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Gsslasso Cox: a Bayesian hierarchical model
for predicting survival and detecting
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Abstract

Background: Group structures among genes encoded in functional relationships or biological pathways are
valuable and unique features in large-scale molecular data for survival analysis. However, most of previous
approaches for molecular data analysis ignore such group structures. It is desirable to develop powerful analytic
methods for incorporating valuable pathway information for predicting disease survival outcomes and detecting
associated genes.

Results: We here propose a Bayesian hierarchical Cox survival model, called the group spike-and-slab lasso Cox
(gsslasso Cox), for predicting disease survival outcomes and detecting associated genes by incorporating group
structures of biological pathways. Our hierarchical model employs a novel prior on the coefficients of genes, i.e.,
the group spike-and-slab double-exponential distribution, to integrate group structures and to adaptively shrink the
effects of genes. We have developed a fast and stable deterministic algorithm to fit the proposed models. We
performed extensive simulation studies to assess the model fitting properties and the prognostic performance of
the proposed method, and also applied our method to analyze three cancer data sets.

Conclusions: Both the theoretical and empirical studies show that the proposed method can induce weaker shrinkage
on predictors in an active pathway, thereby incorporating the biological similarity of genes within a same pathway into
the hierarchical modeling. Compared with several existing methods, the proposed method can more accurately estimate
gene effects and can better predict survival outcomes. For the three cancer data sets, the results show that the proposed
method generates more powerful models for survival prediction and detecting associated genes. The method has been
implemented in a freely available R package BhGLM at https://github.com/nyiuab/BhGLM.
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Background
Survival prediction from high-dimensional molecular data
is an active topic in the fields of genomics and precision
medicine, especially for various cancer studies. Large-scale
omics data provide extraordinary opportunities for

detecting biomarkers and building accurate prognostic
and predictive models. However, such high-dimensional
data also introduce statistical and computational
challenges. Tibshirani [1, 2] has proposed a novel
penalized method, lasso, for variable selection in
high-dimensional data, which has attracted considerable
attention in modern statistical research. Thereafter, several
penalized methods were developed, like minimax concave
penalty (MCP) method by Zhang [3, 4], smoothly clipped
absolute deviation (SCAD) penalty method by Fan and Li
[5]. These penalization approaches have been widely
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applied for disease prediction and prognosis using
large-scale molecular data [6–11].
Furthermore, the group structures among molecular

variables was noticed in analysis. For example, genes
can be grouped into known biological pathways or
functionally similar sets. Genes within a same bio-
logical pathway may be biologically related and statis-
tically correlated. Incorporating such biological grouping
information into statistical modeling can improve the
interpretability and efficiency of the models. Several
penalization methods have been proposed had been
proposed to utilize the grouping information, such as
group Lasso method [12], sparse group lasso (SGL)
[13, 14]. group bridge [15], composite MCP [16],
composite absolute penalty method [17], group expo-
nential Lasso [18], group variable selection via convex
log-exp-sum penalty method [19], and doubly sparse
approach for group variable selection [20]. Some of
these methods perform group level selection, includ-
ing or excluding an entire group of variables. Others
can perform bi-level selection, achieving sparsity
within each group. Huang et al. [21] and Ogutu et al.
[22] reviewed these penalization methods in predic-
tion and highlighted some issues for further study.
Ročková and George [23, 24] recently proposed a new

Bayesian approach, called the spike-and-slab lasso, for
high-dimensional normal linear models using the
spike-and-slab mixture double-exponential prior
distribution. Based on the Bayesian framework, we have
recently incorporated the spike-and-slab mixture
double-exponential prior into generalized linear models
(GLMs) and Cox survival models, and developed the
spike-and-slab lasso GLMs and Cox models for predicting
disease outcomes and detecting associated genes [25, 26].
More recently, we have developed the group spike-and-slab
lasso GLMs [27] to incorporate biological pathways.
In this article, we aim to develop the group

spike-and-slab lasso Cox model (gsslasso Cox) for
predicting disease survival outcomes and detecting as-
sociated genes by incorporating biological pathway in-
formation. An efficient algorithm was proposed to fit
the group spike-and-slab lasso Cox model by integrat-
ing Expectation-Maximization (EM) steps into the ex-
tremely fast cyclic coordinate descent algorithm. The
novelty is incorporating group or biological pathway
information into the spike-and-slab lasso Cox model
for predicting disease survival outcomes and detecting
associated genes. The performance of the proposed
method was evaluated via extensive simulations and
comparing with several commonly used methods. The
proposed procedure was also applied to three cancer
data sets with thousands of gene expression values
and their pathways information. Our results show that
the proposed method not only generates powerful

prognostic models for survival prediction, but also ex-
cels at detecting associated genes.

Methods
The group spike-and-slab lasso Cox models
In Cox survival model, variables yi = (ti, di) for each
individual is the survival outcome. The censoring in-
dicator di takes 1 if the observed survival time ti for
individual i is uncensored. The di takes 0 if it is cen-
sored. For individual i, the true survival time is as-
sumed by Ti. Therefore, when Ti = ti, di = 1, whereas
when Ti > ti, di = 0. The predictor variables include
numerous molecular predictors (e.g., gene expression)
and some relevant demographic/clinical covariates.
Assume that the predictors can be organized into G
groups (e.g., biological pathways) based on existing
biological knowledge. It should be indicated that the
group could overlap each other. For example, one or
some genes can belong to two or more biological
pathway. Following the idea of overlap group lasso
[28–31], we performed a restructure step by replicat-
ing a variable in whatever group it appears to expand
the vector of predictors.
In Cox proportional hazards model, it usually assumes

that the hazard function of survival time T takes the
form [32, 33]:

h tjXð Þ ¼ h0 tð Þ exp Xβð Þ ð1Þ

where the baseline hazard function h0(t) is unspecified,
X and β are the vectors of explanatory variables and co-
efficients, respectively, and Xβ is the linear predictor or
called the prognostic index.
Fitting classical Cox models is to estimate β by maxi-

mizing the partial log-likelihood [34]:

pl βð Þ ¼
Xn
i¼1

di log exp Xiβð Þ=
X

i0∈R tið Þ
exp Xi0βð Þ

0
@

1
A

ð2Þ

where R(ti) is the risk set at time ti. In the presence of
ties, the partial log-likelihood can be approximated by
the Breslow or the Efron methods [35, 36]. The standard
algorithm for maximizing the partial log-likelihood is
the Newton-Raphson algorithm [32, 37].
For high dimensional and/or correlated data, the clas-

sical model fitting is often unreliable. The problem can
be solved by using Bayesian hierarchical modeling or
penalization approaches [31, 38, 39]. We here propose a
Bayesian hierarchical modeling approach, which allows
us to simultaneously analyze numerous predictors and
more importantly provides an efficient way to incorpor-
ate group information. Our hierarchical Cox models
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employ the spike-and-slab mixture double-exponential
(de) prior on the coefficients:

