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Abstract

matches among all pairs of reads.

Background: Ongoing improvements in throughput of the next-generation sequencing technologies challenge
the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the

construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not
necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix

Results: Here we present efficient methods for the construction of a string graph from a set of sequencing reads.
Our approach employs suffix sorting and scanning methods to compute suffix-prefix matches. Transitive edges are
recognized and eliminated early in the process and the graph is efficiently constructed including irreducible edges

only.

readjoiner.

Conclusions: Our suffix-prefix match determination and string graph construction algorithms have been
implemented in the software package Readjoiner. Comparison with existing string graph-based assemblers shows
that Readjoiner is faster and more space efficient. Readjoiner is available at http://www.zbh.uni-hamburg.de/

Background

The de novo sequence assembly problem is to recon-
struct a target sequence from a set of sequence reads.
The classical approach to de novo assembly consists of
three phases: overlap, layout and consensus. During the
overlap phase, suffix-prefix matches among all pairs of
sequence reads are computed, and turned into an over-
lap graph [1]. In the layout phase the location of the
reads with respect to each other is determined. In the
consensus phase the target sequence is reconstructed, by
selecting a base for each position.

The introduction of the massively parallel next-
generation DNA sequencing technologies has led to a
considerable increase in the amount of data typically gen-
erated by sequencing experiments. For example, as of
January 2012, the HiSeq2000 sequencer of Illumina deli-
vers sets of 100 bp reads with a total length of up to 600
Gbp [2]. Sequence analysis software tools developed only
a few years ago are often unable to deal with such large
amounts of short reads: This has led to a gap between the
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ability to produce sequence data and the capability to as-
semble and analyze them [3].

The computation of the overlap graph is the most time
and space consuming of the three phases, and was con-
sidered a bottleneck in the computation. Therefore, al-
ternative methods were developed avoiding an explicit
overlap computation. An approach which proved to be
effective is based on the enumeration of all k-mers of
the reads and their representation in a de Bruijn graph,
as first proposed by [4]. This concept is applied in sev-
eral popular short reads assemblers such as Velvet [5],
EULER-SR [6] and Abyss [7].

The de Bruijn graph describing the k-mer spectrum of
the read set has interesting properties for the solution of
the assembly problem, such as the collapsing of different
instances of sequence repeats into common paths of the
graph. However, reducing short reads into even shorter
units compromises the ability of disambiguation of short
repeats. Myers [8] presented an alternative framework,
the assembly string graph. Like in the de Bruijn graph,
repeats still collapse into common graph elements.
There are two main advantages of the string graph, com-
pared to the de Bruijn graph: At first, it does not require
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to split the reads into k-mers. Secondly, a string graph
always retains read coherence, i.e. each path in the string
graph represents a valid assembly of the reads.

Edena [9] was the first available implementation of a
string graph-based assembler. It computes suffix-prefix
matches using a suffix array [10] representing all suffixes
of the reads. From these, the complete overlap graph is
constructed before transitive edges are removed using
an algorithm described in [8].

A more space-efficient approach to the string graph
construction has been presented in [11] and was imple-
mented in the open source String Graph Assembler
(SGA) [12]. SGA computes suffix-prefix matches using
an algorithm based on the Burrows and Wheeler trans-
form (BWT), allowing to classify suffix-prefix matches as
transitive or irreducible, so that the string graph can dir-
ectly be constructed.

Recently, a compact representation for exact-match
overlap graphs has been described in [13], together with
a fast construction algorithm, which has been implemen-
ted in the string graph-based assembler LEAP.

In this paper, we present new efficient algorithms for
the computation of irreducible suffix-prefix matches and
the construction of the assembly string graph. These are
implemented in a new string graph based sequence
assembler Readjoiner. To validate our approach, we
compared Readjoiner with the current implementa-
tions of Edena, LEAP and SGA. Readjoiner proved
to be considerably faster than previous competitors,
or uses less memory. In fact, Readjoiner is able to
handle very large datasets using limited resources:
for example, a short reads dataset consisting of 115
Gbp could be assembled on a single core in 51
hours using 52 GB RAM.

All string graph-based assemblers aim at constructing
the same graph: However, the algorithms and data struc-
tures employed in Edena, LEAP, SGA and Readjoiner dif-
fer considerably. LEAP employs a compact representation
of the overlap graph, while Readjoiner circumvents the
construction of the full overlap graph. Both Edena and
SGA are based on explicit index structures (suffix array
and FM-index, respectively) representing all suffixes of all
reads in the read set, while Readjoiner enumerates and
sorts only a proper subset of the suffixes of the reads, and
efficiently inserts them into buckets, which can be pro-
cessed independently from each other.

Methods

Basic definitions

Let w be a string of length n of symbols over an al-
phabet X. w[i] denotes the ith symbol of w and wl[i. . ,j] the
substring of w from position i to j, 1<i,j<n. w[l...q] is
the prefix of w ending at position i and wlj...n] is
the suffix of w starting at position j. A substring of w
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is proper if it is different from w. A substring of w is
internal if it is neither a prefix nor a suffix of w.

A read r is a string over the alphabet {A, C, G, T} which
is assumed to be sorted by the alphabetical order < such
that A <C< G <T. < denotes the lexicographic order of
all substrings of the reads induced by the alphabetical
order <. Let n be the length of . The reverse complement

of r, denoted by 7, is the sequence r[n]...r[1], where a
indicates the Watson-Crick complement of base a.

