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Abstract 

Background:  Amyloids are insoluble fibrillar aggregates that are highly associated 
with complex human diseases, such as Alzheimer’s disease, Parkinson’s disease, and 
type II diabetes. Recently, many studies reported that some specific regions of amino 
acid sequences may be responsible for the amyloidosis of proteins. It has become very 
important for elucidating the mechanism of amyloids that identifying the amyloido-
genic regions. Accordingly, several computational methods have been put forward 
to discover amyloidogenic regions. The majority of these methods predicted amy-
loidogenic regions based on the physicochemical properties of amino acids. In fact, 
position, order, and correlation of amino acids may also influence the amyloidosis of 
proteins, which should be also considered in detecting amyloidogenic regions.

Results:  To address this problem, we proposed a novel machine-learning approach 
for predicting amyloidogenic regions, called ReRF-Pred. Firstly, the pseudo amino acid 
composition (PseAAC) was exploited to characterize physicochemical properties and 
correlation of amino acids. Secondly, tripeptides composition (TPC) was employed to 
represent the order and position of amino acids. To improve the distinguishability of 
TPC, all possible tripeptides were analyzed by the binomial distribution method, and 
only those which have significantly different distribution between positive and nega-
tive samples remained. Finally, all samples were characterized by PseAAC and TPC of 
their amino acid sequence, and a random forest-based amyloidogenic regions predic-
tor was trained on these samples. It was proved by validation experiments that the 
feature set consisted of PseAAC and TPC is the most distinguishable one for detecting 
amyloidosis. Meanwhile, random forest is superior to other concerned classifiers on 
almost all metrics. To validate the effectiveness of our model, ReRF-Pred is compared 
with a series of gold-standard methods on two datasets: Pep-251 and Reg33. The 
results suggested our method has the best overall performance and makes significant 
improvements in discovering amyloidogenic regions.

Conclusions:  The advantages of our method are mainly attributed to that PseAAC and 
TPC can describe the differences between amyloids and other proteins successfully. 
The ReRF-Pred server can be accessed at http://106.12.83.135:8080/ReRF-Pred/.
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Background
Amyloids are fibrillar aggregates generated from soluble proteins or peptides under cer-
tain conditions (eg. ionic strength, temperature, etc.). As known, the core of amyloid 
fibrils exhibits a cross-β structure with the β-chains running perpendicular to the elon-
gation axis of the fibrils [1]. Accordingly, multiple amyloid fibrils can aggregate to form 
amyloid protein which has the highly ordered steric zipper structure [2]. In recent years 
it is reported by many studies that amyloid proteins are closely associated with several 
human complex diseases including Alzheimer’s disease [3, 4], Parkinson’s disease [5], 
Huntington’s disease [6], familial Mediterranean fever [7], type II diabetes [8, 9], etc. It 
is inferred that amyloid proteins may provide new therapeutic targets for these diseases. 
Consequently, many efforts have been made in the field of identifying amyloid proteins.

At first, amyloid proteins only could be discovered by in  vitro techniques such as 
observing their fiber structure with the electron microscope and X-ray, or Congo red 
and Thioflavin T staining method [10]. However, these in vitro methods are time-con-
suming and costly. Therefore, several computational methods have been developed to 
predict amyloid proteins. The computational methods can be roughly classified into 
sequence-based approaches and structure-based approaches. The first group includes 
Zyggregator [11], AGGRESCAN [12], Waltz [13], and FISH Amyloid [14], which utilized 
the site-specific or physicochemical properties of amino acids (e.g., hydrophobicity, sol-
vent accessibility) to make predictions. The second group covers NetCSSP [15], PASTA 
[16], and FoldAmyloid [17], which focus on analyzing the cross-β structure of amyloid 
fibrils or the 3D coordinates of protein atoms. Besides, some methods including Amyl-
Pred [18], AmylPred2 [19], and MetAmyl [20], improved the performance of prediction 
by assembling several different predictors.

Subsequently, machine learning-based methods were put forward to detect amyloid 
proteins. Família et al. [21] selected features recursively from seven physicochemical and 
biochemical properties of amino acids and employed feed-forward neural networks to 
estimate the amyloidosis probabilities of peptides and proteins. Burdukiewicz et al. [22] 
combined multiple physicochemical properties using n-grams to identify the amyloid 
proteins. Bouziane et al. [23] collected features on structural conformation and solvent 
accessibility, and constructed a model to predict amyloidogenic regions using the string 
kernel-based support vector machine (SVM). Zhou et al. [24] utilized position-specific 
scoring matrix (PSSM) and physicochemical properties including hydrophilicity, aggre-
gation tendency, and packing density to develop an SVM-based predictor for amyloi-
dogenic proteins. These methods make great progress in the field of predicting amyloid 
proteins. However, identifying amyloids is only a small step toward designing therapeu-
tic targets, we still have not enough knowledge about the detailed mechanism of amyloi-
dosis to develop therapeutic targets.