β j j γ j; s0; s1 � de 0; 1−γ j

� �
s0 þ γ js1

� �

¼ 1

1−γ j

� �
s0 þ γ js1

exp −
β j

���
���

1−γ j

� �
s0 þ γ js1

0
@

1
A

ð3Þ

where, s0 and s1 are the preset scale parameters, which
are small and relatively large (0 < s0 < s1), inducing strong
or weak shrinkage on βj, respectively. γj is the indicator
variable: γj = 1 or 0. Equivalently, this prior can be
expressed as (1 - γj) de(0, s0) + γj de(0, s1), a mixture of
the shrinkage prior de(0, s0) and the weakly informative
prior de(0, s1), which are the spike and slab components
of the prior distribution, respectively.
We incorporate the group structure by proposing a

group-specific Berllouli distribution for the indicator
variables. For predictors in group g, the indicator vari-
ables are assumed to follow the Berllouli distribution
with the group-specific probability θg:

γ j j θg � Bin γ jj1; θg
� �

¼ θ
γ j
g 1−θg
� �1−γ j ð4Þ

If group g includes important predictors, the param-
eter θg will be estimated to be relatively large, implying
other predictors in the group more likely to be import-
ant. Therefore, the group-specific Berllouli prior plays a
role on incorporating the biological similarity of genes
within a same pathway into the hierarchical model. For
the probability parameters, we adopt a beta prior,
θg~beta(a, b), setting a = b = 1 yielding the uniform hyper
prior θg~U(0, 1) that will be used in later sections to il-
lustrate our method. Hereafter, the above hierarchical
Cox models are referred to as the group spike-and-slab
lasso Cox model.

The EM coordinate descent algorithm
We have developed a fast deterministic algorithm,
called the EM coordinate descent algorithm to fit the
spike-and-slab lasso Cox models by estimating the
posterior modes of the parameters [26]. The EM co-
ordinate descent algorithm incorporates EM steps
into the cyclic coordinate descent procedure for fit-
ting the penalized lasso Cox models, and has been
shown to be fast and efficient for analyzing
high-dimensional survival data [26]. We here extend
the EM coordinate descent algorithm to fit the group
spike-and-slab lasso Cox models. We derive the algo-
rithm based on the log joint posterior density of the
parametersϑ = (β, γ, θ):

logp β; γ; θjt; dð Þ∝ logp t; djβ; h0ð Þ þ
X J

j¼1
logp β jjS j

� �

þ
X J

j¼1
logp γ jjθg

� �
þ
XG

g¼1
logp θg

� �

ð5Þ
The log-likelihood function, logp(t, d| β, h0), is propor-

tional to the partial log-likelihood pl(β) defined in Eq.
(2) or the Breslow or the Efron approximation in the
presence of ties [35, 36], if the baseline hazard function
h0 is replaced by the Breslow estimator [37, 40]. There-
fore, the log joint posterior density can be expressed as

logp β; γ; θjt; dð Þ∝pl βð Þ−
X J

j¼1
S−1j β j

���
���

þ
X J

j¼1
γ j logθg þ 1−γ j

� �
log 1−θg

� �� �

þ
XG

g¼1
a−1ð Þ logθg þ b−1ð Þ log 1−θg

� �� �

ð6Þ
where pl(β) is the partial likelihood described in (2), and
Sj = (1 − γj)s0 + γjs1.
In EM coordinate decent algorithm, the indicator vari-

ables γj were treated the as ‘missing values’. The parameters
(β, θ) were estimated by averaging the missing values over
their posterior distributions. For the E-step, the expectation
of the log joint posterior density was calculated with respect
to the conditional posterior distributions of the missing
data. For predictors in group g, the conditional posterior
expectation of the indicator variable γj can be derived as

pgj ¼ p γ j ¼ 1jβ j; θg ; t; d
� �

¼
p β jjγ j ¼ 1; s1
� �

p γ j ¼ 1jθg
� �

p β jjγ j ¼ 0; s0
� �

p γ j ¼ 0jθg
� �

þ p β jjγ j ¼ 1; s1
� �

p γ j ¼ 1jθg
� �

ð7Þ
where p(γj = 1| θg) = θg, p(γj = 0| θg) = 1 − θg, p(βj| γj = 1,
s1) = de(βj| 0, s1) and p(βj| γj = 0, s0) = de(βj| 0, s0). There-
fore, the conditional posterior expectation of S−1j can be
obtained by

E S−1j jβ j

� �
¼ E

1

1−γ j

� �
s0 þ γ js1

jβ j

0
@

1
A

¼ 1−pgj
s0

þ pgj
s1

ð8Þ
From Eqs. (7) and (8), we can see that the estimates of

pj and Sj are larger for larger coefficientsβj, leading to
different shrinkage for different coefficients.
For the M-step, parameters (β, θ) were updated by

maximizing the posterior expectation of the log joint
posterior density with γj and S−1j replaced by their

conditional posterior expectations. From the log joint
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posterior density, we can see that β and θ can be
updated separately, because the coefficients β are only

involved inplðβÞ−P J
j¼1S

−1
j jβ jj and the probability param-

eter θ is only in
P J

j¼1ðγ j logθg þ ð1−γ jÞ logð1−θgÞÞþPG
g¼1ðða−1Þ logθg þ ðb−1Þ logð1−θgÞÞ . Therefore, the

coefficients β are updated by maximizing the expression:

Q1 βð Þ ¼ pl βð Þ−
X J

j¼1
Ŝ
−1
j β j

���
��� ð9Þ

where Ŝ
−1
j is the conditional posterior expectation of S−1j

as derived above. Given the scale parameters Sj, the termP J
j¼1Ŝ

−1
j jβ jj serves as the L1 lasso penalty with Ŝ

−1
j as

the penalty factors, and thus the coefficients can be up-
dated by maximizing Q1(β) using the cyclic coordinate
decent algorithm, which is extremely fast and can esti-
mate some coefficients exactly to zero [31, 41]. The
probability parameters {θg} are updated by maximizing
the expression:

Q2 θð Þ ¼
XJ

j¼1

pgj logθg þ 1−pgj
� �

log 1−θg
� �h i

þ
XG

g¼1
a−1ð Þ logθg þ b−1ð Þ log 1−θg

� �� �

ð10Þ
We can easily obtain:

θg ¼

X
j∈g

pgj þ a−1

J g þ aþ b−2
ð11Þ

where Jg is the number of predictors belonging to group
g.
Totally, the framework of the proposed EM coordinate

decent algorithm was summarized as follows:

1) Choose a starting value for β0, and θ0g . For example,
we can initialize β0 = 0, and θ0g ¼ 0:5.

2) For t = 1, 2, 3, …,

E-step: Update γj and S−1j by their conditional poster-

ior expectations.
M-step:

a) Update β using the cyclic coordinate decent
algorithm;

b) Update (θ1, , θG) by Eq. (11).

We assess convergence by the criterion: ∣d(t) − d(t − 1) ∣ /
(0.1−| d(t)| ) < ε, where d(t) = − 2pl(β(t)) is the estimate
of deviance at the tth iteration, and ε is a small value
(say 10− 5).

