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Abstract

Background: Data on single-nucleotide polymorphisms (SNPs) have been found to be useful in predicting
phenotypes ranging from an individual’s class membership to his/her risk of developing a disease. In multi-class
classification scenarios, clinical samples are often limited due to cost constraints, making it necessary to determine the
sample size needed to build an accurate classifier based on SNPs. The performance of such classifiers can be assessed
using the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) for two classes and the Volume Under
the ROC hyper-Surface (VUS) for three or more classes. Sample size determination based on AUC or VUS would not
only guarantee an overall correct classification rate, but also make studies more cost-effective.

Results: For coded SNP data from D(> 2) classes, we derive an optimal Bayes classifier and a linear classifier, and
obtain a normal approximation to the probability of correct classification for each classifier. These approximations are
then used to evaluate the associated AUCs or VUSs, whose accuracies are validated using Monte Carlo simulations. We
give a sample size determination method, which ensures that the difference between the two approximate AUCs (or
VUSs) is below a pre-specified threshold. The performance of our sample size determination method is then illustrated
via simulations. For the HapMap data with three and four populations, a linear classifier is built using 92 independent
SNPs and the required total sample sizes are determined for a continuum of threshold values. In all, four different
sample size determination studies are conducted with the HapMap data, covering cases involving well-separated
populations to poorly-separated ones.

Conclusion: For multi-classes, we have developed a sample size determination methodology and illustrated its
usefulness in obtaining a required sample size from the estimated learning curve. For classification scenarios, this
methodology will help scientists determine whether a sample at hand is adequate or more samples are required to
achieve a pre-specified accuracy. A PDF manual for R package “SampleSizeSNP" is given in Additional file 1, and a ZIP
file of the R package “SampleSizeSNP" is given in Additional file 2.
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Background

Data on single-nucleotide polymorphisms (SNPs) have
been found to be useful in predicting an individual’s class
membership or his/her response to a drug, susceptibil-
ity to environmental factors such as toxins, and the risk
of developing a particular disease, among others [1-5].
The classification literature provides a variety of classi-
fiers (e.g., Support Vector Machine, genetic programming,
Neural Networks and Logistic Regression) and sample
size determination methods [6-10], but most of these are
only applicable to continuous data.

Recently Liu et al. [11] developed an optimal Bayes
classifier and a linear classifier for coded SNP data from
two classes, and obtained a normal approximation to
the probability of correct classification (PCC) for each
classifier. They also proposed a sample size determina-
tion methodology to determine an adequate sample size,
which ensures that the difference between the two approx-
imate PCCs is below a pre-specified threshold value.
Using Monte Carlo simulations, Liu et al. [11] assessed
the validity of their approximations. Furthermore, they
illustrated the performance of their sample size determi-
nation method via simulations and a real data analysis
using the HapMap data on two populations—Chinese and
Japanese.

While Liu et al. [11] showed that their sample size deter-
mination method is competitive, they also pointed out
that an additional maximization step is required in order
to determine the discrimination values for each of their
classifiers; see their REMARKI in their article for more
details. When there are three or more classes, however,
determination of such discrimination values is not only
more difficult, but also increases the overall computa-
tional burden. In a two-class scenario, a well known way to
overcome this difficulty is to consider the Receiver Oper-
ating Characteristic (ROC) curve, which plots the True
Positive Rates vs. False Positives Rates, at various dis-
crimination values [12,13]. Note that the ROC allows the
discrimination value to be varied and it simultaneously
explores all possible combinations of the correct classifi-
cation rates [14]. The Area Under the ROC curve (AUC) is
commonly used as a scalar performance measure, which
allows classifiers to be compared independent of the dis-
crimination values. Unfortunately, the AUC measure is
only applicable to a two-class scenario. A popular exten-
sion of the AUC measure, known as the Volume Under
the ROC hyper-Surface (VUS) measure, is often used in
a multi-class scenario (see e.g., Landgrebe and Duin [14]
and Landgrebe and Paclik 2010 [15]).

