponding 
to the desired maximum latency for detecting the end of 
PGES). These EEG snippets were extracted by placing a 
10-s signal extraction window at a random time-point of 
a given recording. An extracted EEG snippet is of posi-
tive class (i.e. containing the end of PGES) if it includes 
the annotated location of transition from PGES to EEG 

activity. We guided the snippet extraction process to 
have similar number of snippets from each patient in 
the training dataset, and also roughly equal representa-
tion of both classes (snippets with and without the end of 
PGES). For our analysis, we prepared a training dataset 
consisting of 6241 snippets (of which 3318 contained the 
end of PGES).

Feature extraction
Signal features were extracted from each EEG snippet 
and provided as input to a classification method. How-
ever, EEG recordings can be corrupted by noise and arti-
facts, see e.g., the noisy signals in Fig. 1. Hence, we first 
denoised the signal in each channel of the EEG snip-
pet using a 5th order Butterworth bandpass filter. Filter 
implementation from Scipy library [22] was used and a 
forward-backward filtering was applied to avoid phase 
delay. The passband for the filter was set to 1–47 Hz, 
retaining most of the information of an EEG signal [23] 
while suppressing noise in frequencies outside this band. 
We extracted highly predictive but computationally inex-
pensive features from the time series of the EEG signals 
based on correlations and temporal ratio.

Correlation features
The end of PGES (and subsequent transition to EEG 
activity) is likely a significant event in comparison to 
other brain activity events, appearing strongly in most 
of the EEG channels. Thus, correlation features could be 
relevant for our classification task. We computed inter-
channel correlation coefficients (Pearson correlation 
coefficients) from each EEG snippet as the correlation 
features. This feature set is a simple way to characterize 
the relation between signals in different EEG channels. 
The dimension of the correlation features is 45 (all pos-
sible channel pairs chosen from the 10 channels).

Temporal signal ratio
The transition from PGES to onset of EEG activity is a 
temporal change of state. Thus, we extracted tempo-
ral signal ratio based features to characterize temporal 
changes in a signal. Temporal signal ratio is obtained 
from the ratio of signal statistics in the last half of a given 
time-series to the signal statistics in the first half. An 
example showing how this feature is computed is repre-
sented in Fig. 3. We used mean and variance as the signal 
statistics and computed a total of 24 features from tem-
poral signal ratio. These features are listed below.

•	 Temporal mean ratio 10 features for each EEG chan-
nel capturing the ratio between the mean of the sig-
nal in the last half and the mean in the first half.

T8

FP1

F7

FP2

Fz
F8

T7 Cz

P7 Pz

O1 O2

P8

Fig. 2  Recording setup. 13 EEG electrodes used for the recordings in 
our dataset. The obtained signals are processed to obtain 10-channel 
bipolar EEG montages. These channels are: FP1–F7, F7–T7, T7–P7, P7–
O1, FP2–F8, F8–T8, T8–P8, P8–O2, Fz–Cz, and Cz–Pz
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•	 Temporal variability ratio 10 features capturing the 
ratio between the variance of the signal in the last 
half and the variance in the first half.

•	 Temporal mean ratio summary 2 features were com-
puted as summary of the temporal mean ratio fea-
tures. For each channel, its temporal mean ratio 
feature was first normalized by the signal variance 
computed from the entire time-series. Then the sum 
of the normalized feature across the channels was 
computed as one of the summary features. The sec-
ond summary feature was the normalized temporal 
mean ratio corresponding to the channel with least 
signal variance. The criterion of least variance has 
been used as an indication for the channel less con-
taminated by noise and artifacts.

•	 Temporal variability ratio summary Counterpart of 
the temporal mean ratio summary features but com-
puted based on the temporal variability ratio features.

