Kunzmann et al. BMC Bioinformatics

(2023) 24:236 BMC Bioinformatics

https://doi.org/10.1186/512859-023-05345-6

®

Biotite: new tools for a versatile Python R
bioinformatics library

Patrick Kunzmann'", Tom David Mdiller?, Maximilian Greil?, Jan Hendrik Krumbach', Jacob Marcel Anter!,
Daniel Bauer', Faisal Islam' and Kay Hamacher'

*Correspondence:
patrick kunzm@gmail.com

! Computational Biology
and Simulation, Technical
University of Darmstadt,
Schnittspahnstral3e 2,
64287 Darmstadt, Germany
2 Department of Computer
Science, Eberhard Karls
University of Tibingen, Sand 14,
72076 Tubingen, Germany
3 Independent Researcher,
Heidelberg, Germany

B BMC

Abstract

Background: Biotite is a program library for sequence and structural bioinformatics
written for the Python programming language. It implements widely used computa-
tional methods into a consistent and accessible package. This allows for easy combina-
tion of various data analysis, modeling and simulation methods.

Results: This article presents major functionalities introduced into Biotite since its
original publication. The fields of application are shown using concrete examples. We
show that the computational performance of Biotite for bioinformatics tasks is com-
parable to individual, special purpose software systems specifically developed for the
respective single task.

Conclusions: The results show that Biotite can be used as program library to either
answer specific bioinformatics questions and simultaneously allow the user to write
entire, self-contained software applications with sufficient performance for general
application.

Keywords: Open source, Python, Structural bioinformatics, Sequence analysis

Background

Python is a general purpose programming language that is popular for its easy usage
and rapid development. However that ease of usage comes at the cost of computational
speed: Due to Python’s code interpretation at runtime and its convenient features such
as dynamic typing and garbage collection, the execution requires significant overhead
compared to most compiled programming languages.

One way of mitigation is to run code written in C using a pythonic foreign-language
interface. This feature has been harnessed by the Numerical Python (NumPy) package
[1], which introduced n-dimensional arrays, or ndarrays in short, to store numerical
data. Numerical operations on an ndarray are vectorized, i.e. they are applied to each of
the array’s elements using underlying extension modules, which renders the computa-
tion speed on large datasets orders of magnitude faster than in pure Python.

The combination of the advantages of Python with these fast vectorized numerical
operations has lead to an increasing attention by various areas of science: Today the
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Python scientific computing ecosystem comprises program libraries’ from quantum
mechanics calculations [2] to astronomical applications [3].

The open-source package Biotite (https://www.biotite-python.org/) aims to fill this role
for the realm of computational molecular biology. It provides editing and analysis tools
for sequences and 3D molecular models. In contrast to other comparable bioinformatics
libraries like Biopython [4], which originally dates back to the time prior to the release
of NumPy, Biotite integrates NumPy arrays directly into its data model for sequences
and structures. The vectorization substantially accelerates operations like geometric
measurements on structure models or DNA sequence translation into protein. Where
vectorization with NumPy is not applicable, Biotite employs extension modules written
in Cython [5] to speed up time-consuming computations. If the user is accustomed to
NumPy, handling objects in Biotite is intuitive: filtering for particular atoms in a struc-
ture or regions in a sequence accepts the same indexing semantics as NumPy and func-
tions return ndarrays for pure numerical values.

Since its initial publication of Biotite [6], a multitude of new functionalities have been
added. In this article we highlight the arguably most important additions of recent years.

Package organization
Biotite comprises four subpackages: biotite.database contains functions to search
in and fetch data from RCSB PDB [7], NCBI Entrez [8] and UniProt KB [9] via their
REST APIs. biotite.sequence contains methods for reading, writing, editing and
analyzing sequence data, whereas biotite.structure is the counterpart for struc-
ture data. To extend Biotite with analysis of external software biotite.applica-
tion provides seamless interfaces to programs like Clustal Omega [10] or DSSP [11].
The Biotite project follows the paradigm, that only established methods in computa-
tional molecular biology are implemented in Biotite. Functionality that is tailored for
rather uncommon tasks, uses novel algorithms or requires additional dependencies is
therefore released as an extension package. The functionalities in these packages inte-
grate tightly with the data model used by Biotite, but are developed and distributed
independently.