This article revisits the problem of sample size deter-
mination in classification scenarios involving coded SNP
data, but uses the AUC and the VUS as performance mea-
sures for two-class and multi-class scenarios, respectively.
More specifically, for coded SNP data from D(> 2)
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classes, we derive an optimal Bayes classifier and obtain a
normal approximation to its probability of correct classi-
fication, which is denoted by PCC(oc0). We also derive a
linear classifier and obtain a normal approximation to its
probability of correct classification, which is denoted by
PCC(n). For an overall assessment of each of the classi-
fiers, we define the scalar measures AUC (for two-class)
and VUS (for multi-class), and correspondingly define
the quantities AUC(00), AUC(71), VUS(00) and VUS(n)
for each classification scenario. For the two-class sce-
nario, we propose to determine the sample size n for
which AUC(c0) — AUC(n) < y, where y € (0,1) is
a pre-specified threshold value. Whereas, for the multi-
class scenario, we propose to determine the sample size
n for which VUS(oco) — VUS(1) < y. A computational
method to determine the total sample size for various
values of y is described. Monte Carlo simulations are car-
ried out to corroborate our theoretical approximations,
and the performance of our sample size determination
method is assessed via simulations and analysis of the
HapMap data consisting of 3 and 4 populations, respec-
tively. In all, four different sample size determination
studies are conducted with the HapMap data, cover-
ing cases involving well-separated populations to poorly-
separated ones. Details are given in the data analysis
section.

R software was used to carry out all the computa-
tions. A PDF manual for R package “SampleSizeSNP” is
given in Additional file 1, and a ZIP file of the R package
“SampleSizeSNP” is given in Additional file 2.

Methods

Assumptions

Suppose there are D(> 2) distinct classes denoted by
Ci,...,Cp, consisting of ny, . . ., np subjects, respectively.
For each subject, we observe a p-dimensional SNP vec-
tor, X = (x1,%2,..,%,)’, where typically p is much larger
(>>) than ZiD=1 n;, and the jth SNP is coded in such a way
xj = 0,1,2, which denotes the number of minor alleles in
the genotype “aa’; “Aa” and “AA’, respectively. It is possi-
ble that some of the SNPs are highly correlated, leading us
to choose one SNP to represent a set of highly correlated
ones. For classification and sample size determination, we
make the following assumptions:

1. For an m such that Z?Zl n; << m < p, the data
vector X = (x1,...,%;) consists only of 72 SNPs,
which are statistically independent. That is, the rest
of the (p — m) correlated SNPs are not used for
classification.

2. Foreachk=1,...,Dandj=1,...,m, we postulate
Hardy-Weinberg equilibrium, according to which
the probability mass function of the coded SNP (X})
belonging to class k is given by
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2\ .
Pr(Xj = x|6k) = (x)@;fj(l - 9k,j)2_xf, % =0,1,2,
j

where 0y ; is the minor allele frequency at locus j in
class k, and by definition 6 ; € (0.01,0.5). Here,
6k, < 0.5 because it is the minor allele frequency,
and 6; > 0.01 ensures that the polymorphism is not
a mutation. Foreach k =1,...,D, let
ék = (0k1,---,0km) denote the parameter vector
corresponding to the class Cy.

3. There is a percentage p of the m SNPs with marginal
effect on any two classes, and let [ = | pm] be the
number of SNPs with marginal effects.

The optimal classifier and its PCC
By the assumptions above, the conditional mass function
of X = (Xj,...,X)) given the class Cx, k=1,...,D, is

l
. 2\ .
F& =36 = | 1| { (x)@k,’,«(l = 6))" } :
j=

Suppose 7y = P(x € Ci) and we denote the marginal mass
function f(x) = Z£=1 i fx(%160k), then for each 1 < k <
D, the posterior mass function of the class Cj given x is

5 = _ TG0
Tk (Okl%) = ———=—
f@®)
For any fixed k = 1,...,D, the Bayes classification rule

then classifies x to the class Cy if
T (Ok %)
——>1
T (O %)

for all K # k. This leads to the optimal Bayes classifier,
which classifies x to Cy, if

(1)

!
> b > Kie )
j=1
for all K’ # k, where

i Ori(1 —6p;
o, = log( (1 — Ok J)) and Kig
’ Ok (1 — Ok,p)

, 1—6p;
= log (ﬂk) +2log< a '1>. (3)
Tk 1 — O

Then, the PCC of the optimal Bayes classifier is defined as

D l
PCC(c0) = Y P (ﬂ {Z Vs > Kk_,(,} IX e Ck) .
k=1

Kk | j=1

In Additional file 3: Appendix 1, we derive a normal
approximation for PCC(00), as [ — oo. That is, for large
I, we show that

D o0
PCC(o0) ~ Y i /K 6 ®hp T @
k=1 k
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where ¢ is the (D — 1)-dimensional multivariate normal
density, ff: is a multiple integral, K and Ry are (D—1) x
1 vectors, and X4 is a (D — 1) x (D — 1) matrix. All these
quantities are defined in Additional file 3: Appendix 1.