Low‑frequency EEG temporal signal ratio
We computed 24 more features analogous to the tempo-
ral signal ratio features described, with the only differ-
ence being that the EEG signal was first filtered to retain 
only the low frequency components. We used a 5th order 
Butterworth bandpass filter with cutoff of 3 Hz and 8 
Hz. Explicit characterization of the lower frequency in 
the EEG signal was done with this feature set to get a 
better representation of the slow wave activities. Previ-
ous studies have shown that the transition out of PGES 
is often detectable in the slow wave activities  [12]. Very 

low frequencies (<3 Hz) were avoided as these frequency 
bands are likely to be strongly affected by noise and arti-
facts such as drifts.

Sliding signal difference
To characterize the temporal signal dynamics with a 
higher resolution, we computed sliding signal difference 
based features from the low-frequency EEG signal (3–8 
Hz). These features were computed as follows: A window 
corresponding to 50 samples (0.25 s), with a step size of 
10 samples, was run over each EEG channel. Within a 
window, the difference of the sum of signals in the last 
half of the window (i.e. 25 samples) with the sum of sig-
nals in the first half of the window was calculated. Then, 
from all the difference values computed for each step, the 
maximum was retained as the feature for a given channel. 
10 features were obtained corresponding to the 10 EEG 
channels. Sum of the features across the channel, nor-
malized by the corresponding signal variance, was also 
computed as a summary feature. Finally, the normalized 
feature for the channel with the least signal variance was 
also retained as a separate feature. Thus, a total of 12 fea-
tures were computed.

Low‑frequency EEG signal features
While signal ratio features characterize the signal 
dynamics over time, we also extracted other global fea-
tures from the low-frequency EEG signal. Particularly, we 
computed the mean and variance of the low-frequency 
EEG signal for each channel. This results in 20 features. 
We also computed the sum of the means across the chan-
nels, after normalizing each mean by the variance of the 
corresponding signal. Moreover, the normalized mean of 
the channel with the least variance was also retained as 
a separate feature. Thus, a total of 22 feature were com-
puted as low frequency EEG signal features.

Overall, each input EEG snippet was characterized by 
127 features as summarized in Table  1. These features 
were then used in a classification framework for identify-
ing if a given snippet contains the end of PGES or not.

Classification and evaluation metric
We implemented a random forest (random forest (RF)) 
model for classification. RF is an ensemble of several 
decision tree classifiers built using a random subset of 
features on a sample of the training dataset. The number 
of trees was set to 501 based on cross-validation in the 
training dataset. We selected RF as the machine learning 
model because: it is less prone to overfitting, compared 
to the constituent tree classifiers, due to ensemble aver-
aging [24]; it has only a few sensitive hyperparameters to 
tune and is thus easier to train [25]; it works well even 
with features of different scales; and it has been found to 

Fig. 3  Temporal signal ratio features. An example showing how 
the temporal signal ratio features are computed for an EEG channel. 
The ratio of statistics (such as mean) of the signal in the last half 
(Window2 here) to that in the first half (Window1 here) is taken as a 
feature. The temporal signal ratio features are computed for each EEG 
channel. Additional features summarizing the ratio features across the 
channels are also computed
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perform better than many other classifiers in large empir-
ical benchmarks [26, 27]. For evaluating the trained clas-
sifier, we adopted the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve obtained 
from the test dataset.

Results
Each EEG snippet was characterized by 127 features 
derived from the time-series of the signal. In Fig.  4, we 
show an example of correlation based features computed 
for the snippets in the training dataset. Feature distribu-
tion in the two classes (snippets with and without the 
end of PGES) is presented. For brevity, only the features 
obtained from the correlation of the Fz EEG channel with 
other channels are shown in the example. The mean cor-
relation for data in the negative class (snippets without 
the end of PGES) was 0.10 (± 0.24) while that for data 
in the positive class (snippets with the end of PGES) was 
0.16 (± 0.26). We trained a random forest classifier with 
the EEG snippets in the training dataset. The trained 
classifier was then evaluated using the test dataset. The 
ROC curve obtained for this evaluation is shown in Fig. 5, 
yielding an AUC of 0.84. The corresponding precision, 
recall, and F1-score were 0.54, 0.74, and 0.63 respectively.