A lot of theoretical and experimental evidence illustrates that amyloidosis may be pro-
moted and guided by one or more short and specific fragments of protein sequences, 
called hot spots [25, 26]. Therefore, to elucidate the detailed mechanism of amyloidosis, 
it is the fundamental step to identify the region which induces amyloidosis of protein. 
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Although the methods proposed by Família et al. and Bouziane et al. can predict amy-
loidogenic regions, their performance still can be improved for the following reasons. 
Firstly, both of them ignored that the order of amino acids may also affect the amyloi-
dosis of protein, just like physicochemical properties. For example, both “VVLL” and 
“VLVL” are hydrophobic peptides, but they may differ in structure and function because 
of their completely different arrangements of amino acids. Secondly, plenty of studies 
suggested that the interaction between amino acids influences the mechanism of pro-
tein, which also did not be considered by these methods.

To address above mentioned issues, as displayed in Fig. 1, we proposed a novel predic-
tion method for discovering amyloidogenic regions, named ReRF-Pred. First of all, the 
pseudo amino acid composition (PseAAC) was extracted to characterize physicochemi-
cal properties and correlation of amino acids. Next, tripeptides composition (TPC) was 
exploited to describe the order and position of amino acids. As known, a protein may be 
composed of 20 amino acids, which may form 8000 tripeptides. If all tripeptides are used 
as features, it will make the model computationally intensive and poorly interpreted. 
And then, to avoid this situation, the tripeptides with high contribution to locating amy-
loidogenic regions were selected through the binomial distribution method and utilized 
together with PseAAC to train the prediction model. Eventually, a random forest-based 
prediction model was trained on the hexapeptides of protein sequences because hexa-
peptides are the commonest form of amyloidogenic regions [27]. The details of our novel 
method will be illustrated in the following sections.

Materials and methods
Datasets

For the development and evaluation of ReRF-Pred, the following three datasets were 
used (Additional file 1).

Fig. 1  The frame chart of the ReRF-Pred
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The first dataset consists of all hexapeptides from two reliable databases, WaltzDB 2.0 
[28] and AmyLoad [29], with 511 experimentally determined amyloidogenic hexapeptides 
and 903 non-amyloidogenic hexapeptides. This dataset was used as the training set in our 
method.

The second dataset, named Pep-251, is a more general dataset consisting of peptides with 
different lengths. It was extracted from the dataset Pep424 [30], used here to evaluate hot-
spot-guided small peptides amyloidosis. Our approach assumes that the minimum length 
of a hot spot is six residues, and thus peptides with unclear category delineation and shorter 
than seven residues were removed from Pep424. Note that all hexapeptides in Pep424 are 
included in the training set. The final Pep-251 contains 79 positives for amyloidogenic and 
172 negatives.

The third dataset called Reg33 [19] consists of 33 proteins from the amylome. Each 
protein is annotated with amyloidogenic regions from the literature, with 1260 hotspot 
residues and 6571 regular residues. This dataset was used to evaluate the performance of 
ReRF-Pred in predicting amyloidogenic regions.

Feature extraction

Feature extraction is the most important step in building a machine learning model [31–
33], and effective features will greatly improve prediction performance [34–37]. In the pre-
sent study, the composition,  physicochemical properties of amino acids and their order 
information in the sequence are significant and indispensable for characterizing amyloido-
genic regions. At this point, many single feature extraction strategies with excellent perfor-
mance become not applicable. Therefore, we proposed a new method for fusing multiple 
sequence information, which combines Type 2 PseAAC feature and TPC feature to repre-
sent hotspots.