Evaluation of predictive performance
We can use several ways to measure the performance of
a fitted group lasso Cox model, including the partial
log-likelihood (PL), the concordance index (C-index),
the survival curves, and the survival prediction error
[37]. The partial log-likelihood function measures the
overall quality of a fitted Cox model, and thus is usually
used to choose an optimal model [37, 41, 42]. The
standard way to evaluate the performance of a model is
to fit the model using a data set and then calculate the
above measures with independent data. A variant of
cross-validation [31, 43], called pre-validation method
was used in the present study to evaluate the perform-
ance. The data was randomly split to K subsets of
roughly the same size. The (K – 1) subsets was used to
fit a hierarchical Cox model. The estimate of coefficients

denoted as β̂
ð−kÞ

from the data excluding the k-th subset.

The prognostic indices η̂ðkÞ ¼ XðkÞβ̂
ð−kÞ

, called the

cross-validated or pre-validated prognostic index, were
calculated for all individuals in the k-th subset of the
data. Cross-validated prognostic indices η̂i for all indi-
viduals can be calculated by cycling through all the K
parts. Then, (ti; di; η̂i ) was used to compute the several
measures described above. We can see that the
cross-validated prognostic value for each patient is de-
rived independently of the observed response of the pa-
tient. Therefore, the ‘pre-validated’ dataset (ti; di; η̂i ) can
essentially be treated as a ‘new dataset’. This procedure
provides valid assessment of the predictive performance
of the model [31, 43].
Moreover, we also use an alternative way to evaluate

the partial log-likelihood, i.e., the so-called
cross-validated partial likelihood (CVPL), defined as [37,
41, 42].

CVPL ¼
XK

k¼1
pl β̂ −kð Þ
� �

−pl −kð Þ β̂ −kð Þ
� �h i

ð12Þ

where β̂ð−kÞ is the estimate of β from all the data except

the k-th part, plðβ̂ð−kÞÞ is the partial likelihood of all the

data points and plð−kÞðβ̂ð−kÞÞ is the partial likelihood ex-

cluding part k of the data. By subtracting the log-partial
likelihood evaluated on the non-left out data from that
evaluated on the full data, we can make efficient use of
the death times of the left out data in relation to the
death times of all the data.

Selecting optimal scale values
The spike-and-slab double-exponential prior requires
two preset scale parameters (s0, s1). Following the previ-
ous studies [24–26], we set the slab scale s1 to be rela-
tively large (e.g., 1), and consider a sequence of L
decreasing values { sl0 }: s1 > s10 > s20 > ⋯ > sL0 > 0 , for
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the spike scale s0. We then fit L models with scales {ðsl0;
s1Þ; l ¼ 1;⋯; L } and select an optimal model using the
method described above. This procedure is similar to
the lasso implemented in the widely-used R package
glmnet, which quickly fits the lasso Cox models over a
grid of values of λ covering its entire range, giving a se-
quence of models for users to choose from [31, 41].

Implementation and software package
We have incorporated the method proposed in this
study into the function bmlasso() in our R package
BhGLM [44]. The package BhGLM also includes several
other functions for summarizing and evaluating the pre-
dictive performance, like summary.bh, cv.bh predict.bh.
The function in the package is very fast, usually taking
several minutes for fitting and evaluating a model with
thousands of variables. The package BhGLM is freely
available from https://github.com/nyiuab/BhGLM.

Simulation study and real data analysis
Simulation studies
We assessed the proposed approach by extensive simula-
tions, and compared with the lasso implemented in the
R package glmnet and several penalization methods that
can incorporate group information, including sparse
group lasso (SGL) in the R package SGL, overlap group
lasso (grlasso), overlap group MCP (grMCP), overlap
group SCAD (grSCAD), and overlap group composite
MCP (cMCP) in the R package grpregOverlap [45]. Our
simulation method was similar to our previous work [26,
27]. We considered five simulation scenarios with differ-
ent complexities, including non-overlap or overlap
groups, group sizes, number of non-null groups, and
correlation coefficients (r) (Table 1). In simulation sce-
nario 2–5, overlap structures were considered. To han-
dle the overlap structures, we duplicated overlapping
predictors into groups that predictors belong to [28, 30].
In each scenario, we simulated two data sets, and used

Table 1 The preset non-zero predictors and their assumed effect values of the different simulation scenarios

Simulation
scenarios

Group, non-zero predictors and effect size

1 non-overlap group

Group group1 group5 group20

predictors {x5 x20 x40} {x210 x220 x240} {x975 x995}

2 overlap group

Group group1 group5 group20

predictors {x5 x20 x40} {x210 x220 x240} {x975 x995}

3 varying group size (4/20/50)

Group group1 group11

predictors {x1 x2 x3 x4} {x501 x502 x503 x504}

4 varying number of non-null groups (8/3/1)

Group group1 group2 group7 group8 group11 group12 group19 group20

predictors {x5} {x55} {x305} {x355} {x505} {x555} {x905} {x955}

Group group1 group8 group20

predictors {x5 x15 x25} {x355 x365 x375} {x905 x915}

Group group1

predictors {x5 x10 x15 x20 x25 x30 x35 x40}

5 varying correlation within group (r = 0.0/0.5/0.7)

Group group1 group5 group20

predictors {x5 x20 x40} {x210 x220 x240} {x975 x995}

Effect size for above simulation scenarios

0.8 −0.7 1.0 −0.9 −0.8 0.9 −1.0 0.7

6 varying effect size

Group group1 group5 group20

predictors {x5 x20 x40} {x210 x220 x240} {x975 x995}

Effect size for scenario 6

(−2, 2) −0.7 1.0 −0.9 −0.8 0.9 −1.0 0.7

Note:{} quotes the predictors within a group.
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the first one as the training data to fit the models and
the second one as the test data to evaluate the predictive
values. We replicated the simulation 100 times and sum-
marized the results over these replicates. In simulation
scenario 6, we vary the effect size of the non-zero coeffi-
cient β5, from − 2 to 2. Other simulation setting are the
same with scenario 2. The purpose of this simulation is to
see the profile of prior scale along with varying effect size.
Each simulated dataset included n = 500 observations,

with a censored survival response yi and a vector of m =
1000 continuous predictorsXi = (xi1,…, xim). We assumed
20 groups. Each group included about 50 predictors. For
example, group 1 and 2 included variables (x1,…, x50) and
(x51,…, x100), respectively. The vector Xi was randomly
sampled from multivariate normal distributionN1000(0,Σ),
where the covariance matrix Σ was set to account for var-
ied grouped correlation and overlapped structures under
different simulation scenarios. We simulated several sce-
narios. The predictors were assumed to be correlated each
other with in group and those predictors in different
groups were assumed to be independent. The correlation
coefficient r was generally set to be 0.5.

To simulate the censored survival response, following
the method of Simon [41], we generated the “true” sur-
vival time Ti for each individual from the exponential
distribution: Ti � Exponð expðPm

j¼1xijβ jÞÞ and the cen-

soring time Ci for each individual from the exponential
distribution: Ci~Expon(exp(ri)), where ri were randomly
sampled from a standard normal distribution. The ob-
served censored survival time ti was set to be the mini-
mum of the “true” survival and censoring times, ti =
min(Ti,Ci), and the censoring indicator di was set to be
1 if Ci > Ti and 0 otherwise. Our simulation scenarios re-
sulted in different censoring ratios, but generally below
50%. For all the scenarios, we set eight coefficients to be
non-zero and the others to be zero.