In Additional file 3: Appendix 4, we give an expression
for (4) for the case D = 3.

A linear classifier and its PCC

Motivated by the form of the optimal Bayes classifier in
(2), we consider the following linear classifier that classi-
fies x to the class Cy if

m
> g winth Ky > Kigge (5)
j=1
/ ~j _ ék,j(l_ék’,j)
forall k" # k, where b/k,k, = log(iék/,,v(l—ék,;)

the maximum likelihood estimators of 6 ; and 6y ;, respec-
tively. Also, the values of the weights w;,(k, k') in (5) are
determined in the following way: For eachj = 1,...,m

), ék,]' and ékr,j are

and k' # k, suppose we test the hypothesis H{i‘}‘/ DOk =
Ok versus Hf'jk : Oj # O Then wy,(kK) = 1if

H(l;’jk/ is rejected; else w;,(k,k’) = 0. In Additional file
3: Appendix 2, we use the large sample theory to derive
a Wald test of level o to test Hl(;f/ versus Hf’jk/, and an
expression for the power, 1 — ﬂlk’k/ (ni, nye, hy), of this test,
when 9/(,/' — 9/(’,1' = h/'.

In Additional file 3: Appendix 3, we derive a normal
approximation for the PCC of the linear classifier, denoted
by PCC(n). That is, for large /, we show that

D o0

PCC() ~ ) / ¢ (x e Ez,k) dx (6)
1 Ky

Note that PCC(#) depends on 7 = (n1, ..., np)’ through

(B oo %,.x); see Additional file 3: Appendix 3 for details.

In Additional file 3: Appendix 4, we give an expression for
(6) for the case D = 3.

AUC and VUS for the optimal and linear classifiers
For any (k, k'), define
Exx = P (Classify X to Cp|X € Cy).
Then, for the optimal Bayes classifier in (2) we have from

(4) that

o0
Ek ~ /_ & (X5l Tox) dx (7)
Kk

and similarly, for the linear classifier in (5), we have from
(6) that

i ~ /:OO ¢ (i; e il,k) dx, ®)

Ky
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for k = 1,...,D. When D = 2, for the optimal
Bayes classifier, the ROC(co) for two classes is the curve
&2 vs. (1 — &1,1). Then, the AUC(00) is

AUC(c0) = /Ez,zd%'l,lo

However, when the number of classes D > 3, we need
to consider the volume under the ROC hypersurface. Fol-
lowing the work of Landgrebe and Duin [14], the VUS is
defined as

VUS(c0) =/---/gD,Dd$1,1§2,2.--5(1:)—1),([)—1) 9

= f

By replacing & by ék,k [see (8)] in the above defini-
tions of ROC, AUC and the VUS, we obtain corresponding
expressions for the linear classifier in (5). We denote the
resulting ones as AUC(#) and VUS(#). In Additional file
3: Appendix 4, we derive these expressions for the case
D=3.

3 (611,622 - - - ED-1),D-1))

dKy...dKp_1.
3(K1, K2, .., Kp_1) ! b

Computation of VUS
As is evident from (9), the computation of VUS involves
high dimensional integration. Given below is a brief
description of the steps involved in the computation of
VUS. For ease of exposition, we will denote & = &y, _{( =
., D. First, we randomly generate the thresholds K =
(K1,K3,...,Kp_1) (see (9)) and compute the correspond-
ing E = (£1,&0,...,&D) satisfying (7). Note that the £
contributes to the integration in VUS only if all the &’s are
positive.

To find as many £ values that contribute to the inte-
gration as possible, we use the ant colony optimization
algorithm, where only the K values corresponding to the
£ values that contribute to the integration are retained.
However, these are perturbed by a small noise and the
resulting K values are used as seeds for the next itera-
tion. Then, we use the genetic algorithm to obtain another
5: value located in a different region within (0, 1)X, which
also contributes to the integration. We use the ant colony
algorithm and the genetic algorithm alternatively to even-
tually generate a dense set of g? (e (0,1)%) values that
contribute to the integration. Note that the process is such
that the newly generated £ values are appended to all the
previously generated £ values.