Type 2 PseAAC​

The pseudo amino acid composition (PseAAC) [38] is a classical feature extraction algo-
rithm proposed by analyzing the physicochemical properties of amino acids and the global 
order information of sequences [39–42]. Type 2 PseAAC [43] is also called the series corre-
lation type. In this method, amino acid properties are used to reflect sequence order effects 
due to their important role in protein folding, interactions with molecules, and catalytic 
mechanisms [44–47]. The Type 2 PseAAC web server already provides six amino acid prop-
erties, including hydrophobicity, hydrophilicity, Mass, pK1 (alpha-COOH), pK2 (NH3), and 
pI (at 25◦C). On this basis, we added three different properties: rigidity, flexibility, and irre-
placeability. Thus, a protein sequence P is represented as:

where

(1)P = (P1,P2, . . . ,P20,P20+1, ...,P20+�, . . . ,P20+8�+1, . . . ,P20+9�)
T
,

(2)Pu =























fu
�20

i=1 fi + w
�9�

j=1 θj
(1 ≤ u ≤ 20),

wθu
�20

i=1 fi + w
�9�

j=1 θj
(20+ 1 ≤ u ≤ 20+ 9�),



Page 5 of 18Teng et al. BMC Bioinformatics          (2021) 22:545 	

where fu is the occurrence frequency of the 20 amino acids in the protein; w is the 
weight factor, which is set to 0.7 in this paper; θj reflects the correlation factor between 
two residues, which can be calculated by the following equation:

where L represents the length of a sequence; � is the counted rank of the correlation 
along a protein sequence, and the value should be less than L; if �=1, θj reflects the cor-
relation between adjacent amino acids; if �=2, θj reflects the correlation between amino 
acids with an interval of 1; Hk

i,j is the physicochemical properties correlation function 
given by:

where Ri and Rj are the ith and jth amino acid residue in the sequence, respectively; 
h1(Ri) , h2(Ri) , . . . , h9(Ri) represents the values of nine properties of Ri , respectively. Note 
that before substituting the values of hk(Ri) , they were all subjected to a standard con-
version as following:

where hk
0
 is the original value of the kth amino acid property.

As we can see from the above equations, Type 2 PseAAC incorporates a large amount 
of sequence order information in the correlation factor through the physicochemical 
properties of amino acids, which is extremely beneficial for representing amyloidogenic 
fragments.

Tripeptide composition

The tripeptide composition (TPC) method describes the position and order informa-
tion of amino acids in a sequence [48, 49]. Li et al. [50] have confirmed that the TPC 
feature is beneficial for classifying amyloid proteins, and therefore we considered their 
utilization in the investigation of amyloidogenic regions. In this method, the occurrence 
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frequencies of three consecutive amino acids in the sequence are used as the feature ele-
ments. The protein contains 20 native amino acids, and thus each sequence can be rep-
resented as a 20× 20× 20 = 8000-dimensional feature vector:

where the frequency fi of the ith tripeptide can be calculated as:

where Ni is the number of the ith tripeptide and L represents the length of a sequence.

Feature selection

As mentioned above, we adopted the feature representation method of multi-informa-
tion fusion, which mines the sequence information richly but brings more noise and 
redundant features [51–55]. In particular, the feature vector reaches 8000 dimensions 
in the TPC method, further screening of tripeptides that better represent hotspots is 
necessary. For the PseAAC feature, nine selected physicochemical properties were all 
retained considering their essential to reflecting the characteristics of amyloidogenic 
fragments. Therefore, we only discuss the selection and analysis of TPC features. In this 
study, the binomial distribution (BD) method [56, 57] was used for feature ranking.

By calculating the probability of the ith tripeptide in the class j samples, we can judge 
whether the occurrence of tripeptides in a certain kind of protein is random, like this:

where qj is the ratio of the number of tripeptides in class j samples to those in all sam-
ples, nij and Ni are the occurrence number of the ith tripeptide in class j(j = 0, 1) and all 
samples, respectively. If Pij is a small value, it indicates that the occurrence of tripeptides 
is deterministic. Hence, the confidence level (CL) of the ith tripeptide in the class j sam-
ples can be defined as:

Obviously, each tripeptide feature has two CL values, and the larger one will be reserved. 
After calculating the confidence levels, we arranged the features in descending order by 
CL values to create a ranked list.

Random forest

Ensemble learning is a hot topic in machine learning-related fields in recent years [58–
60]. Its idea is to obtain better performance by combining the classification results of 
multiple single classifiers. The most effective ensemble learning algorithms are Bagging 
and Boosting, while Random Forest is a special Bagging algorithm whose base classi-
fiers are N decision trees. Like Bagging, Random Forest is based on a bootstrap sam-
pling technique, each time generate a new training set by randomly selecting k samples 
from the original training set with replacement. The difference is that random forest 
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introduces attribute randomness, where the attributes of each node of the decision tree 
are generated from a small number of randomly selected attributes. Random forest was 
utilized in several bioinformatics researches [61–63].