Scenario 1: Non-overlap group
In this scenario, each group is independent. There was
no any overlap among groups. Eight non-zero predic-
tors{x5, x20, x40}, {x210, x220, x240}, {x975, x995} were
simulated to be included into three groups, group 1, 5,
and 20 (Table 1). The group sizes is 50, including 50 pre-
dictors, presented as below:

Group ID: 1 2 … 5 … 19 20

Group
setting:

x1 −
x50

x51 −
x100

x201 −
x250

x901 −
x950

x951 −
x1000

Scenario 2: Overlap grouping
In this scenario, overlapped grouping structure was
considered. Only the last group is independent. For

example, for group 1 and group 2, there were five
predictors (x46, x47, x48, x49, x50) belong to two groups.
The setting for eight non-zero predictors and their effect
sizes are the same with scenario 1. The group sizes is
still 50. The overlap structure are presented below:

Group ID: 1 2 3 … 19 20

Group
setting:

x1 −
x50

x46 −
x100

x96 −
x150

x896 −
x950

x951 −
x1000

Scenario 3: Varying group sizes
Group size means the number of predictors included in
a group. A big group size means the group included
relative more predictors. The group size may affect the
model fitting. In this scenario, we assumed two groups,
group 1 and 11, including non-zero predictors, {x1, x2,
x3, x4} and {x501, x502, x503, x504}, respectively. Other
simulation setting are similar with scenario 2. To investi-
gate the group size effect on model fitting, we simulated
different group size as below:

(1). only four non-zero predictors included in group 1
and 11:

Group
ID:

1 2 3 … 11 12 … 19 20

Group
setting:

x1 -
x4

x5 -
x100

x96 -
x150

x501 -
x504

x505 -
x600

x896 -
x950

x951 -
x1000

(2). 20 predictors included in group 1 and 11:

Group
ID:

1 2 3 … 11 12 … 19 20

Group
setting:

x1 -
x20

x21 -
x100

x96 -
x150

x501 -
x520

x521
-x 600

x896 -
x950

x951 -
x1000

(3). 50 predictors included in group 1 and 11:

Group
ID:

1 2 3 … 11 12 … 19 20

Group
setting:

x1 -
x50

x46 -
x100

x96 -
x150

x501 -
x550

x546 -
x600

x896 -
x950

x951 -
x1000

Scenario 4: Varying the number of non-null group
The true non-zero predictors may be included in some
groups. Other zero predictors belong to other groups.
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These groups included non-zero predictors called
non-null group. The number of non-null group may also
affect the model fitting. To evaluate the group number
effect, we varied the number of non-null groups, as
following:

(1).There are 8 non-null groups including non-zero co-
efficients: {x5}, {x55}, {x305}, {x355}, {x505}, {x555},
{x905}, and {x955};

(2).There are 3 non-null groups including non-zero co-
efficients: {x5, x15, x25}, {x355, x365, x375}, and {x905,
x915};

(3).There is only 1 non-null group including non-zero
coefficients: {x5, x10, x15, x20, x25, x30, x35, x40}. The
overlap settings were the same with scenario 2. The
group number and effect sizes of these non-zero co-
efficients are shown in Table 1.

Scenario 5: Varying the correlation within group
To evaluate the effect of correlation within group, we set
different correlation coefficients within a group: r = 0.0,
0.5, and 0.7. Other settings were the same with scenario 2.

Scenario 6: Self-adaptive shrinkage on varying the effect
size
The significant feature of the proposed spike-and-slab
prior is the self-adaptive shrinkage. To show this prop-
erty, we performed additional simulation study based on
Scenario 1. We fixed the prior scale (s0, s1) = (0.02, 1)
and varied the effect size of the first simulated non-zero
predictor (x5) from (− 2, 2). We recorded the scale pa-
rameters for this non-zero predictor (x5) and nearby zero
effect predictor (x6), and non-zero predictor (x20) with
the simulated effect size − 0.7. These three predictors
belong to the same group.

Real data analysis
We applied the proposed gsslasso Cox model to analyze
three real datasets, ovarian cancer (OV), lung
adenocarcinoma (LUAD), and breast cancer. The whole
genome expression data were downloaded from The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov/)
(updated at June 2017). We firstly clean the data to get the
clear survival information and potential genes involved in
further analysis. The details of the three datasets and clean
procedure are described below paragraphs. Secondly, several
genome annotation tools were used to construct the
pathways information. All the genes were mapped to
KEGG pathways by using R/bioconductor packages:
mygene, clusterProfiler and AnnotationDbi [46]. The
R/Bioconductor mygene package was used to convert
gene names to gene ENTREZ ID. The clusterProfiler
package was used to get pathway/group information
for genes, by loading the gene ENTREZ ID.

AnnotationDbi was used primarily to create mapping
objects that allow easy access from R to underlying
annotation databases, like KEGG in the present study.
By using these packages, we mapped the genes into
pathways, and got group structure information for further
analysis. Only the gene included in pathways were used in
further analysis. Thirdly, the proposed method and several
penalization approaches used in above simulation study
were applied to analyze the survival data with thousands
of genes and pathway/group information. We performed
10-fold cross-validation with 10 replicates to evaluate the
predictive values of the several models. After model fit-
ting, the non-zero parameters were the detected genes.

TCGA ovarian cancer dataset (mRNA sequencing data)
This dataset contains mRNA expression data and
relevant clinical outcome for ovarian cancer (OV) from
TCGA. The raw dataset includes 304 patients and
20,503 genes after removing the duplication and
unknown gene names. The raw clinical data included
586 patients. We cleaned the clinical survival data from
several clinical files, and obtained 582 patients with clear
survival information. We merged the individuals both
with gene expression data and survival information, and
obtained 304 patients with 20,503 genes for further
analysis. First, we filtered the genes with expressions
values less than 10. Then, genes with more than 30% of
zero expression values in the dataset were removed.
Furthermore, we calculated the coefficient of variance
(CV) of expression values for each gene, and kept the
genes with CV of larger than 20% quantile. After these
steps, 304 patients with 14,265 genes were included in
our analysis. The censoring ratio was 39.5%.We mapped
these genes to 271 pathways including 4260 genes.

TCGA lung adenocarcinoma dataset (mRNA sequencing
data)
The raw expression data contains 578 patients and
20,530 genes. After removing the duplication and
unknown gene names, there are 516 patients with
20,501 used for further analysis. The raw clinical data
included 521 patients. We cleaned the clinical data with
clear survival records, and included 497 patients in our
analysis. We then merged the clinical data and
expression data, and obtained 491 patients for with
20,501 genes for quality control. Similar with the steps
for ovarian cancer dataset, we filtered the genes with
expressions values less than 10. Then, we removed genes
with more than 30% of zero expression values in the
dataset. Furthermore, we calculated the coefficient of
variance (CV) of expression values for each gene, and
kept the genes with CV of larger than 20% quantile.
After these steps, 491 patients with 14,143 genes were
included in our analysis. The censoring ratio was
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68.4%. We mapped these genes to 274 pathways including
4266 genes.