Data model

As already outlined, Biotite uses ndarrays to store data where possible. Hence, a
Sequence object internally uses an ndarray to store its symbols. Although in the
biological context the set of allowed symbols in the sequence, the alphabet, comprises
typically ASCII characters representing nucleobases or amino acids, Biotite defines
sequences in a broader sense, by allowing any object to be part of an alphabet. To
make this decision compatible with the numerical nature of ndarrays, Biotite har-
nesses the fact, that most alphabets are relatively short: Each symbol is translated
into a unambiguous integer, its symbol code, based on the position in the underly-
ing alphabet. For example in the alphabet {A, C, G, T}, A would be translated into 0,
C into 1, etc. This approach yields performance advantages in accessing substitution

! These libraries usually revolve around the ndarrays from NumPy, making costly computations feasible in realistic time.
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matrices and indexing k-mers. The symbol codes for each symbol in a sequence are
stored in an internal ndarray of the Sequence.

A sequence alignment depicts which positions in one sequence correspond to posi-
tions in one or multiple other sequences. Alignment objects in Biotite fulfill this
purpose. They store the Sequence objects corresponding to the aligned sequences
and a trace: a 2-dimensional ndarray, where each row contains the respective
sequence positions in the alignment column.

Macromolecular structures can be thought of as a list of atoms, where each atom is
defined by its position and further annotations, like its name, its element, the residue
it is part of, etc. The straightforward solution to represent structure data as such a list
would impede proper vectorization with NumPy. Thus Biotite implements a structure
model as collection of ndarrays, wrapped by an AtomArray object. An AtomAr-
ray contains an (n x 3)-dimensional array for the coordinates of the # atoms and one
n-dimensional array for each annotation. For multi-model structures, such as NMR
models or trajectories from molecular dynamics simulations, an AtomArrayStack
can be used, where the coordinates are (m x n x 3)-dimensional instead to account

for m models.

Implementation

Alignment searches

With the release of BLAST [12], k-mer based alignment searches became the prevalent
method for rapid identification of homologs in a sequence database. In modern soft-
ware such as DIAMOND [13] or MMsegs2 [14], alignment searches are a multi-stage
process: In each stage a number of alighment candidates are filtered out, reducing the
run time massively in the later more time consuming and sensitive stages. Biotite maps
these stages to separate functions and objects, forming a modular toolkit for alignment
searches: The user can choose between different alternatives of methods for each stage,
and can optionally introduce a custom implementation for parts of the alignment search.

In the beginning of a typical workflow, the k-mers of each sequence in a database,
i.e. all contiguous subsequences of length k are indexed into a table that maps each k-
mer to the sequence positions where it appears. For this purpose Biotite provides the
KmerTable class, which uses an internal ndarray of C-arrays for mapping k-mers to
positions.

Each k-mer is unambiguously mapped into a code d = ;;—01 q'c;, using it symbol
codes ¢;. q is the length of the sequence alphabet. This mapping is performed for each
k-mer in a sequence, resulting in another sequence containing the values for d. Spaced
k-mers including ‘don’t care’ positions [15] can be used here as alternative to continu-
ous ones. A KmerTable is created in two passes [14]: In the first pass the ndarray
counts the number of occurrences of each possible d, resulting in g* elements. In the
second pass, the ndarray replaces each count with a pointer to a new C-array contain-
ing the sequence positions. As the size of each C-array is known from the first pass,
time consuming array resizing is prevented. In addition, the ability of a KmerTable
to be combined from multiple KmerTable instances and to be serialized, makes the

class suitable for multiprocessing on multiple cores.
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Fig. 1 Gapped sequence alignment methods. Each plot shows a schematic dynamic programming
table for a local alignment method. The gray area depicts the explored portion table, i.e. the part that is
actually computed. The ‘+'marks a k-mer match position. The red line indicates the best alignment. A
Rigorous sequence alignment. The complete table is explored. Hence no match position is required as seed.
B Alignment with X-drop criterion. Exploration of the table is terminated at positions, where the alignment
score drops X below the score of the best alignment seen so far. In consequence, the shape of the explored
area is dependent on the sequences. C Banded alignment. Table exploration is restricted to a diagonal band,
i.e. only a certain number of gaps is allowed in either sequence. In Biotite the dynamic programming table is
indented to reduce memory requirements by removing a large part of the unexplored area

To prevent the appearance of spurious homologies, low-complexity regions can be
masked in the KmerTable creation. Low-complexity regions are typically identified
using the tantan program [16], interfaced in the TantanApp for convenience.

In the first stage of an alignment search, matching k-mer positions between the data-
base and the query sequence are found by lookup in the KmerTable. The result is a
(n x 3)-dimensional ndarray containing the n matches as tuple of query sequence posi-
tion, database sequence id and database sequence position. To find matches of similar
k-mers instead of strictly equal ones, a substitution score threshold can be given to relax
the matching condition [17]. The ndarray of matches may be subjected to further cus-
tom filtering, such as a two-hit strategy [17], before it is used in downstream stages.