In this study, we employed random forest as a classifier because it provides several 
unique advantages based on our data. The feature vectors extracted by the combined 
method of PseAAC and TPC belong to high-dimensional data, and the accuracy is not 
affected when random forest processing this type of data.

Results and discussion
Measurement

To evaluate and compare the performance of the model, we employed five metrics 
widely used in bioinformatics: accuracy (ACC), sensitivity (SE), specificity (SP), Q, and 
Mathew’s correlation coefficient (MCC) [64–67]. They are defined as follows:

where TP, FP, TN, and FN represent the number of true positive, false positive, true neg-
ative, and false negative, respectively. In the task of detecting amyloidogenic regions, TP, 
FP, TN, and FN are counted on a per residue basis. TP is the correctly predicted num-
ber of hotspot residues; FP is the number of regular residues predicted to be hotspot 
residues; TN is the correctly predicted number of regular residues; FN is the number of 
hotspot residues predicted to be regular residues. For example, given a segment of cal-
citonin CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP, its experimentally verified 
hotspot region is DFNKFH (residues 15–20). If the predicted hotspot region is TYTQD-
FNKFHTFP (residues 11–23), then TP = 6, FP = 7, TN = 19, FN = 0. The SE and SP 
metrics measure the predictive ability of the model for positive and negative samples, 
respectively. The other three metrics, ACC, Q, and MCC, reflect the overall performance 
and stability of the model [68, 69]. Furthermore, receiver operating characteristic (ROC) 
curves are used to assess the real performance of the model more intuitively. We can 
quantitatively compare the decision-making ability of the models by calculating the area 
under the ROC curves (AUC) [70, 71]. For all the metrics mentioned above, the larger 
their values, the better performance the model has.

(10)ACC =
TP + TN

TP + TN + FP + FN

(11)SE =
TP

TP + FN

(12)SP =
TN

TN + FP

(13)Q =
SE + SP

2

(14)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

,
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Validating effectiveness of ReRF‑pred

Comparison of different features

As previously stated, the amyloidogenicity of a protein may be represented by multi-
ple sequence features. These features can be roughly divided into two groups: physico-
chemical properties-based features and sequence information-based features. The first 
group includes PseAAC, CTDC, CTDD, CTDT, and Conjoint Triad (CTriad). The sec-
ond group covers Amino Acid Composition (AAC), Dipeptide Deviation from Expected 
Mean (DDE), Dipeptide composition (DPC), TPC, and BINARY. To verify the effective-
ness of the proposed feature, we compared it with several other popular features. The 
10-fold cross-validation results of ten single features and several combinations of fea-
tures with good performance are listed in Table 1.

As shown in Table 1, physicochemical properties-based features and sequence infor-
mation-based features yield similar predictive performance. The combination of two 
features from different groups performs better than two single features. For example, 
the accuracy of CTDD and DPC is 0.814 and 0.803 respectively, but their combined 
accuracy can be improved to 0.818. Therefore, it can be concluded that physicochemi-
cal properties-based features and sequence information-based features contribute to 
the description of amyloidogenic fragments, and they can complement each other to 
improve the predictive performance of the model. Among all features, the combination 
of PseAAC and TPC achieves the highest accuracy (0.828), specificity (0.921), Matthew 
correlation coefficient (0.619), and AUC value (0.890). It may be attributed to the full 
fusion of amino acid composition, physicochemical properties, correlation, and order 
information. Accordingly, the combination of PseAAC and TPC is effective and reason-
able for constructing predictive models of amyloidogenic regions. Therefore, we adopted 
a multi-information fusion approach combining PseAAC and TPC to characterize amy-
loidogenic regions in this study.

Validation of feature selection strategy

In our method, 38 PseAAC features and 8000 TPC features were collected from sam-
ples in total. The number of features is significantly larger than that of samples, thus 