TCGA breast cancer dataset (mRNA sequencing data)
The raw expression data contains 1220 patients and
20,530 genes. After removing the duplication and
unknown gene names, there are 1097 patients with 20,503
used for further analysis. The raw clinical data included
1097 patients. We cleaned the clinical data with clear
survival records, and included 1084 patients in our
analysis. We then merged the clinical data and expression
data, and obtained 1082 patients for with 20,503 genes for
quality control. The same steps used here for breast
cancer dataset, we filtered the genes with expressions
values less than 10, and removed genes with more than
30% of zero expression values in the dataset. Furthermore,
we calculated the coefficient of variance (CV) of
expression values for each gene, and kept the genes with
CV of larger than 20% quantile. After these steps, 1082
patients with 14,077 genes were included in our analysis.
The censoring ratio was 86.0%. We mapped these genes
to 275 pathways including 4385 genes.

Results
Simulation results
Predictive performance
Tables 2 and 3 summarizes the CVPL (cross-validated
partial likelihood) and C-index in the testing data over 100
replicates for Scenarios 1–5. We observed that the group
spike-and-slab lasso Cox model performed similarly with

cMCP and outperformed other methods, under different
simulation scenarios. These results suggested that, with
complex group structures, the proposed method could per-
form well.

Accuracy of parameter estimates
To evaluate the accuracy of parameters estimation, we
summarized the average numbers of non-zero coefficients
and the mean absolute errors (MAE) of coefficient esti-

mates, defined as MAE =
P jβ̂ j−β jj=m, in Tables 4 and 5

for different scenarios. It was found that the dected number
of null-zero coefficients were very close preset number 8,
and the values of MAE were very small for the proposed
method under different scenarios. The performances of the
group spike-and-slab lasso Cox and cMCP were consist-
ently better than the other methods for all the five scenar-
ios, and the proposed method was slightly better than
cMCP. These results suggested that the proposed method
can generate lowest false positive and unbiased estimation.
The estimates of coefficients from the group

spike-and-slab lasso Cox and the other methods over
100 replicates are shown in Fig. 1 and Additional file 1:
Figure S1, Additional file 2: Figure S2, Additional file 3:
Figure S3, Additional file 4: Figure S4, Additional file 5:
Figure S5, Additional file 6: Figure S6 and Additional file
7: Figure S7 for different scenarios. It can be seen that
the group spike-and-slab lasso Cox method produced es-
timates close to the simulated values for all the coeffi-
cients. This is expected, because the spike-and-slab prior
can induce weak shrinkage on larger coefficients and
strong shrinkage on zero coefficients. In contrast, other
methods except for cMCP, gave a strong shrinkage
amount on all the coefficients and resulted in the solu-
tions that non-zero coefficients were shrunk and under-
estimated compared to true values. In addition, higher
false positives (grey bars) were observed, except for the
group spike-and-slab lasso Cox and cMCP methods.

The self-adaptive shrinkage feature
To show the self-adaptive shrinkage feature, we per-
formed simulation 6. Figure 2 shows the adaptive shrink-
age amount on non-zero coefficients x5, along with the
varying effect size. It clearly shows that the proposed
spike-and-slab lasso Cox model approach has
self-adaptive and flexible characteristics, without affect-
ing the nearby zero coefficient (x6) and non-zero variable
(x20) belong to the same group.

Real data analysis results
There were about one third genes were mapped to
pathways for the above three real datasets. The rest
genes were put together as an additional group. The
detailed information of genes shared by different

Table 2 Estimates of two measures over 100 replicates under
simulation scenario 1 and 2

Methods CVPL C-index

Scenario 1 gsslasso − 1111.541(52.390) 0.848(0.012)

lasso − 1140.742(52.108) 0.836(0.013)

grplasso − 1198.449(53.664) 0.792(0.017)

grMCP − 1280.783(66.870) 0.736(0.039)

grSCAD − 1256.297(57.293) 0.752(0.027)

cMCP − 1114.934(53.278) 0.847(0.012)

SGL − 1167.902(72.121) 0.826(0.016)

Scenario 2 gsslasso − 1077.398(56.949) 0.868(0.011)

lasso −1114.886(56.200) 0.853(0.012)

grplasso − 1161.058 (59.318) 0.825 (0.015)

grMCP − 1236.072(67.840) 0.775(0.018)

grSCAD − 1219.129(66.240) 0.798(0.020)

cMCP − 1078.363 (57.004) 0.866 (0.011)

Note: Values in the parentheses are standard deviations. “gsslasso” represents
the proposed group spike-and-slab lasso cox. The slab scales, s1, are 1 in the
analyses. The optimal s0 = 0.02 and s0 = 0.03 for gsslasso cox methods under
scenario 1 and 2, respectively. For scenarios with overlap structures, SGL
method was not used for comparison since it cannot handle overlap
situation directly
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pathways is listed in Additional file 8: S1, S2, and S3, for
ovarian cancer, lung cancer and breast cancer,
respectively.
Real data analysis is to build a survival model for

predicting the overall survival outcome by integrating
gene expression data and pathway information. We
standardized all the predictors to use a common scale

for all predictors, prior to fitting the models, using
the function covariate() function in BhGLM package.
In our prior distribution, there were to preset
parameters, (s0, s1). In our real data analysis, we fixed
the slab scale s1 to 1, and varied the spike scale s0
values by: {k × 0.01; k = 1,…, 9}, leading to 9 models.
The optimal spike scale s0 was select by the 10-fold

Table 3 Estimates of two measures over 100 replicates for varying group size and varying number of non-null group under
simulation scenario 3,4 and 5, respectively

scenario 3 scenario 4 scenario 5

Group
size

methods CVPL C-index number
of
non-null
group

CVPL C-index Correlation
coefficients
within
group

CVPL C-index

4/4 gsslasso − 1130.995
(58.229)

0.829
(0.0513)

8/20 − 1090.819
(53.224)

0.875
(0.010)

r = 0.0 −1077.130
(57.084)

0.876
(0.009)

lasso −1167.319
(57.844)

0.813 (0.015) − 1113.349
(52.438)

0.870
(0.010)

− 1104.924
(56.431)

0.870
(0.010)

grlasso − 1137.892
(57.414)

0.827 (0.014) − 1266.185
(57.782)

0.746
(0.018)

− 1174.234
(57.919)

0.829
(0.014)

grMCP − 1131.451
(57.960)

0.829 (0.013) − 1334.359
(58.901)

0.616
(0.029)

− 1287.124
(64.897)

0.747
(0.035)

grSCAD − 1132.272
(58.315)

0.829 (0.013) − 1305.299
(58.587)

0.721
(0.025)

− 1258.988
(62.970)

0.795
(0.026)

cMCP −1131.483
(58.339)

0.829 (0.013) − 1094.230
(52.983)

0.875
(0.010)