The fast k-mer matching is usually followed by an ungapped alignment stage and
finally a gapped alignment stage, where each remaining match position is used as
alignment seed. Local ungapped seed extensions [12] are performed with align
local ungapped(). In addition to the existing slow rigorous method [18, 19]
(align optimal (), Fig. 1A), Biotite now also offers the X-drop [12, 20] (align
local gapped (), Fig. 1B) and band heuristics [21] (align banded (), Fig. 1C) for
gapped alignments. Due to the typically smaller alignment search space their computa-
tion time is drastically reduced compared to the rigorous approach.

For statistical assessment of the obtained alignment scores, their E-value [22] can be
calculated using the EValueEstimator class. At initialization, the EValueEstima-
tor object samples a large number of alignment scores from randomized sequences and

uses the method of moments [23] to estimate the parameters of the score distribution.

Trees and multiple alignments

Although the multiple sequence alignment (MSA) programs interfaced in the appli-
cation subpackage [10, 24, 25] are sufficient for most applications, their flexibility
with respect to scoring schemes and supported sequence alphabets is limited and they
are usually only available on Unix-based operating systems. As alternative Biotite offers

the align multiple () function, that implements the simple original progressive
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alignment algorithm [26] to align given Sequence objects, based on customizable sub-
stitution matrix and gap penalty.

The progressive alignment procedure requires a guide tree, that determines in which
order the sequences are aligned. By default, the guide tree is created using the UPGMA
hierarchical clustering method from pairwise sequence distances [27]. However, the
tree can alternatively be created using any other method or read from Newick notation.
Besides UPGMA which is available as upgma () function, Biotite provides the neighbor-
joining method [28] (neighbor joining())as well

Sequence profiles
Biotite is able to create sequence profiles from multiple sequence alignments consisting
of nucleotide, protein or custom sequences. The usefulness of profiles lies in their better
representation of information than a consensus sequence or a multiple sequence align-
ment [29].

In the literature, there are a lot of ambiguous terms describing the same matrices used:
a sequence profile can be either represented as a Position Frequency Matrix (PFM), a
Position Probability Matrix (PPM) or a Probability Weight Matrix (PWM) [30]. In a
PEM, for each position the total count C of each symbol S in the used alphabet is stored.
In a PPM, the probability P of each S in the PEM is calculated for each position as

C,
Cs-i—f

PS) = =——.

¢, denotes optional pseudocounts and k the number of symbols in the alphabet. In a
PWM, for each position a log-odds score W is assigned to every symbol with

P(s
W (S) = log, <és)>

where B denotes background frequencies.

The SequenceProfile class stores information about a sequence profile of aligned
sequences. This class saves a PFM of the occurrences of each alphabet symbol at each
position using a (n x k)-dimensional ndarray, where n is the sequence length of the
aligned sequences and k is the number of symbols in the alphabet. It also saves the num-
ber of gaps at each position in an ndarray with length n. The PFM, the gaps and the
alphabet used in a SequenceProfile object are directly accessible attributes of the
class. from alignment () can be used to create a SequenceProfile object from an
indefinite number of aligned sequences.

The method to_consensus () gives the consensus sequence of a SequencePro-
file object. In case there is more than one symbol with maximum occurrences in a
profile position, nucleotide sequence profiles use [IUPAC ambiguity symbols. For other
sequence types, the first symbol with maximum count in the alphabet is chosen.

probability matrix () gives the PPM of the profile with optional pseudocount.
This is used for sequence probability () and sequence score (). With the
first method, the sequence probability can be calculated. The sequence probability is the
product of the probability of the respective symbol over all sequence positions. With the
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second one the score for a sequence can be calculated: The score is the sum of weights W
of the respective symbol over all sequence positions.

Unit cells and macromolecular assemblies
AtomArray objects have a box attribute, a (3 x 3)-ndarray that represents the vec-
tors of the unit cell or, in the context of an molecular dynamics simulation, the simula-
tion box. For an AtomArrayStack the box accommodates a (m X 3 x 3)-dimensional
ndarray, since each model may have a different box. The box is automatically read from
structure file, if available, and can be used for geometric measurements, that take peri-
odic boundary conditions into account. Furthermore, a number of box-related func-
tions is available, for example to reassemble chains separated by periodic boundaries
(remove pbc () ) or to add periodic copies to the structure (repeat box ()).
Macromolecular assemblies represent the putative functional form of a protein (com-
plex). However, the atom coordinates in structure files from for example the PDB are
related to the experiment: For instance, in X-ray crystal structures the coordinates
describe the asymmetric unit of the protein crystal, but not necessarily the active con-
formation of a complex. PDBx/mmCIF files provide instructions, how the coordinates of
molecular chains need to be copied and transformed, to obtain a certain macromolecu-
lar assembly. This information can be read from PDBx/mmCIF format by get _assem-
bly (), returning an AtomArray representing the respective assembly.