Table 1  Comparison of different features

Features ACC​ SE SP MCC AUC​

Mixed PseAAC+TPC 0.828 0.663 0.921 0.619 0.890

PseAAC+AAC​ 0.825 0.671 0.911 0.611 0.887

CTDD+DPC 0.818 0.716 0.875 0.600 0.882

Physicochemical 
properties-based

PseAAC​ 0.819 0.654 0.913 0.598 0.878

CTDC 0.807 0.722 0.855 0.580 0.863

CTDD 0.814 0.714 0.870 0.593 0.878

CTDT 0.794 0.675 0.862 0.547 0.866

CTriad 0.757 0.636 0.825 0.467 0.811

Sequence informa-
tion-based

AAC​ 0.805 0.691 0.869 0.571 0.885

DDE 0.803 0.687 0.868 0.566 0.884

DPC 0.803 0.701 0.860 0.568 0.880

TPC 0.801 0.628 0.898 0.556 0.873

BINARY​ 0.787 0.652 0.864 0.530 0.866
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we should select the most representative features to reduce the time consumption and 
overfitting risk. Considering that PseAAC features reflect different physicochemical 
properties of amyloidogenic fragments and the number of them is sufficiently small, our 
screening only focuses on the 8000 tripeptide features.

To address the problem, the BD method was exploited to measure the confidence level 
of every tripeptide feature and the features were arranged in descending order of confi-
dence level. It can be seen that some features showed extremely low confidence levels, 
even equal to zero. Obviously, these features with low confidence levels were pointless 
to distinguish amyloidogenic fragments so that they should be removed. Meanwhile, if 
too many features were removed, the remained features may not enough to describe the 
amyloidogenic fragments accurately. Upon comprehensive consideration, the thresh-
old of confidence level was set to 0.85. To further improve the feature set, the features 
with confidence levels around 0.85 were used as cut-off features for constructing corre-
sponding candidate feature sets. Subsequently, these candidate feature sets were fed into 
a random forest algorithm to predict the amyloidogenic fragments and the feature set 
consisting of the top 298 tripeptide features was selected as the optimal feature set based 
on the prediction performance. Finally, the combination of the 38 PseAAC features and 
the top 298 tripeptide features was used to characterize protein samples in the following 
sections.

To verify the effectiveness of the selected features, we performed several comparison 
experiments. First, we compared the performance differences of amyloidogenic frag-
ments recognition models before and after feature selection on the training set, and the 
results are shown in Fig. 2A. It can be observed that the model trained with 336 selected 
features performs as well as the model trained with 8038 original features. This result 
suggests that the 336 selected features can replace the original features to describe char-
acteristics of amyloidogenic fragments accurately. It may attribute that the 336 selected 
features are the most representative features of the original features, which can cover the 
semantics of the original features.

Moreover, high-dimensional features would increase the overfitting risk of machine 
learning models. To further evaluate the impact of features on the amyloidogenic regions 
prediction model, the 336 selected features and the 8038 original features were used to 
predict amyloidogenic regions on the Reg33 test set respectively. The performance of 

Fig. 2  Comparison of prediction performance before and after feature selection. A The results on the training 
set. B The results on the Reg33 test set
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the two models was compared by four metrics: SE, SP, Q, and MCC. In the comparison, 
as shown in Fig. 2B, the model using the 336 features achieves better performance than 
the model using the 8038 features in terms of SP, Q, and MCC. The results indicate that 
the low-dimensional features can effectively reduce the overfitting risk of the model and 
strengthen the generalization ability of the model.

Furthermore, to evaluate the effect of features on the running time of the model, the 
models using different features were applied on multiple amyloidogenic regions predic-
tion tasks and their time consumption was compared. The comparison results are listed 
in Table 2. “Length” represents the length of the input sequence, “Quantity” represents 
the number of input sequences, “T_8038D” represents the running time of the model 
using the 8038 features, “T_336D” represents the running time of model using the 336 
features, “Time_diff” represents the time difference between T_8038D and T_336D, and 
“Improved_rate” represents the improvement rate of the model using the 336 features 
over the model using the 8038 features in running time. It is obvious that fewer features 
take less time on the same prediction tasks. Moreover, the greater the predicted work-
load, the more significant the difference in running time. Thus, the selected features can 
considerably reduce the running time and improve the efficiency of the amyloidogenic 
regions prediction model.

Overall, the performance of the model on the 336 selected features is almost the same 
as the model on 8038 original features. The selected features can effectively reduce over-
fitting risk and time consumption. Therefore, our feature selection strategy is reasonable 
and beneficial to predict amyloidogenic regions.