Now, to compute the volume, VUS(c0), we use the con-
vhulln function in the ghull R-package. Note that the
convhulln function is designed to determine the convex
hull of a set of D-dimensional points and thus compute
the volume of the hull. In view of this, in order to com-
pute the volume, VUS(c0), a base of 5 (this is same as the
£ vector, except that one of its components, e.g. the first
component, is set to 0) is appended to the original £. Since
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in each iteration the new é’ values are appended to the old
é values from the previous iterations, and the VUS is con-
cave, the computed VUS is supposed to increase in value
with each iteration. We stop appending the new £ values
when |VUS,;; — VUSyew| < 0.001. When this criterion
is satisfied, we obtain the value of VlUS(0c0). Similarly, the
values of ALC(c0), AUC (1), and VUS(#) are calculated.

Sample size determination using VUS or AUC
Given a threshold y, we determine the sample size n
satisfying the following condition:

VUS(c0) — VUS(n) < y (10)

For the case D = 2, we determine the sample size n satisfy-
ing the condition: AUC(c0) — AUC(#1) < y. A simulation
study for the case D = 2 is carried out in Additional file 3:
Appendix 5 to assess the performance of our sample size
determination algorithm.

Results

Monte Carlo simulations

Before we illustrate the performance of our sample size
determination method based on AUC or VUS, we present
results from an extensive Monte Carlo simulation study
conducted to verify the accuracy of the approximations for
AUC(#n) and VUS(#), respectively, and study their behav-
ior as a function of #n and other parameters. Here, we
present the numerical assessments based on the VUS for
the cases D = 3 and 4, respectively. However, as men-
tioned above, the assessments based on the AUC for the
case D = 2 are given in Additional file 3: Appendix 5.
Henceforth, we will set ny = nforallk = 1,...,D, and we
will use 7 instead of 7 to simplify notations.

When D = 3, we consider the following simulation set
up: For 61 = (011, ...,601,m), let 61, ~ U(04,049), j =
1,...,m; for a specified scalar value /4, let hl, h2 be such
that their components /;; ~ U(h — 0.002, 2 + 0.002), i =
1,2, j =1,. .,m,andleth 91—1’11,93 92—/’12
First, we generated a (01, 92, 03) according to the above set
up, and then generated the data vector ?c = (x1,... ,x,,,)
for each class. We then computed VL[S(oo) and VL[S(n)
following the computational methodology described ear-
lier. For this (91, 92, 93), we then drew twenty x data
sets and calculated a Monte Carlo estimate, denoted by
VUS(n)MC. This process was repeated 20 times and an
average value of VUS(n)MC was computed. These are
given in Table 1. It is evident from Table 1 that the Bias =
VU:?(n)MC - VL[.AS(n) is negligible in most cases, which
validates the use of our approximation for VUS(#n). Table 1
also gives similar results for the case D = 4. Note that
VUS(oco) = 1/D! for a random classifier, which is the
lower bound of VUS(oc0) for any classifier.



Liu et al. BMC Bioinformatics 2014, 15:190
http://www.biomedcentral.com/1471-2105/15/190

Table 1 Performance of optimal and linear classifiers

D=3

B m n  VUS(e) VUS(m) VUSmMC  Bias
0.02 50 50 0.3013 0.1772 0.1657 -0.0116
0.02 50 100 0.3015 0.1793 0.1742 -0.0052
002 100 50 0.3662 0.1807 0.1874 0.0067
002 100 100 0.366 0.1837 0.1974 0.0136
0.05 50 50 0.5469 0.2229 0.2442 0.0213
0.05 50 100 0.5467 0.2517 0.2845 0.0328
005 100 50 0.6988 0.2448 0.2912 0.0463
005 100 100 0.6987 0.2848 03377 0.0529
0.1 50 50 0.8686 04179 04675 0.0496
0.1 50 100 0.8687 0.4958 0.55 0.0542
0.1 100 50 0.9667 04776 0.5342 0.0566
0.1 100 100 0.9667 0.5692 0.6341 0.0649