Partial charges

The introduction of the partial charges () command extended Biotite’s capabili-
ties with the computation of partial charges of various molecule classes, ranging from
biological macromolecules such as proteins and nucleic acids to small molecules such
as ligands. The function represents an implementation of the Partial Equalization of
Orbital Electronegativity (PEOE) algorithm [31]. Partial charge computation is based on
the formal atom charges associated with the input AtomArray and relies on an array of
tabulated parameters originating from the original publication. Hence, it is restricted to
those elements and valence states for which parameters are available. However, the tabu-
lated parameters comprise most elements relevant in the biochemical context, includ-
ing halogens which may occur in ligands. As the underlying algorithm is iterative, the
amount of iterations can be chosen by the user depending on the desired precision of the
result. The code is written in Cython [5], to achieve fast computation.

Small molecules

While previously Biotite focused on macromolecular structures, the support for small
molecules improved in recent releases. With the MOLFile class, small molecule struc-
tures can be read from MOL as well as SDF files [32]. Using information from the chemi-
cal components dictionary (CCD) [33], an AtomArray representing a desired small
molecule can be also created from scratch given merely the residue name using the
residue () function. The entire catalog of small molecules from the CCD is availa-
ble here, comprising all molecules that are part of any PDB entry. Furthermore, Biotite
provides an interface to AutoDock Vina [34] (VinaZApp), that allows molecular docking
of small molecules to proteins. By using its own PDBQTF1ile reader/writer and partial
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Fig. 2 Hydrogen bond detection method. Hydrogen bonds are detected by an angle and distance
criterion: The angle ® is formed by the donor (D), a hydrogen atom (Hp) bound to D, and the acceptor (A) and
the distance dy 4 between atoms A and H

charges from PEOE, Biotite does not require an additional installation of AutoDockTools

[35] to prepare input for Vina and to parse its output.

Bond prediction

AtomArray and AtomArrayStack objects are able to store atom connectivity includ-
ing the bond order. Bonding information can be read from PDB and MMTF [36] files.
Alternatively, structures can be annotated with bonding information afterwards: If the
residues in the structure model are comprised by the CCD, bonds can be automatically
determined by connect via residue names (). Otherwise, connect via
distances () is available as fallback, which assumes bonds for all pairs of atoms,
whose distance is within the bounds of the known bond length for the respective combi-
nation of elements [37]. However, the bond order cannot be inferred this way.

Hydrogen bonds

Hydrogen bond detection (hbond()) employs the Baker-Hubbard algorithm [38].
Possible interaction sites are identified based on the angle 6 between donor (D), donor
hydrogen (Hp) and acceptor (A) and the distance dj 4 between Hp and A (Fig. 2). By
default, ® > 120°and dy 4 < 2.5 A, but values can be adjusted. For detection, hbond ()
only considers the heavy elements O, N, S. Bonding information is used to efficiently
identify donor hydrogen atoms if available. Otherwise, possible hydrogens are identified
by a distance cutoff (dpy < 1.5A).

The algorithm returns a N x 3 matrix containing triplets of atom indices for D, Hp
and A. When supplied with an AtomArrayStack, hbond () also returns a M x N
mask indicating the presence of interaction #; in model m;. A utility function hbond
frequency () to obtain hydrogen bonding frequencies from the mask is provided for

convenience.

Nucleic acid secondary structures
Biotite contains a broad range of methods for nucleic acid secondary structure analysis
which generally support canonical as well as non-canonical bases and base pairings.
Mapping of non-canonical to canonical bases allows for approximation of geometric
information by superimposition of canonical structural features. For this purpose the
function map nucleotide () is introduced to the structure subpackage. Bases
are superimposed based on matching PDB atom names and mapped to the canonical
base with the lowest RMSD. Bases are only mapped if the given PDB residue name is
classified as a DNA/RNA polymer according to the CCD, there is a match of at least
three atom names, and the RMSD is below a threshold of 0.28 A, recommended in
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the literature [41]. Given a residue, which is supplied as AtomArray, the function
returns the base that the residue was mapped to and whether the mapping was an
exact match, thus a canonical nucleotide. The minimum number of atoms necessary
as well as the RMSD threshold are customizable.