Analysis of feature contribution

To further reveal the general pattern of tripeptide occurrence in amyloidogenic and 
non-amyloidogenic fragments, we conducted a statistical analysis. By utilizing the BD 
method, we sorted the tripeptide features by confidence level and created a ranking list. 
Figure 3 shows the content of the top 30 tripeptides in the positive and negative samples 
of the training set, respectively. From Fig. 3, we can discuss the following four aspects. 
First, the content of each tripeptide differed significantly in positive and negative sam-
ples (p-value = 0.018). This suggests that amyloidogenic hexapeptides and non-amyloi-
dogenic hexapeptides have clearly distinguishable tripeptide characterization. Secondly, 
the content of tripeptides is generally higher in the positive samples compared to the 

Table 2  Compared time consumption of models using different features

Task Length Quantity T_8038D (s) T_336D (s) Time_diff (s) Improved_
rate (%)

1 20 20 7.65 3.2 4.45 58.17

2 20 50 16.81 3.48 13.33 79.30

3 20 100 31.64 5.64 26 82.17

4 40 20 15.61 3.24 12.37 79.24

5 40 50 38.5 6.78 31.72 82.40

6 40 100 72 11.72 60.28 83.72

7 60 20 24.23 4.34 19.89 82.09

8 60 50 57.91 9.47 48.44 83.65

9 60 100 132 22.72 109.28 82.79
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negatives. That is, the occurrence of representative tripeptides in amyloidogenic frag-
ments is more deterministic. Third, the tripeptides with a higher content in the nega-
tive samples are basically close or equal to zero in the positives. This indicates that the 
tripeptide characteristics in the negative sample are more exclusive, and some tripep-
tides may only exist in non-amyloidogenic fragments. Finally, the amino acids contained 
in these tripeptides with high confidence levels also present a definite pattern. The pre-
dominant Valine and Isoleucine in the positive samples may strongly promote the for-
mation of amyloid fibrils, while the most abundant Asparagine, Glycine, and Glutamine 
in the negative samples may inhibit the formation of amyloid fibrils. In addition, Valine 
and Isoleucine are non-polar hydrophobic amino acids, and Asparagine, Glycine, and 
Glutamine are polar hydrophilic amino acids. Therefore, we can infer that polarity and 
hydrophobicity are essential to distinguish between amyloidogenic and non-amyloido-
genic fragments.

The above results fully illustrate the importance of screening and analyzing tripep-
tides, and indicate that the selected features are effective for characterizing amyloido-
genic fragments.

Comparison of different classifiers

In this section, we compared Random Forest with nine well-performing classifiers, 
including Naïve Bayes, Decision tree, LibSVM, JRip, Multilayer perceptron (MLP), 
k-Nearest Neighbor (KNN), Locally Weighted Learning (LWL), AdaBoost, and Bagging. 
In the following, we first give a brief description of them.

The Naive Bayes algorithm is based on Bayesian theory. Its idea is to solve the occur-
rence probability of the sample to be classified in each category and use it as a basis 
for classification. The Decision tree is an algorithm for making decisions based on tree 
structures, which searches decisive features and divides unknown datasets according to 
the concept of entropy in informatics. Support vector machine was first proposed by 

Fig. 3  The content of 30 tripeptides with high confidence level
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Vapnik et al. in 1995. Its idea is to map the feature space to a high-dimensional space and 
classify data elements by computing the distance from the data points to the separating 
hyperplane. LibSVM is a software developed by Lin et al. to implement SVM. MLP is a 
feed-forward artificial neural network that compares the output values with the actual 
values during training and continuously updates the weights until the prediction error 
is sufficiently small. JRip, or RIPPER algorithm, is a rule induction learning algorithm 
with good pruning and stopping principles that remain highly efficient on noisy datasets. 
Both KNN and LWL are lazy learning algorithms, which means that the model is trained 
after receiving a test sample. KNN works by finding the k training samples nearest to a 
given test sample and determining the category of the given sample based on these k 
“neighbors”, while LWL adds a concept of weighting. These single classifiers have differ-
ent characteristics and differences. The ensemble learning algorithm integrates the con-
structed multiple single classifiers according to some strategies to process the learning 
task. Both Boosting and Bagging are commonly used ensemble classifiers. The individ-
ual learners of the Boosting algorithm have strong dependencies and must be gener-
ated serially, while the individual learners of the Bagging algorithm do not have strong 
dependencies and thus can be generated in parallel. The AdaBoost we compared is a 
representative Boosting algorithm, which can be used for classification and regression.

The results of the comparison with the above classifiers are shown in Table 3. We can 
observe that Random Forest outperformed other classifiers in three metrics of ACC, SP, 
and MCC. In the SE metric, Random Forest is slightly lower than Bagging, Naïve Bayes, 
Decision Tree, and MLP by about 0.01-0.094, but higher than them by about 0.047-0.63 
in the SP metric. Especially, the specificity of MLP with the highest sensitivity is only 
0.296, which verify that it is biased to classify peptides as positives.