D=4

h m n  VUS(o) VUSm) VUSmMC  Bias
0.02 50 50 0.1319 0.048 0.0462 -0.0018
0.02 50 100 0.1318 0.05 0.0512 0.0013
002 100 50 0.1892 0.0503 0.057 0.0068
002 100 100 0.189 0.0531 0.0614 0.0082
0.05 50 50 0.3891 0.0893 0.0923 0.003
0.05 50 100 0.3893 0.1175 0.1144 -0.0032
0.05 100 50 0.5832 0.1092 0.1127 0.0034
005 100 100 0.5831 0.1458 0.1285 -0.0174
0.1 50 50 0.8376 0.2933 0.2705 -0.0228
0.1 50 100 0.8378 0.4059 03517 -0.0542
0.1 100 50 0.9623 0.3653 03119 -0.0534
0.1 100 100 0.9626 0.4962 0.4085 -0.0877
Here,D = 3 and 4, 51 = (911,.;. ,qm)’, let6;; ~ U(04,049),j=1,..., m; fora
specified scalar value h, let hy, h,, h; be sucb that tbeirfomponents hij~U
(h—0.002,h+0002),j=1,..., m;andletf 1 =6; —h;,i=1,273;nisthe
sample size for each class; m is the number of independent SNPs, « = 0.01 is the
significant level for Wald tests; and p = 1 is the percentage of the significant
SNPs.

Next, we determine the smallest # such that f(n) =
VUSA(oo) - VL[:?(n) — y < 0, for a pre-specified y value.
We use the following algorithm to determine such an #: (i)
Let n = ng and ny, such that f(ns) > 0 and f(nr) < 0, and
set mpyr =|[ (ns + nr)/2]. The algorithm begins by selecting
a small ng and a large ny; (ii) If f (npr)f (ns) < 0O, then reset
n; = nyp; or else, reset ns = nyy. In either case, return
to step (i), unless ny — ng < 1, in which case, the small-
est sample n = ny; (ili) Use the smallest (total) sample
of size D x ny, with n = ny from each class, Cy,...,Cp.
We implemented this algorithm for each value of /&, m
and significance level o for the Wald test; see discussion
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below (5). For the cases D = 2 and D = 3, respectively,
Table 2 displays the determined sample sizes for y = 0.01
and each combination of parameter values. From Table 2,
it is evident that the required sample size reduces as &
increases, as expected. Hence, f(n) < 0 for smaller sam-
ple sizes, as shown in Table 2. However, the effect of m on
the determined sample sizes is less clear. When 7 is large,
say i1 > 0.1, then the required sample size reduces as m
becomes large. Whereas, when / is small, say # = 0.05,
the reverse is true as m becomes large.

Application to the HapMap data

The aim of the International HapMap Project is to develop
a haplotype map of the human genome, which will
describe the common patterns of human DNA sequence
variation.

The HapMap data (Phase III) consists of eleven
populations with about p = 1.2 x 10° SNPs. Here,
we consider the following nine populations in order
to illustrate our sample size determination algorithm:
ASW—African ancestry in Southwest USA with 87 sub-
jects; CEU—Utah residents with Northern and Western
European ancestry from CEPH collection with 167 sub-
jects; CHB—the Han Chinese individuals from Beijing
with 137 subjects; CHD—Chinese in Metropolitan
Denver, Colorado with 109 subjects; GIH—Gujarati
Indians in Houston, Texas with 101 subjects; JPT—
the Japanese individuals from Tokyo with 113 subjects;
MEX—Mexican ancestry in Los Angeles, California with
86 subjects; TSI—Toscans in Italy (TSI) with 102 subjects;
and YRI—Yoruba in Ibadan, Nigeria with 203 subjects.
With these, we created four sample size determination
studies, of which the first three involve three populations
(D = 3), and the last study involves four populations (D =
4). More specifically, we conducted our sample size deter-
mination studies with the following population groupings:

Table 2 Sample size determination: here, D = 3 and 4, and
n is the sample size for each class satisfying:
VUS(o0) — VUS(n) < y (= 0.01)

n

D h m =30 m =50 m = 100 m = 200
3 0.05 1957 2040 2091 2040

3 0.1 489 475 412 288

3 0.15 189 161 105 69

4 0.05 1923 2051 2137 2122

4 0.1 490 476 417 297
Here, 6; = EOHJ'L' O1m) let6y; ~ U(04,049),j = 1,...,m;for a specified scalar
value h, let hy, hy, hs E)e suchqthaztheir components h;; ~ U(h — 0.002,h 4-0.002),
j=1,...,mandletfy =6, — h;,i = 1,2,3; mis the number of independent

SNPs, @ = 0.01 is the significant level for Wald tests; and p = 1 is the percentage
of the significant SNPs.
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(I) (CEU, GIH, MEX); (II) (ASW, TSI, YRI); (III) (CHB,
JPT, CHD); and (IV) (CHB, JPT, CHD, GIH).