The function base stacking () allows for the detection of aromatic base
stacking according to the following criteria [42]: Stacking is assumed if the distance
between aromatic ring centers is < 4.5 A, the angle between the ring normal vectors is
< 23°, and the angle between the distance vector connecting the ring centers and the
normal vectors of both bases is < 40°.

The function base pairs () detects base pairs according to the DSSR crite-
ria [41]. A base pair is considered as present, if the distance between the base ori-
gins according to the standard reference frame [43] is < 15 A, the vertical separation
between the base planes is < 2.5 A, the angle between the base normal vectors is
< 65°, the bases do not exert stacking, and the bases are connected by at least one
hydrogen bond. A visualization of the base pairs detected in a fragment of the Sarcin-
Rycin loop of E. coli (PDB 62YB [39]) is shown in Fig. 3A.

Both base stacking() and base pairs () take the structure to be analyzed
(an AtomArray) as input. base pairs () also allows constraining interactions
such that each base is only paired to one other base, preferring pairings with a higher
number of hydrogen bonds. Both functions return a N x 2 matrix, where each row
corresponds to the first indices of the interacting bases in the input AtomArray.

The dot-bracket-letter notation [44] describes secondary structures unambiguously
by assigning a pseudoknot order for nested sets of base pairs. The function pseu-
doknots () implements a dynamic programming algorithm [45], that determines all
optimal solutions for assigning the pseudoknot order such that the number of base
pairs is maximized at each level and decreases as the pseudoknot order increases. It is
also possible to set a maximum pseudoknot order to speed up calculations.

The function dot bracket () relies on pseudoknots () to generate all opti-
mal dot-bracket-letter notations for a given sequence length and set of base pairs
referencing positions in the sequence. The function dot bracket from struc-
ture () generates all dot-bracket-letter notations directly from a given AtomAr-
ray. As an example the secondary structure of a fRNA mimic from the turnip yellow
mosaic virus (PDB 4P5J [40]) visualized as an arc diagram using Matplotlib together
with the corresponding dot-bracket-letter notation is shown in Fig. 3C.

The Leontis-Westhof Nomenclature [46] distinguishes pairs of canonical bases by
the relative orientations of the glycosidic bonds (cis, trans) as well as the interacting
edges (Sugar, Watson-Crick, Hoogsteen/C-H). The functions base pairs glyco-
sidic_bonds () and base pairs_edge () can be used to determine these prop-
erties, respectively, from a given AtomArray and base pairs. The relative orientation
of the glycosidic bonds is calculated as suggested by Yang et al. [47].

Furthermore, the application subpackage was extended with interfaces to the
programs RNAfold, RNAalifold and RNAplot of the ViennaRNA package [48]. The
RNAfoldApp and RNAalifoldApp classes can be used to predict RNA second-
ary structures for a given sequence using RNAfold or for a given alignment using
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RNAualifold, respectively. Likewise, the RNAplotApp class can be used to generate
coordinates for a 2D plot of a given secondary structure.

plot nucleotide secondary_ structure () takes advantage of the interface
to RNAplot to create highly customizable two dimensional plots from a given sequence
and corresponding base pair matrix. Figure 3B was generated using this function. The
sequence data at the positions of base pairings was augmented by the Leontis-Westhof
nomenclature, which enables the representation of base orientation.

Elastic network models

Springcraft (https://springcraft.biotite-python.org/) is the dedicated Biotite extension
for normal mode analysis (NMA) with coarse-grained elastic network models (ENMs)
of proteins. In ENMs, amino acid residues are abstracted as nodes, which are commonly
assigned to positions of C, atoms, while pairwise interactions between them are modeled
as Hook'ean springs [49-51]. They allow to understand stabilization of a protein’s fold [52]
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as well as the inference of functionally important residues and representative structural ele-
ments [53-55].

Both gaussian network models (GNMs) and anisotropic network models (ANMs) are
implemented in Springcraft [49, 56]. A varied selection of ENM force fields is available,
ranging from the original parametrization of GNMs/ANMs with invariant force constants
to distance- (pfENM, Hinsen-C,-parametrization) and amino acid sequence-dependent
variants (sdENM, eANM) [57-60]. Force fields are represented as ForceField base class,
with subclasses for the different preset force fields. Custom ENM force fields can be readily
defined by inheriting and modifying the ForceField base class. A granular modification
of single interactions for a given ForceField is possible with the PatchedForce-
Field subclass: Single pair contacts can be established, shut off or assigned a specific force
constant independently. This greatly improves upon previous methods to model specific
interactions [61].