We further used the ROC curve to evaluate the generalization performance of each 
classification model. From Fig. 4, we could clearly observe that the AUC of Random For-
est reaches 0.893, which is significantly better than other classifiers. This demonstrates 
the superior overall performance and excellent recognition capability of our model.

Performance of ReRF‑Pred in identification of amyloidogenic peptides

After constructing the prediction model on the training set, we compared it with 
several other state-of-the-art methods. The first was to evaluate the ability of the 

Table 3  Comparison of random forest with other classifiers

ACC​ SE SP MCC

Random forest 0.823 0.640 0.926 0.606

AdaBoost 0.751 0.605 0.834 0.450

Bagging 0.796 0.650 0.879 0.549

Naïve Bayes 0.773 0.693 0.818 0.510

LibSVM 0.796 0.585 0.916 0.545

Decision tree 0.779 0.658 0.848 0.515

LWL 0.732 0.581 0.817 0.408

JRip 0.773 0.583 0.880 0.492

KNN (K = 3) 0.791 0.566 0.918 0.532

MLP 0.454 0.734 0.296 0.031
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predictor in distinguishing between amyloidogenic and non-amyloidogenic peptides 
on the Pep-251 dataset. Based on the assumption that a peptide was predicted as 
amyloidogenic if at least one amyloidogenic fragment was predicted in it. ReRF-
Pred was compared with six methods, AGGRESCAN [12], Waltz [13], MetAmyl 
[20], PASTA 2.0 [30], APPNN [21], and AmyloGram [22] which provide online serv-
ers or software packages and allow multiple sequences to be input simultaneously. 
PASTA 2.0 used the “peptides” mode suggested by the author, and other methods 
used default parameters. The results are shown in Table 4. We can see that ReRF-
Pred performs best in accuracy (0.801) and Mathew’s correlation coefficient (0.552) 
except for PASTA 2.0. PASTA 2.0 yielded the best overall performance. Its speci-
ficity reaches 0.983, but the sensitivity is only 0.506. This indicates that PASTA 2.0 
identifies most amyloidogenic peptides as non-amyloidogenic peptides, and its per-
formance may be limited if other datasets are used.

Collectively, ReRF-Pred can successfully identify amyloidogenic small peptides 
and achieve a better balance between sensitivity and specificity. It means that our 
method is feasible for characterizing and predicting hotspots.

Fig. 4  ROC curves for different classifiers

Table 4  Performance of ReRF-Pred and other methods in peptides identification

ACC​ SE SP MCC

ReRF-Pred 0.801 0.734 0.831 0.552

AGGRESCAN 0.741 0.911 0.663 0.534

Waltz 0.765 0.443 0.913 0.414

MetAmyl 0.749 0.924 0.669 0.551

PASTA 2.0 0.833 0.506 0.983 0.603

APPNN 0.769 0.848 0.733 0.542

AmyloGram 0.781 0.823 0.762 0.549



Page 14 of 18Teng et al. BMC Bioinformatics          (2021) 22:545 

Performance of ReRF‑Pred in prediction of amyloidogenic regions

The purpose of ReRF-Pred is to predict amyloidogenic regions in proteins and reveal 
their biological characteristics. We evaluated the predictive power of ReRF-Pred on 33 
proteins annotated with hotspot regions by comparing it with eight existing methods 
[12–14, 17, 19–21, 30]. The results are listed in Table 5. The performance of the consen-
sus prediction method AmylPred2 may be weakened if some methods which are base 
models of the ensemble server cannot work.

It is worth noting that the ACC metric is not suitable for the amyloidogenic region 
prediction tasks. We also take the calcitonin sequence mentioned above as an example, 
if the hotspot region is predicted to be TYTQDFNKFHTFP, the accuracy is 0.781; how-
ever, if all hotspot residues are predicted to be regular residues, the accuracy can reach 
0.813. Obviously, the hotspot of the first prediction is better matched, but the accuracy 
of the first prediction is lower than that of the second one. The reason for this situation is 
that the number of hotspot residues is usually much smaller than that of regular residues 
in the amyloidogenic region prediction task. To avoid this situation, a balanced accuracy 
named Q was introduced in this section, which is the average of sensitivity and specific-
ity scores. For the above example, the values of the Q metric for the two predictions are 
0.865 and 0.50, respectively. The second prediction is weaker than the first, which is con-
sistent with common perception.