While the ROC curve presented in Fig.  5 shows the 
performance of the classifier trained using the entire fea-
ture set, we also evaluated classifiers trained with only 
subsets of the full feature set. The subsets that have been 
evaluated are based on feature type (e.g. all correlation 
based features, all features from temporal signal ratio, 
and so on). The results obtained for evaluation with dif-
ferent feature subsets are shown in Table 2.

To compare the effect of EEG signal noise on the 
downstream classification task, we evaluated the clas-
sification pipeline with and without the noise filter 
(bandpass filter between 1 and 47  Hz). The results 

obtained are shown in Table  3. This evaluation was 
done with a feature set consisting of correlation fea-
tures and temporal signal ratio features only, since 
low-frequency features implicitly filter the noise in fre-
quencies outside of the passband (3–8 Hz).

Further, we evaluated the classification results using 
channels in certain brain regions (using EEG nomencla-
ture) only. The results obtained for classification using 
features derived from the EEG channels in the left (FP1, 
F7, T7, P7), right (FP2, F8, T8, P8), and the central (Fz, 
Cz) regions are given in Table 4. We also evaluated the 
classification results when using a channel combination 
representing a diametric region (FP1,P8).

Given that we have multi-channel EEG recordings, 
we also evaluated the impact of having limited number 
of channels. We compute classification results obtained 
with increasing number of channels, from two chan-
nels (minimum required for feature definition) to ten 
channels (all the channels). This experiment was con-
ducted with different sequence of EEG channels. E.g. 
one sequence could be {(FP1), (FP1, F7), . . . , (FP1, F7, 
T7, P7, FP2, F8, T8, P8, Fz, Cz)} while the other could 
be {(Fz), (Fz, FP2), . . . , (Fz, FP2, Cz ,T7, T8, F8, F7, O2, 
P7, FP1)}. Different sequences lead to varying channel 
combinations, relevant when the number of channels 
is less than 10. The results obtained for five random 
sequence of channels are shown in Fig. 6.

We further analyzed the best channel combination 
for the task of PGES end detection. We restricted our 
analysis to combinations of two channels and three 
channels. In Table  5, we present the results for the 
five best combinations as well as the worse combina-
tion, i.e., the channels yielding the lowest classification 
performance.

Fig. 4  Feature distribution. Distribution of correlation based features 
in the two classes: snippets with and without the end of PGES. The 
features shown represent the correlation of the signal in the Fz 
channel with signals in all other channels Fig. 5  ROC for PGES end detection. ROC curve for detecting the 

end of PGES in the test set of the SUDEP dataset for a random forest 
classifier
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Discussion
In this work, we investigated the feasibility of auto-
matically detecting the end of PGES using EEG signal 
features. The detection of the end of PGES had been 
identified to be challenging in previous works, compli-
cated mostly due to noise and artifacts. We developed a 
classification framework that uses time-series based fea-
tures to identify if a given EEG snippet contains the end 
of PGES. The results from this classification framework 
ranked second in the official competition. One of the fea-
tures used in our classification framework is inter-chan-
nel correlation, i.e. the correlation coefficient between 
the signal in EEG channel pairs. Transition from PGES to 
EEG activity will likely appear as a major event in most of 
the EEG channels. Other brain activities will also appear 
in the EEG channels and impact the correlation. However 
the event of EEG transition from suppression to onset 
of activity is expected to have a relatively larger impact 
in the signal level. Hence, a higher correlation could be 
expected for the EEG snippets consisting of an end of 
PGES. This could be seen to a certain extent from the 
feature distribution (Fig.  4) of the correlation features 
for the two classes: snippets with and without the PGES 
end. The average correlation coefficient was found to be 
higher for snippets that contained the end of PGES com-
pared to those without PGES end (0.16 vs 0.10). On an 
individual channel level, the distribution of features for 
snippets with the end of PGES was shifted to the right 
for most of the cases (Fig. 4). This shift to the right was 
more pronounced for correlation features with channels 