With an AtomArray and a ForceField object as input for the GNM/ANM classes,
NMA is conducted with separate instance methods: It is possible to compute the covari-
ance matrices, eigenvectors and commonly derived quantities, such as residue displace-
ments, fluctuations for a given mode or dynamical cross-correlations between residues.
Another method of the ANM class allows the prediction of structural changes in proteins
upon ligand binding by applying linear response theory [62].

Molecular visualization

To create publication-ready molecular visualizations AtomArray objects can be trans-
ferred to the popular PyMOL software suite [63] with the help of the Ammolite exten-
sion package (https://ammolite.biotite-python.org/). The structure migration uses the
Python API of PyMOL, eliminating the need of intermediate structure files and the asso-
ciated potential loss of information. For each transferred AtomArray, Ammolite cre-
ates a PyMOLObject that links the AtomArray to the newly created PyMOL object.
Commands, like coloring atoms and changing representations, can be called from this
PyMOLObject with the benefit, that NumPy based atom selections can be used as alter-
native to string-based PyMOL selection algebra. Finally, Ammolite provides convenience
functions to create compiled graphics objects, facilitating the addition of 3D shapes, such as

balls and cylinders, into molecular visualizations.

Miscellaneous extension packages
Further extension packages have been published in recent years: Gecos (https://gecos.bioti
te-python.org/) [64] is a software for generating optimal color schemes for sequence align-
ment visualizations on the basis of weight or substitution matrices.

Hydride (https://hydride.biotite-python.org/) [65] is a package to predict hydrogen posi-
tions for those structure models, in which hydrogen atoms could not resolved experimen-
tally. This enables hydrogen bond measurement and accurate base pair identification on a

wider range of structures.
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Results and discussion

Example application

For demonstration purposes we applied a selection of the methods described above
for the sequence and structure analysis of human hemoglobin. The corresponding
source code is found as Jupyter notebooks in Additional file 1 and at https://github.
com/biotite-dev/article-notebooks. Alternatively, the raw Python source code is avail-
able in Additional file 2. Examples for other Biotite functionalities can be viewed in
the example gallery on the Biotite documentation website.

Identification of homologous sequences

To exemplify the usage of modular alignment search toolkit, we created a workflow to
find homologs of the human hemoglobin a-subunit («¢-globin) in the curated Swiss-
Prot dataset from UniProtKB [9].

First the dataset was downloaded as FASTA file and its sequences along with the
corresponding UniProt accessions and gene names were extracted. Sequences that
belong to uncharacterized proteins or have viral origin were excluded. Furthermore
the human «-globin sequence was fetched (UniProt: P69905) as query sequence.
To find homologous sequences of human «-globin in a quick manner, a k-mer based
alignment search was conducted. The spaced 6-mers of the Swiss-Prot sequences were
indexed into a KmerTable. Repeat masking was omitted, to decrease the computa-
tion time for the sake of easy and fast reproducibility on commodity hardware. The
spacing pattern was adapted from MMsegs2 [14]. Then matches between the a-globin
sequence and the KmerTable were computed. To increase alignment search sensi-
tivity, a similarity score threshold based on BLOSUM®62 [66] was used for matching.
In order to filter the most promising matches, a double-hit strategy was implemented
[17]: Only Swiss-Prot sequences with at least two matches on the same diagonal were
considered in the downstream alignment search stages.

At the match position of each of the remaining hits an ungapped alignment with
X-drop [12] criterion was performed (align local ungapped ()). Hits, where
the ungapped alignments exceeded a given threshold score, were subjected to gapped
alignment within a band (align banded () ). BLOSUMG62 was used as substitution
matrix and the gap penalty was taken from the MMseqs2 default. The gapped align-
ments were sorted by their E-value, computed using an EValueEstimator and
reported (Table 1).

Sequence conservation

Based on the identified homologs, the sequence conservation in the region of the
iron-binding histidine residue was explored. For this purpose a MSA of «-globin vari-
ants was conducted: From the identified homologs, the 100 sequences with highest
similarity to human «a-globin were input to align mulitple (). The guide tree
of the MSA is shown in (Fig. 4A). The alignment was truncated to a certain number
of amino acids around the iron-binding residue and displayed using the flower color
scheme created with Gecos (Fig. 4B). Furthermore a SequenceProfile was created
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Table 1 Top 10 of identified sequences homologous to human a-globin

Rank Gene ID E-value Identity (%) Coverage (%)
1 HBA_HUMAN P69905 083 x 10772 100.0 100.0
2 HBA_PANTR P69907 083 x 10772 100.0 100.0
3 HBA_PANPA P69906 0.83 x 10772 100.0 100.0
4 HBA_GORGO P01923 064 x 10771 99.3 99.3
5 HBAT_HYLLA Q9TS35 011 x 10770 98.6 100.0
6 HBA_PONPY P06635 029 x 10=70 979 100.0
7 HBA_SEMEN P01924 081 x 10770 979 99.3
8 HBA_ATEGE P67817 017 x 1079 96.5 100.0
9 HBA_MACFU P63107 0.17 x 1079 97.2 100.0
10 HBA_MACMU P63108 017 x 1079 97.2 100.0

from the MSA in this region and used to create a sequence logo for more simple vis-
ual analysis of sequence conservation (Fig. 4C).