−1082.770
(57.483)

0.875
(0.010)

4/20 gsslasso − 1149.792
(56.801)

0.830 (0.013) 3/20 − 1120.043
(62.936)

0.849
(0.013)

r = 0.5 − 1087.823
(56.773)

0.865
(0.011)

lasso − 1179.653
(56.986)

0.813 (0.014) −1149.463
(61.507)

0.836(0.015) − 1119.388
(56.076)

0.852
(0.013)

grlasso −1179.498
(55.463)

0.811 (0.013) − 1213.466
(62.431)

0.784
(0.018)

− 1157.999
(54.642)

0.828
(0.013)

grMCP − 1172.856
(56.712)

0.816 (0.013) − 1318.758
(64.886)

0.685
(0.033)

− 1226.349
(62.257)

0.778
(0.018)

grSCAD −1172.884
(56.852)

0.816 (0.013) − 1278.753
(62.726)

0.756
(0.023)

− 1208.197
(63.032)

0.801
(0.018)

cMCP − 1150.915
(56.806)

0.827 (0.013) − 1122.606
(62.852)

0.848(0.014) − 1089.138
(56.817)

0.864
(0.011)

4/50 gsslasso − 1145.155
(56.523)

0.825 (0.013) 1/20 − 1141.219
(60.329)

0.824
(0.014)

r = 0.7 −1113.142
(60.749)

0.852
(0.012)

lasso − 1176.796
(56.449)

0.810 (0.015) −1172.768
(57.418)

0.810
(0.014)

−1130.099
(60.286)

0.834
(0.013)

grlasso −1208.999
(55.893)

0.782 (0.017) − 1180.395
(58.095)

0.802
(0.017)

− 1164.874
(59.066)

0.814
(0.013)

grMCP − 1272.423
(73.279)

0.782 (0.082) − 1178.416
(64.849)

0.808
(0.016)

− 1202.094
(62.653)

0.822
(0.013)

grSCAD − 1271.286
(58.185)

0.777 (0.018) −1178.827
(65.082)

0.808
(0.016)

− 1195.481
(63.401)

0.852
(0.012)

cMCP − 1148.318
(56.896)

0.824 (0.013) − 1147.845
(59.271)

0.821
(0.014)

− 1117.158
(61.869)

0.858
(0.013)

Notes: in scenario 3, group size “4/50” denotes that there are four none-zero coefficients embedded in a group with 50 predictors. The group size is 50. This is
true for “4/20” and “4/4”. The optimal s0 = 0.02 for different group size settings. In scenario 4, “8/20” denotes that there are 8 non-null groups among 20 groups.
Each non-null group includes at least one non-zero coefficients. The optimal s0 = 0.02 for the three settings. In scenario 5, the optimal s0 are 0.02, 0.03, and 0.04
for different correlation coefficients, 0.0, 0.5, and 0.7 within group, respectively. The slab scales, s1, are 1 in this scenario 3 4, and 5. Values in the parentheses are
standard errors. “gsslasso” represents the proposed group spike-and-slab lasso cox
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10-time cross-validation according to the CVPL.
Using the optimal s0, we performed further real data
analysis. For comparison, we also analyzed the data
using the several existing methods as described in the
simulation studies.
We performed 10-fold cross-validation with 10

replicates to evaluate the predictive values of the
several models. Table 6 summarizes the measures of
the prognostic performance on these three data sets,
by only using the genes included in pathway. For all
the data sets the proposed group spike-and-slab
lasso Cox model performed better than the other
methods. The above results used only genes mapped
in pathways. Additional file 9 shows the measures of
the performance on these three data sets, by using
the all genes. The genes which were not mapped
into any pathway were put together as an additional
group. We can see that the prediction performance
of the proposed method were still better than the
other methods.
The pathway enrichment analyses for these detected

genes were summarized in Additional file 10: S4-S6.
Additional file 11: S7 presents the genes detected by
the proposed and existed methods. Their standardized
effects size were also plotted for the three real data
sets. There were many common gene among different
methods. For ovarian cancer dataset, the genes
CYP2R1 and HLA-DOB detected by the proposed
gsslasso method, were also detected by both lasso and
cMCP methods. For Lung cancer dataset, several
genes detected by the proposed gsslasso method, such

Table 4 Average number of non-zero coefficients and mean
absolute error (MAE) of coefficient estimates over 100
simulations for scenario 1 and 2

Method Average
Number

MAE

Scenario 1 gsslasso 8.61 0.60 (0.24)

lasso 51.99 3.77 (0.40)

grlasso 474.80 12.43 (1.64)

grMCP 62.00 9.30 (2.56)

grSCAD 108.80 8.41 (1.25)

cMCP 14.19 0.96 (0.34)

SGL 39.79 6.25 (1.65)

Scenario 2 gsslasso 9.74 1.29 (0.84)

lasso 53.70 4.02 (0.46)

grlasso 502.05 12.11 (2.08)

grMCP 57.13 8.04 (0.67)

grSCAD 167.59 8.77 (0.93)

cMCP 15.14 0.96 (0.33)

*: the optimal s0 = 0.02 and s0 = 0.03 for gsslasso method under scenario 1 and
2, respectively. For scenarios with overlap structures, SGL method was not
used for comparison since it cannot handle overlap situation directly

Table 5 Average number of non-zero coefficients and mean
absolute error (MAE) of coefficient estimates over 100
simulations for scenario 3, 4, and 5

scenario 3: Group size

4/4 4/20 4/50

Average
Number

MAE Average
Number

MAE Average
Number

MAE

gsslasso 9.09 0.58
(0.22)

9.26 0.64
(0.29)

9.27 0.69
(0.54)

lasso 53.75 3.90
(0.41)

54.58 3.94
(0.43)

53.96 3.93
(0.44)

grlasso 270.78 2.78
(1.22)

455.15 7.06
(1.69)

509.75 10.58
(1.71)

grMCP 13.40 0.57
(0.18)

40.00 3.50
(0.54)

84.50 10.09
(2.52)

grSCAD 56.16 0.85
(0.78)

53.85 3.62
(0.74)

100.00 7.86
(1.77)

cMCP 9.42 0.64
(0.29)

14.64 0.98
(0.33)

16.85 1.05
(0.38)

scenario 4: Number of non-null groups

8/20 3/20 1/20

gsslasso 8.85 0.54
(0.19)

9.12 0.56
(0.19)

9.27 0.68
(0.26)

lasso 52.87 3.58
(0.44)

53.51 3.89
(0.43)

52.49 3.90
(0.41)

grlasso 757.1 19.84
(2.51)

610.25 13.91
(2.08)

461.25 7.64
(1.71)

grMCP 83.95 7.68
(0.60)

46.00 7.49
(1.51)

50.00 4.52
(0.67)

grSCAD 410.3 10.80
(0.82)

142.30 8.04
(0.74)

55.85 4.57
(0.74)

cMCP 13.22 0.83
(0.38)

15.74 0.96
(0.35)

14.81 1.03
(0.31)

scenario 5: Correlation coefficients within group

r = 0 r = 0.5 r = 0.7

gsslasso 9.18 0.85
(0.72)