As we can see from Table  5, ReRF-Pred has the best Q (0.629) and MCC (0.26), 
which is the most balanced of all methods. Moreover, the MCC of six methods failed 
to reach 0.20. For PASTA 2.0, which performs best on the Pep-251 dataset, we adjusted 
its parameter to “90% spec” and “85% spec” for experiments, respectively. The results 
show that the overall performance of PASTA 2.0 is inferior to that of ReRF-Pred in both 
experiments. In general, our proposed method allows more efficient detection of amyloi-
dogenic regions in proteins.

The above results based on traditional metrics give us an intuitive performance com-
parison of the methods. It is worth noting that some methods obtained better overall 
performance than others but they could not make a precise prediction of amyloido-
genic regions on most of the proteins. This was probably because these methods identi-
fied more amyloidogenic residues from different proteins than others. Therefore, these 
methods may have predictive biases for different proteins, which should be taken into 

Table 5  Performance of ReRF-Pred and other existing methods in amyloidogenic regions prediction

SE SP Q MCC

ReRF-Pred 0.379 0.879 0.629 0.26

Waltz 0.197 0.928 0.562 0.16

AGGRESCAN 0.353 0.792 0.572 0.13

FoldAmyloid 0.275 0.860 0.567 0.13

FISH Amyloid 0.141 0.938 0.540 0.11

MetAmyl 0.525 0.717 0.621 0.19

AmylPred2 0.315 0.894 0.604 0.22

PASTA 2.0 (90% spec) 0.270 0.905 0.588 0.20

PASTA 2.0 (85% spec) 0.381 0.858 0.620 0.23

APPNN 0.537 0.696 0.617 0.18
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account in model evaluation. To solve this problem, we employed the statistical test to 
further evaluate the performance differences of ReRF-Pred and the concerned methods 
on each protein.

The predictive performance of the ten methods on each protein was ranked from 1 
to 10, and the smaller ranking value indicates the superior performance of the method. 
The Friedman test is widely used for the significance analysis of multiple algorithms in 
the fields of biology, chemistry, and medicine. Here, the Friedman test with a confidence 
level of 0.1 was used to determine whether different methods exhibited the same predic-
tive performance. If yes, it suggests that there was no performance difference between 
the methods. If not, it means that there was a performance difference between methods, 
and then the Nemenyi post hoc test was utilized to further analyze whether the perfor-
mance difference between any two methods is significant.

The results of the statistical test are shown in Fig. 5. The x-axis represents the rank-
ing values of the prediction methods, the y-axis represents the names of ten methods, 
the solid dot represents the average ranking value of the methods on all proteins, and 
the horizontal line represents the range of Nemenyi’s critical difference. The farther dis-
tance between two horizontal lines indicates the more significant performance differ-
ence between the two methods. As shown in Fig. 5, ReRF-Pred has the best performance 
and significantly outperforms Waltz, AGGRESCAN, and FISH Amyloid.

In summary, the effectiveness and robustness of our proposed method can be proved 
by traditional metrics and statistical tests. In the future, it will greatly promote further 
studies on the function and mechanism of amyloid.

Conclusions
Identifying amyloidogenic regions is a basic pathway to find new therapeutic targets 
for several human complex diseases. In this paper, we proposed a new method for pre-
dicting amyloidogenic regions based on sequence information, called ReRF-Pred. The 
method adopted a multi-feature encoding strategy to combine pseudo amino acid com-
position and tripeptide composition of amino acids to characterize hotspots of proteins 

Fig. 5  The statistical differences between ten methods
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accurately. According to experimental results, our novel approach can achieve an accu-
racy of 0.823 on the training set through 10-fold cross-validation. What is more, when 
performed on two independent validation datasets, our method still displayed promised 
performance. For example, when conducted on the Reg33 dataset, it is superior to the 
concerned methods for predicting hotspot regions in terms of two important metrics: Q 
and MCC, which reached up to 0.629 and 0.26 respectively. It is suggested that PseAAC 
and TPC are effective features to characterize hotspots of amyloidosis. Furthermore, it 
can be concluded that polarity and hydrophobicity play crucial roles during the process 
of amyloidosis by further analyzing tripeptides that are significantly distributed differ-
ently between positive and negative sample sets. We also provided a web server that 
allows multiple sequences to be predicted simultaneously, which is available from http://​
106.​12.​83.​135:​8080/​ReRF-​Pred/.
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