Based on all the available subjects, we extracted pair-
wise independent SNPs using the following steps. Suppose
L is a set of SNPs, then: (I) form a set S with one SNP from
L and update S after the next step; (II) from the remaining
SNPs in L, choose one SNP that is independent of every
SNP in S using Kendall’s T coefficient as a test statistic to
test pair-wise independence, and then add this new SNP
to S. Here, we concluded independence if the Kendall’s
7-value < 0.05; (III) Repeat (II) until each remaining SNP
in L is correlated with at least one SNP in S. This proce-
dure yielded a set S with m = 92 pair-wise independent
SNPs, and with these we built our linear classifier.

Next, we set p = 1 so that m = [ = 92; see
Assumption 3 under the Methods section. Recall that O =
61,0k for k = 1,...,D. For the cases D = 3 and
D = 4 considered in studies (I) to (IV) above, we esti-
mated 67/( using the maximum likelihood (ML) estimates
obtained based on all the available subjects belonging to
the respective populations. We then substituted these ML
estimates into the corresponding expressions for VUS(00)
and VU:?(n), respectively. Figures 1, 2 and 3 show plots of
required sample sizes for a continuum of threshold val-
ues y for the case D = 3 considered in studies (I) to (III),
respectively, and Figure 4 plots the same for D = 4 consid-
ered in study (IV). From these figures, the required total
sample size can be determined approximately for each
pre-specified y value.

For example, if we set y = 0.10 (ie., VU§(oo) —
VUS(n) < 0.10), then in the three population (CEU,GIH,
MEX) case, the Vug(oo) = 0.9046 and about 62 obser-

o
o
1o}
[s]
o
O B
NoA
(45} 4
Q
Q o
IS
(U ~—
o |
o
8
Yo}
© T T T T
0.00 0.05 0.10 0.15
Y
Figure 1 Total sample sizes needed for classification to
well-separated HapMap populations CEU, GIH, and MEX. For the
linear classifier based on the SNP data from the three populations, the
estimated learning curve gives the required total sample size for
different values of the threshold, y, satisfying VUS(co) — VUS(n) < y.
Here, p = 1,a = 0.1, m = 92, and VUS(c0) = 0.9046.
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SampleSize
4000 6000

2000

0

Figure 2 Total sample sizes needed for classification to
moderately-separated HapMap populations ASW, TSI, and YRI.
For the linear classifier based on the SNP data from the three
populations, the estimated learning curve gives the required total
sample size for different values of the threshold, y, satisfying
VUS(00) — VUS(n) < y.Here, p = 1,& = 0.1, m = 92,and

VUS(00) = 0.7557.

vations are required for each class with a total sample
size of 186, whereas in the three population (ASW, TSI,
YRI) case, the VU.§(oo) = 0.7557 and about 150 observa-
tions are required for each class with a total sample size
of 450. Note that, for y = 0.10, in study (I) the required
sample sizes for each population is less than what is cur-
rently available, whereas in study (II), we would need 63
and 48 more observations for the populations ASW and
TSI, respectively. For the three population (CHB, JPT and
CHD) case, if we set y = 0.10 then the VUS(c0) =
0.6178 and about 244 observations are required for each

5000

SampleSize
3000

1000

Figure 3 Total sample sizes needed for classification to
poorly-separated HapMap populations CHB, JTP, and CHD. For
the linear classifier based on the SNP data from the three populations,
the estimated learning curve gives the required total sample size for
different values of the threshold, y, satisfying VUS(00) — VUS(n) < y.
Here, p = 1,a = 0.1, m = 92, and VUS(00) = 0.6178.
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30000
|