8.90 1.07
(0.99)

8.11 3.54
(0.54)

lasso 59.10 3.42
(0.35)

52.63 4.04
(0.49)

48.82 5.25
(0.50)

grlasso 557.00 10.27
(1.25)

490.50 11.88
(1.75)

465.90 13.61
(2.45)

grMCP 61.71 7.38
(0.89)

57.40 8.14
(1.29)

53.54 9.59
(0.83)

grSCAD 148.68 7.42
(0.67)

170.61 8.78
(1.16)

194.58 11.28
(1.28)

cMCP 16.72 0.98
(0.47)

14.32 0.98
(0.37)

21.51 3.53
(0.40)

Notes: in scenario 3, group size “4/50” denotes that there are four none-zero
coefficients embedded in a group with 50 predictors. The group size is 50. This is
true for “4/20” and “4/4”. The optimal s0 = 0.02 for different group size settings.
The slab scales, s1, are 1 in this scenario. In scenario 4 “8/20” denotes that there
are 8 non-null groups among 20 groups. Each non-null group includs at least one
non-zero coefficients. The optimal s0 = 0.02 for the three settings. In scenario 5,
the optimal s0 are 0.02, 0.03, and 0.04 for different correlation coefficients, 0.0, 0.5,
and 0.7 within group, respectively. The slab scales, s1, are 1 in this scenario 3, 4
and 5. Values in the parentheses are standard errors. “gsslasso” represents the
proposed group spike-and-slab lasso cox

Tang et al. BMC Bioinformatics           (2019) 20:94 Page 10 of 15



as VDAC1, EHHADH, ACAT2, KIT, CCND1, PIK3R1,
NRAS, GNPNAT1, and KYNU, were also detected by
other method. For, breast cancer dataset, two genes
HSPA1A and ABCB5 detected by the proposed
gsslasso method were also detected by other method.
We found that most of the genes detected by the

proposed method were associated with cancers in
previous studies. HABP2, detected in ovarian cancer,
was associated with familial nonmedullary thyroid
cancer [47]. CYP24A1, the main enzyme responsible for
the degradation of active vitamin D, plays an important
role in many cancer related cellular processes. The
associations between CYP24A1 polymorphisms and
cancer susceptibility had been evaluated by many studies
[48]. Keratin 8 (KRT8) plays an essential role in the
development and metastasis of multiple human cancers.
A recent study suggested that in clear cell renal cell
carcinoma and gastric cancer, KRT8 upregulation
promotes tumor metastasis and associated with poor
prognosis [49, 50]. E2F7, detected in lung cancer,

involved in several cancer studies, which might act as an
independent prognostic factor for breast cancer, and
Squamous Cell Carcinoma, and gliomas [51–53]. Most
of the genes detected by the proposed method in the
three real datasets had been found associated with
different cancers. These results may provide some
interesting information for further studies.

Discussion
The group structures among various features arise
naturally in many biological and medical researches,
especially in large-scale omics data. Such grouping infor-
mation is biologically meaningful and intrinsically
encoded in the biological data. Thus it is desirable to
incorporate the grouping information into data analysis.
Various penalization methods have been designed for
such situations [13, 14, 30, 54, 55]. Recently, we have
developed a novel hierarchical modeling approach, the
group spike-and-slab lasso GLMs, to integrate the
variable group information for gene detection and
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Fig. 1 The parameter estimation averaged over 100 replicates for the group spike-and-slab lasso Cox (gsslasso), the lasso, grlasso, grMCP, grSCAD,
SGL and cMCP methods for Scenario 1. Blue cycles are the simulated non-zero values. Black points and lines represent the estimated values and
the interval estimates of coefficients
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prognostic prediction [27]. In this study, we extended
the method to Cox proportional hazards model for ana-
lyzing censored survival data.
Similar to the group spike-and-slab lasso GLMs, the

key to our group spike-and-slab lasso Cox is the group
spike-and-slab double-exponential prior. This prior has
significant advantage in variable selection and parameter
estimation. It induces weak shrinkage on larger coeffi-
cients and strong shrinkage on irrelevant coefficients. In
contrast, other methods usually gave a strong shrinkage
amount on all the coefficients and resulted in the solu-
tions that non-zero coefficients were shrunk and under-
estimated. The proposed group spike-and-slab prior
allows the model to incorporate the biological similarity
of genes within a same pathway into the analysis.
The spike-and-slab prior depends on the spike and slab

scale parameters. Our previous study suggested that slab
scale s1 had little influence on model fitting, while the spike
scale s0 strongly affected model performance [25, 26]. A
slab scale s1 value introducing weak shrinkage amount
would be helpful to include relevant variables into the
model. Therefore, we set s1 = 1 in our analysis. We evalu-
ated the performance of the proposed model on a grid of
values of spike scale s0 from a reasonable range, e.g., (0,
0.1), and then selecting an optimal value using
cross-validation. This is a path-following strategy for fast
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Fig. 2 The adaptive shrinkage amount, along with the varying effect
size for x5. The x20 is the none-zero coefficients with the simulated
effect size − 0.7, while x6 is the nearby coefficient with simuated
zero effect size

Table 6 The measures of optimal group spike-and-slab lasso (gsslasso) cox and the lasso cox models for TCGA ovarian cancer, lung
adenocarcinoma (LUAD) and breast cancer dataset with pathway genes by 10 times 10-fold cross validation

Pathway
number

Genes
included

Methods CVPL C-index Number of
non-zero gene

TCGA 271 4260 gsslasso − 1041.218 (2.118) 0.577 (0.012) 33

ovarian lasso − 1042.905 (1.687) 0.533 (0.027) 15

cancer grlasso − 1044.110 (12.741) 0.504 (0.014) 24

N = 304 grMCP − 1046.965 (8.604) 0.502 (0.007) 24

grSCAD −1042.349 (5.339) 0.503 (0.012) 24

cMCP − 1043.373 (2.215) 0.532 (0.019) 13

TCGA 274 4266 gsslasso − 938.973 (1.675) 0.559 (0.010) 64

LUAD lasso − 941.383 (3.720) 0.545 (0.019) 13

N = 491 grlasso − 945.605 (8.137) 0.547 (0.023) 111

grMCP − 1092.091 (30.477) 0.512 (0.015) 25

grSCAD − 940.358 (1.331) 0.538 (0.021) 123

cMCP −942.831 (3.301) 0.530 (0.022) 3

TCGA 275 4385 gsslasso −996.491 (2.131) 0.640 (0.153) 86

Breast lasso −1002.046 (5.356) 0.523 (0.027) 2

cancer grlasso − 1001.073 (9.641) 0.590 (0.022) 93

N = 1082 grMCP − 1016.864 (25.290) 0.520 (0.019) 12

grSCAD − 1005.299 (2.268) 0.522 (0.007) 24

cMCP − 1012.587 (44.339) 0.502 (0.012) 1

Note: Values in the parentheses are standard errors. For group spike-and-slab lasso model, the optimal s0 = 0.03 for three data sets. In TCGA ovarian cancer, we
mapped 4260 genes into 271 pathways. The analyses was performed on these genes including in these pathways. The same is true for other two datasets
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dynamic posterior exploration of the proposed models,
which is similar to the approach of Ročková and George
[24, 56]. Additional file 12: Figure S8 a and b show the solu-
tion paths under Scenario 2, for the proposed model and
the lasso Cox model. Additional file 12: Figure S8 c and d
show the profiles of cross-validated palatial log-likelihood
by 10-fold cross-validation for the proposed model. These
profiles would help to choose optimal tuning parameters. It
could be found that, similar to the lasso, the spike-and-slab
lasso Cox is a path-following strategy for fast dynamic pos-
terior exploration. However, the solution path is essentially
different from that of the lasso model. For the lasso cox
model, the number of non-zero coefficient could be a few,
even zero if a strong penalty is adopted. However, in the
spike-and-slab lasso Cox model, larger coefficients will be
always included in the model with weak shrinkage, while ir-
relevant coefficients are removed (grey path in Additional
file 12: Figure S8 a).
Another feature of the proposed spike-and-slab prior