As the visualization functionalities of Biotite use Matplotlib [67], the elements of a fig-
ure can be easily customized using existing functionality from Matplotlib. In this case
the subplot layout as well as the label highlighting was achieved completely using few
Python statements. Since Matplotlib allows the user to access every graphical element,
every aspect of a figure can in theory be customized.

To reduce the redundancy in the sequence selection, a clustered sequence dataset such
as UniRef [68], could have been alternatively used as foundation. However, the UniRef
datasets are orders of magnitude larger than Swiss-Prot. Thus for the purpose of this
demonstration a smaller dataset was chosen.

Structure loading

For the second part of the hemoglobin analysis a structure of human hemoglobin was
chosen (PDB: 6BB5). The structure model was fetched from the PDB in PDBx/mmCIF
format. The plain coordinates of the PDB entry correspond to the asymmetric unit of the
X-ray crystal structure, representing a heterodimer (Fig. 5A). The functional hemoglobin
tetramer, containing two a-globin and two g-globin chains, was computed from trans-
formations described by the structure file with get _assembly () (Fig. 5B).

Normal mode analysis

The normal modes of the tetramer were analyzed by means of an ANM using Springcrafft.
For this purpose the C, atoms were selected from the assembly. The selected atoms as
well as a residue type dependent ForceField (sdENM) [59] were used to create an
ANM instance. The eigenvectors were computed from the ANM. The first relevant mode
is shown in Fig. 5C.

Molecular docking

Next, molecular docking with AutoDock Vina [34] was used to find putative binding
modes, so called poses, of heme in a-globin. In case of the structure model at hand,
the conformation of the ligand heme is already resolved. However, for the purpose of
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Fig. 4 MSA of a-globin variants. The MSA comprises the 100 identified sequences with highest similarity
to the human variant. A Guide tree for the MSA. The human variant is highlighted. B MSA in vicinity to
iron-binding histidine residue. The order of sequences is the same as in the tree. C Sequence logo in vicinity
to iron-binding histidine residue, as highlighted in gray

this example it was assumed that it is unknown, particularly as this docking protocol
can be easily adapted to predict binding poses in other cases.

The structure model of heme was obtained from the CCD [33] and docked to a-glo-
bin in vicinity of the binding pocket via the interface to AutoDock Vina. Since the
correct binding mode is known, the suggested poses were assessed in terms of the
root-mean-square deviation (RMSD) between the respective pose and the binding
mode from the crystal structure (Fig. 6A). As assumed, the pose with the lowest pre-
dicted binding energy is also the one with the least RMSD (Fig. 6B).
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Fig. 5 Asymmetric unit and macromolecular assembly. The atom coordinates and annotations are taken
from PDB 6BB5. A Asymmetric unit of X-ray crystal structure. B Macromolecular assembly describing the
functional tetramer of hemoglobin. C Normal mode with largest amplitude. The arrows depict the atom
movement in this mode. The absolute arrow length is arbitrary

RMSD (A)

-10 -9 -8 -7 -6
Energy (kcal/mol)

Fig. 6 Molecular docking of heme to a-globin. A Predicted binding energy and RMSD to experimentally
determined conformation of heme binding poses suggested by AutoDock Vina. B The structure of the
lowest energy binding pose. The experimentally determined conformation is shown in transparent red for
comparison. C The lowest energy binding pose after hydrogen addition. The measured hydrogen bond to
the protein is shown as dashed line

AutoDock Vina does not include nonpolar hydrogen atoms in the calculated binding
poses and polar hydrogen atoms are in an arbitrary orientation. To obtain a complete
structural model nevertheless, the hydrogen atom positions for heme were predicted
with Hydride. Eventually, hydrogen bonds between heme and «-globin were identified
with hbond () (Fig. 6C).

Computational performance

As Biotite aims to solve common questions in bioinformatics, also dedicated programs
for many of these problems have been invented, often using the same or similar algo-
rithm as Biotite. In order to be a flexible alternative to these programs, Biotite requires at
least a similar computational performance to fulfill the respective tasks. If Biotite would
require orders of magnitude larger computation time, its application would not be feasi-
ble in many cases.