SampleSize

10000

0

Figure 4 Total sample sizes needed for classification to majority
poorly-separated HapMap populations CHB, JTP, CHD and GIH.
For the linear classifier based on the SNP data from the three
populations, the estimated learning curve gives the required total
sample size for different values of the threshold, y, satisfying

VUS(00) — VUS(n) < y.Here, p = 1,a = 0.1, m = 92,and

VUS(00) = 0.5580.

class with a total sample size of 732. Clearly, for study
(III) at least 100 more observations are needed for each
population (CHB, JPT and CHD) when y = 0.10. Finally,
for the four population (CHB, JPT, CHD, GIH) case, set-
ting y = 0.10 yields that the VUS(00) = 0.5580 and about
279 samples are required for each class with a total sample
of 1,116. Once again, at least 150 more observations are
needed for each of the four populations when y = 0.10.

The results from the four HapMap studies suggest that
the VUS(co) value is large and the required total sam-
ple size is small when the populations are well-separated
[as in study (I)]. Whereas, when the populations are
moderately-separated [as in study (II), where the popula-
tions ASW and YRI may be similar], the VU§(oo) value
reduces and the required total sample size increases mod-
erately. When the populations are poorly-separated [as in
study (III), where all the three populations may be sim-
ilar], the VL[§(oo) value reduces even further and there
is a substantial increase in the required total sample size.
Finally, in the four population study, where three of the
populations are poorly-separated, once again we see a fur-
ther reduction in the VU§(oo) value and a corresponding
increase in the required total sample size. Although not
reported here, we also considered other well-/moderate-
/poorly- separated cases with the HapMap data and
observed similar results as the ones reported here.

It is well known in the classification literature that the
performance of a classifier depends on how well sepa-
rated the classes are. Similarly, the studies above involv-
ing the HapMap data show that the performance of our
sample size determination methodology also depends on
the extent of separation between populations. While our
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methodology provides a formal way of determining an
approximate total sample size for each specified value of
y, it is clear from the HapMap data analysis that it is
not possible to propose a universal y value. Nevertheless,
if the classes are well-separated or moderately-separated,
then we believe that y = 0.10 may be a good choice for
many frequently encountered data sets in classification
problems.

Discussion

We have built an optimal Bayes classifier and a linear
classifier based on coded SNP data from two or more
classes. For these classifiers, we have considered the two
commonly used scalar performance measures, the Area
Under the ROC curve (AUC) and the Volume Under the
ROC hyper-Surface (VUS), which allow classifiers to be
compared independent of discrimination values. We have
illustrated the performance of a sample size determina-
tion methodology, which selects the smallest total sample
size n such that the criterion VLISA(oo) — VLIS(n) <y
is satisfied. While the approximations to the VUS (or
AUC) obtained here provide the necessary theoretical jus-
tification, the simulations and the HapMap data analysis
presented here illustrate the practical value of our sample
size determination method.

The fact that the HapMap contains data on multi-
ple populations belonging to similar or dissimilar geo-
graphical locations enabled us to test the performance
of our sample size determination method on three
different multi-class scenarios involving well-separated,
moderately-separated, and poorly-separated populations.
We have shown that the the extent of separation between
the populations and the choice of threshold value affect
the total sample size required to satisfy the criterion. With
regard to the choice of the threshold value y in other
practical contexts, we recommend that the user take into
consideration the cost of obtaining more samples and
choose an appropriate value of y that gives an acceptable
precision. In other words, if the cost of sampling is afford-
able then the user may want to sample more to achieve a
higher precision (lower y value) using our classifier; oth-
erwise, the user has to settle for a higher y value that
makes use of all the available samples. We also infer from
our HapMap data analysis that a value of VUS(c0) > 0.80
may indicate the extent of separation between the classes.
Thus, the value of VLI§(oo) could also give some prior
guidance on the choice of y values, especially in instances
where the cost of sampling is a serious concern.

Conclusion

In summary, for multiple classes, we have developed an
asymptotic methodology based on AUC or VUS to esti-
mate the learning curve of SNP classifiers. It is shown
that the required total sample size can be obtained
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from the estimated learning curve for each pre-specified
threshold value. In classification problems, sample size
determination is important due to cost considerations.
This methodology will help scientists determine if a sam-
ple at hand is adequate or more observations are neces-
sary to achieve a pre-specified accuracy, and thus help
users strike an optimal balance between precision and
cost.
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