is bi-level selection, which is capable of selecting import-
ant groups as well as important individual variables
within those groups. Several methods perform bi-level
selection, including cMCP method [16], SGL [14], and
group exponential lasso [18]. The underlying assumption
is that the model is sparse at both the group and individ-
ual variable levels. The proposed group spike-and-slab
lasso Cox model can efficiently perform bi-level selec-
tion. In group level, the importance of a group is con-
trolled by the group-specific probability θg. Within a
group, the spike-and-slab prior allows to perform vari-
able selection by shrinking irrelevant or small effect co-
efficients exactly to zero, without affecting the
prediction performance.
The extensive simulation studies show that the prediction

performance of the proposed method is always slightly
better than cMCP method, and significantly better than all
other methods under different scenarios. In the real data
analysis, the prediction accuracy of the proposed method
incorporating pathway information was slightly improved
compared with the existing methods. This might be mainly
due to the complex genetic components involved in the
expression data, like haplotype blocks, subnetworks, and
interaction among the genes. The present model under the
linear assumption may not capture these complexities.
More sophisticated strategies could potentially enhance
prediction accuracy and further improve the models, by
defining more precise biological grouping information.
There are several further extensions of the proposed

method. For example, it can also be extended to
incorporate multiple level group structure, like three-level
group structure, i.e. SNP-gene-pathway. In addition, the
proposed model takes the spike-and-slab mixture
double-exponential prior. Other priors with a spike at zero
and includes heavier tails could be investigated, like Cauchy

distribution, a special case of Student-t distribution. The
theoretical and empirical properties of other priors are dif-
ferent, which may introduce more interesting results.

Conclusion
Incorporating biological group structure in
high-dimensional molecular data analysis can improve the
accuracy of disease prediction and power of gene detec-
tion. We propose a new hierarchical Cox model, gsslasso
Cox, for incorporating biological pathway information for
predicting disease survival outcomes and detecting associ-
ated genes. We develop a fast and stable deterministic al-
gorithm to fit the proposed models. Extensive simulation
studies and real applications show that compared with
several existing methods, the proposed approach provides
more accurate parameter estimation and survival predic-
tion. The proposed method has been implemented in a
freely available R package BhGLM.

Additional files

Additional file 1: Figure S1. The parameter estimation averaged over
100 replicates for the group spike-and-slab lasso Cox (gsslasso), the lasso,
grlasso, grMCP, grSCAD, and cMCP methods for Scenario 2. Blue cycles de-
note the simulated non-zero values. Black points and lines represent the
estimated values and the interval estimates of coefficients. (PDF 523 kb)

Additional file 2: Figure S2. The parameter estimation averaged over
100 replicates for the group spike-and-slab lasso Cox (gsslasso), the lasso
and grlasso methods for Scenario 3. Blue cycles denote the simulated
non-zero values. Black points and lines represent the estimated values
and the interval estimates of coefficients. The main title of each plot
denotes the varying group size for scenario 3. (PDF 778 kb)

Additional file 3: Figure S3. The parameter estimation averaged over
100 replicates for grMCP, grSCAD, and cMCP methods for Scenario 3.
Blue cycles denote the simulated non-zero values. Black points and lines
represent the estimated values and the interval estimates of coefficients.
The main title of each plot denotes the varying group size for Scenario 3.
(PDF 767 kb)

Additional file 4: Figure S4. The parameter estimation averaged over
100 replicates for the group spike-and-slab lasso Cox (gsslasso), the lasso
and grlasso methods for Scenario 4. Blue cycles denote the simulated non-
zero values. Black points and lines represent the estimated values and the
interval estimates of coefficients. The main title of each plot denotes the
varying the number of non-null group for Scenario 4. (PDF 791 kb)

Additional file 5: Figure S5. The parameter estimation averaged over
100 replicates for grMCP, grSCAD, and cMCP for Scenario 4. Blue cycles
denote the simulated non-zero values. Black points and lines represent
the estimated values and the interval estimates of coefficients. The main
title of each plot denotes the varying the number of non-null group for
Scenario 4. (PDF 783 kb)

Additional file 6: Figure S6. The parameter estimation averaged over
100 replicates for the group spike-and-slab lasso Cox (gsslasso), the lasso
and grlasso methods for Scenario 5. Blue cycles denote the simulated non-
zero values. Black points and lines represent the estimated values and the
interval estimates of coefficients. The main title of each plot denotes the
varying the number of non-null group for Scenario 5. (PDF 1054 kb)

Additional file 7: Figure S7. The parameter estimation averaged over
100 replicates for grMCP, grSCAD, and cMCP for Scenario 5. Blue cycles
denote the simulated non-zero values. Black points and lines represent
the estimated values and the interval estimates of coefficients. The main
title of each plot denotes the varying the number of non-null group for
Scenario 5. (PDF 778 kb)
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Additional file 8: S1, S2, and S3. The detailed information of genes
shared by different pathways for ovarian cancer, lung cancer and breast
cancer, respectively. (ZIP 213 kb)

Additional file 9: Table S1. The measures of optimal group spike-and-
slab lasso (gsslasso) cox and the lasso cox models for TCGA ovarian
cancer, lung adenocarcinoma (LUAD) and breast cancer dataset with all
genes by 10 times 10-fold cross validation. (DOCX 20 kb)

Additional file 10: S4, S5 and S6. The pathway enrichment analyses
for these detected genes for ovarian cancer, lung cancer and breast
cancer, respectively. (ZIP 15 kb)

Additional file 11: S7. The detected genes and their standardized
effect sizes estimated by the group spike-and-slab lasso Cox model and
five existed methods for TCGA real datasets. (PDF 1340 kb)

Additional file 12: Figure S8. The solution path and cross-validated
partial loglikelihood profiles of the group spike-and-slab lasso Cox (a, c)
and the lasso (b, d) based on the Scenario 2. The colored points on the
solution path represent the estimated values of assumed eight non-zero
coefficients, and the circles represent true non-zero coefficients. Vertical
lines correspond to the optimal models. (PDF 1052 kb)
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