Fig. 6  Performance with different channel combinations. AUC 
obtained with increasing number of channels, for five different 
instances of EEG channel sequences. Channel combinations from 
two (minimum required for feature definition) to ten (all channels) are 
considered

Table 1  Features computed from EEG signal time-series

A total of 127 features are extracted based on inter-channel correlation and 
intra-channel temporal signal dynamics

Feature set Number 
of features

Correlation features 45

Temporal signal ratio 24

Low-freq EEG temporal signal ratio 24

Low-freq EEG signal features 22

Sliding signal difference 12

 Total 127

Table 2  ROC AUC obtained with different feature subsets

Feature Set AUC​

Correlation features (45 features) 0.77

Temporal signal ratio (24 features) 0.72

Low-freq EEG temporal signal ratio (24 features) 0.72

Low-freq EEG signal features (22 features) 0.79

Sliding signal ratio (12 features) 0.73

Table 3  Effect of EEG noise on the classification task

PGES end detection is evaluated using correlation and temporal signal features, 
computed with and without a noise filter

Feature set AUC​

With noise filter 0.80

Without noise filter 0.73

Table 4  PGES end detection using different subsets 
of the EEG channels

Region AUC​

Left (4 channels) 0.78

Right (4 channels) 0.75

Center (2 channels) 0.79

Diametric (2 channels) 0.68

Table 5  AUC obtained with the best channel combinations 
for the task of PGES end detection

The worse combination is reported in the last row

2-Channel comb. AUC​ 3-Channel comb. AUC​

FP2, Fz 0.80 F7, FP2, Fz 0.83

T7, Cz 0.79 T7, FP2, Cz 0.83

T7, FP2 0.79 T7, FP2, Fz 0.83

Fz, Cz 0.78 F7, T7, Cz 0.82

T8, Cz 0.78 F7, Fz, Cz 0.81

P7, P8 0.67 P7, P8, T8 0.69
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in the frontal region (FP1, F7, FP2, F8) compared to other 
regions. This could be because all the channels in the 
frontal region capture the PGES transition in a similar 
way. Apart from the correlation features that consider the 
inter-channel relations, we included other features like 
temporal signal ratio characterizing the intra-channel 
dynamics. These intra-channel features were included to 
capture temporal changes in EEG states (transition from 
PGES to onset of activity) over time.

With all the inter-channel and intra-channel features 
used in our classifier, we obtained an ROC AUC of 0.84 
(Fig. 5), significantly outperforming a random classifica-
tion (AUC of 0.5). This result establishes the feasibility of 
detecting the end of PGES using features derived from 
EEG time-series In attaining this performance, it was of 
paramount importance to acknowledge the presence of 
noise and artifacts. More precisely, we used a bandpass 
filter to suppress noise outside of our frequency band of 
interest. Even such a simple noise filtering was found to 
be beneficial for the classification task. Analyzing with 
a subset of features, we found that the noise filter itself 
contributed to an improvement of AUC by 0.07 (Table 3). 
It is worthwhile to investigate other EEG denoising 
and artifact reduction techniques [28–31] for further 
improvements. This is left as future work.

We used ROC AUC as the primary evaluation met-
ric in our work. However, it has been suggested in  [21] 
that time distance-based evaluation metric rather than 
segment-based classification metric (such as ROC AUC) 
could be more meaningful for the task of PGES end 
detection. The authors used positive prediction rate of 
identifying an end of PGES within 5 s tolerance period 
as the time distance-based evaluation metric. While the 
work in [21] used longer signal recordings (5 min) which 
allow meaningful time distance-based analysis, the sig-
nal recordings in our dataset are comparatively shorter 
(average duration of 46.90± 33.04 s for sequences in 
the training set). Thus performance evaluation using 
time distance-based evaluation metric will be pursued 
in future work with longer signal recordings, as we make 
further improvements in the segment classification task.