In order to assess the performance, different tasks were chosen and computed with
both, Biotite and one other representative software for the respective task. In case of
Python libraries, including Biotite and its extension packages, file input and output
was not included, to simulate the situation that multiple tasks would be performed in
the same script without intermediate files. These benchmarks were conducted on a
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-
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k-mer index ANM
Fig. 7 Computational performance for different tasks. Biotite and its extension packages are compared
to other software in terms of computation time for selected tasks. The respective software is given on top

of each bar. Each task was run 100 times and the average was taken, if not specified otherwise. k-mer index:
KmerTable instantiation vs.mmseqgs createindex for Swiss-Prot dataset. Repeat masking was omitted.
Computations were performed using a single thread. Due to the high run time, this task was run only once.
Alignment search: The workflow from ‘Identification of homologous sequences'vs. mmseqgs easy-search.
k-mer indexing was not included in the time measurement. Computations were performed using a single
thread. Instead of running mmseqs easy-search multiple times, it was run once with the according number
of query sequence copies, to get a more realistic application scenario. MSA:align multiple () versus
clustalw -align [69]for 200 sequences from SCOP [70] globin family. Calculation of pairwise sequence
distances and the guide tree is included. The task was run ten times. Hydrogen prediction: Hydride add
hydrogen () and relax hydrogen () vs.gmx pdb2gmx [71] for a hemoglobin tetramer. Hydrogen
bonds: hbond () vs.gmx hbond for a hemoglobin tetramer. ANM: Hessian calculation of an ANM in
Springcraft vs. ProDy [72] for a hemoglobin tetramer

Alignment search MSA Hydrogen prediction Hydrogen bonds

Intel® Core™ i7-8565U CPU (1.80 GHz). The Snakemake [73] workflow for the bench-
marks is deposited in Additional file 3. The measured run times are shown in Fig. 7.
Running the same benchmarks on different hardware showed similar trends (Addi-
tional file 4).

Note that in case of alignment search, MSA computation and hydrogen predic-
tion, the compared implementations use different methods for the same problem
and hence comparability is limited in terms of computation time and output of the
software. Still, the benchmarks show that Biotite and its extension packages exhibit a
computational performance on a similar time scale as dedicated popular software for
the respective task. Solely the MSA computation is an order of magnitude slower than
via Clustal W [69]. Since, there is a range of MSA software available, that have both
sufficient flexibility and a command line interface, Biotite focuses on seamlessly inter-
facing to them and only provides a simple fallback solution for cases where the use of
such software is not applicable.

An advantage of a program library compared to standalone programs in terms of
performance becomes evident in cases were the workflow comprises multiple meth-
ods with little run time. Chaining multiple programs for such a workflow requires
file input and output at the start and end of each program. In addition to the sys-
tem-dependent read/write operation time the internal data representation needs to
be converted into the respective file format and back again, which can take a notable
portion of run time, if the remaining task is relatively fast. In contrast, when using
a program library, the data can be kept in memory for multiple workflow steps. The
additional file input and output operations may be a reason for the slower computa-
tion time of MMsegs2 and Gromacs for alignment search and hydrogen bond identifi-
cation, respectively.
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Conclusion

Biotite’s flexibility can be harnessed to tackle a wide range of problems, without the need
to write ‘glue’ code for communication between different programs. For most tasks the
implementation in Biotite performs similar or is even faster than dedicated software.

For some of the implemented methods, the implementation of the original publica-
tion is not (freely) available anymore, installation is cumbersome on modern architec-
ture and operating systems, or the method description was purely theoretic. Here Biotite
offers a modern alternative to apply such methods to current biological questions, that
can be easily installed using the pip and Conda package managers.

Availability and requirements

Project name: Biotite. Project home page: http://www.biotite-python.org/. Operating
system(s): Windows, OS X, Linux. Programming language: Python. Other require-
ments: At least Python 3.8 and the packages requests, numpy, msgpack and net-
workx need to be installed. For plotting purposes matplotlib and for molecular
visualization PyMOL is additionally required. License: BSD 3-Clause. Any restrictions
to use by non-academics: None

Abbreviations

ANM Anisotropic network model

AP Application programming interface
ccb Chemical components dictionary
ENM Elastic network model

GNM Gaussian network model

MSA Multiple sequence alignment

NMA Normal mode analysis

PEOE Partial equalization of orbital electronegativity
PDB Protein data bank

PFM Position frequency matrix

PPM Position probability matrix

PWM Probability weight matrix

RMSD Root-mean-square deviation
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