PGES is associated mostly with generalized seizures 
[11, 32]. While focal seizures have their origin in a side of 
the brain (e.g. left or right), generalized effects like PGES 
would have their presence observable from most of the 
regions of the brain. Indeed, the results in Table 4 con-
firm that PGES is a generalized effect, since high clas-
sification performance was obtained even when only 
the EEG channels for specific regions of the brain were 
considered. Had PGES (and transition from PGES) been 
a localized effect, it would have been likely that the EEG 
channels in some regions of the brain would have yielded 
a degraded classification performance. However that was 

not observed in our results, thus confirming that PGES 
is a generalized effect. Interestingly, the central chan-
nels gave the best classification results compared to the 
left and right channel group. Only two channels are pre-
sent in the central channel group while both the left and 
the right channel group consisted of four channels each. 
The central channel group (Fz and Cz) indeed contained 
more information relevant for PGES. In contrast, the 
other two-channel group (diametrically two opposite 
channels FP1 and P8) yielded significantly lower classifi-
cation results.

We also evaluated all the possible two-channel combi-
nations for the classification task. High variation in classi-
fication performance was seen, with highest classification 
results being AUC of 0.80 while the lowest AUC was 0.67 
(Table  5). The best channel combinations contained at 
least one of the central channels (Fz or Cz), consistent 
with our observation that the central channels were most 
important for the classification task. This observation 
also holds true for the analysis with three-channel com-
binations. The signal in the parietal channels were least 
discriminative for the detection of the end of PGES. That 
the frontal and central channels provide more informa-
tion for the classification could be due to the underlying 
physiology of PGES transitions or a mere effect of signal 
recording quality in different channels. For example, the 
physiological basis could be established if the activities 
in the upper brainstem, which is mostly related to PGES 
[18], is found to be best captured by the central and fron-
tal channels. Similarly, noise analysis in each channel 
can unveil if the difference in classification results is a 
direct consequence of signal quality. These issues will be 
investigated further in future work. Nonetheless, for the 
task of PGES end detection, the use of all the EEG chan-
nels in the classification task was found to be important. 
Independent of the starting sequence of channels, the 
performance improved as more channels were included 
for classification (Fig. 6). These observations can be sum-
marized as follows. For the task of PGES end detection, 
frontal and central EEG channels provide the best clas-
sification results. However inclusion of all of the avail-
able channels provide incremental improvements such 
that the best classification results are obtained when all 
the channels are included. This could be due to the gen-
eralized nature of PGES; when all channels are included 
then full spatial representation of PGES is captured even 
if good representation from some of the channels could 
be limited due to noise or local physiological effects.

Conclusion
Postictal generalized EEG suppression (PGES) has been 
considered as one of the potential biomarkers for SUDEP 
risk. Accurately detecting the end of PGES, crucial for 



Page 9 of 10Lamichhane et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):327

proper assessment of PGES, has been identified as chal-
lenging by previous studies. In this work, we developed 
a classification framework for detecting the end of PGES 
using time-series based EEG signal features. Our classifi-
cation results establish the basic feasibility of automati-
cally detecting the end of PGES for the downstream task 
of PGES characterization and SUDEP risk assessment. 
Owing to the generalized nature of EEG suppression in 
PGES, multi-channel representation was found to be 
important for better classification results. Signals from 
the central EEG channels provided the most discrimina-
tive features for PGES end detection. Further investiga-
tions of EEG signal features and classification models will 
be pursued as future work. A potential avenue for such 
investigation is a deep learning classification framework, 
which has recently provided encouraging results in other 
EEG classification tasks. We envision machine learning 
based synthesization of EEG signals can serve as a useful 
physio-marker for PGES detection/prediction to assist 
clinicians.
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