Computing suffix- and prefix-free read sets

The first step of our approach for assembling a collec-
tion of reads is to eliminate reads that are prefixes or
suffixes of other reads. Here we describe a method to
recognize these reads. Consider an ordered set R =
(r1,...,ry,) of reads, possibly of variable length, in which
some reads may occur more than once (so R is indeed a
multiset). We assume that, for all i, 1 <i<m, the ith read
r; in R is virtually padded by a sentinel symbol $; at the
right end and that the alphabetical order < is extended
suchthat A<C<G<T<$ <$p< - <$,

We define a binary relation <on R such that r; <7; if
and only if i <j. That is, < reflects the order of the reads
in the input. R is prefix-free if for all reads r in R there is
no r’ in R\{r} such that r is a prefix of r'. R is suffix-free
if for all r in R there is no read r" in R\{r} such that r is
a suffix of 7.

To obtain a prefix- and suffix-free set of reads we lex-
icographically sort all reads using a modified radixsort
for strings, as described in [14]. In this algorithm, the
strings to be sorted are first inserted into buckets
according to their first character. Each bucket is then
sorted recursively according to the next character of all
reads in the bucket. A bucket always consists of reads
which have a common prefix. Once a bucket is smaller
than some constant, the remaining suffixes of the reads
in the bucket are sorted by insertion sort [15].

During the sorting process, the length of the longest
common prefix (lcp) of two lexicographically consecu-
tive reads is calculated as a byproduct. For two lexico-
graphically consecutive reads r and r' with an lcp of
length ¢ = |r|, we can conclude that r is a prefix of r'. If
€ < |r’|, then r is a proper prefix of r" and we mark r. If
€=|r'|, then r and r' are identical and we mark the
read which is larger according to the binary relation <.

To handle reverse complements and to mark reads
which are suffixes of other reads, one simply applies this
method to the multiset R = (ry,.. o Tom)
where r,,.; = 7; for all i, 1<i<m. As R includes the re-
verse complements of the reads, the method also marks
reads which are suffixes of other reads. This is due to
the observation that if read r is a suffix of read r’, then 7
is a prefix of 7.
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In a final step of the algorithm one eliminates all reads
from R which have been marked. The remaining un-
marked reads from R are processed further. The algo-
rithm to compute a suffix- and prefix-free set of reads

runs in O(m)“o"jx) time, where A, is the maximum
length of a read and w is the machine’s word size. As we
consider A, to be a constant (which does not imply
that the reads are all of the same length), the algorithm
runs in O(m) time.

Computing suffix-prefix matches

Suppose that R is a suffix- and prefix-free set of m
reads. Let ¢,,,,>0 be the minimum length param-
eter. The set SPM(R) of suffix-prefix matches (SPMs,
for short) is the smallest set of triples (r,r’,€)such
that r,r" € R and strings u,v,w exist such that
r=uv, r'=vw, and |v|=£>4¢,,,. £ is the length of a
suffix-prefix match (r,7',2). The suffix-prefix match-
ing problem is to find all suffix-prefix matches. As
the reads of length smaller than ¢,,, cannot, by def-
inition, contribute any SPM, we can ignore them and
thus we assume that R only contains reads of length
at least £,,;,.

The method to solve the suffix-prefix matching problem
presented here consists of two main algorithms. The first
algorithm identifies and lexicographically sorts all SPM-
relevant suffixes, i.e. a subset of all suffixes of all reads
from which one can compute all suffix-prefix matches.
The second algorithm enumerates these matches given
the sorted list of all SPM-relevant suffixes.

Consider a suffix-prefix match (r,r’,2). By definition,
the suffix of length € of r exactly matches the prefix of
length € of r'. Obviously, the suffix of r involved in the
match starts at some position j, 2<j<|r| — &y + 1 in 7.
This implies that » must be at least of length €,,,;, + 1. The
suffix cannot start at the first position in 7, as otherwise r
would be a prefix of some other read, contradicting our
assumption that R is prefix-free.

To enumerate the set of all suffix-prefix matches of
length at least ¢€,,;,, we preprocess all reads and deter-
mine all proper suffixes of the reads which may be
involved in a suffix-prefix match. More precisely, for all
reads r we determine all matching candidates, i.e. all
proper suffixes s of r such that the length of s is at least
2,,:» and there is a read r’ such that s and " have a com-
mon prefix of length at least k, where k is an user-
defined parameter satisfying & < min{ﬂmm,g}. There are
two reasons for imposing this constraint on k: First, we
want to represent a string of length k over an alphabet
of size 4 in one machine word, thus k<%. Second, the
suffixes of the reads from which we take the prefixes of
length k have minimum length ¢,,,, thus we choose
k<,n

Page 3 of 19

The set of all matching candidates and all reads forms
the set of all (i, k)-SPM-relevant suffixes. For simpli-
city sake, we use the notion SPM-relevant suffixes if €,,;,
and k are clear from the context. While all SPMs can be
constructed from the SPM-relevant suffixes, not all
SPM-relevant suffixes lead to an SPM.

An efficient algorithm for identifying and sorting all
SPM-relevant suffixes

The first two phases of our algorithm follow a strategy
that is borrowed from the counting sort algorithm [15].
Like this, our algorithm has a counting phase and an in-
sertion phase. However, in our problem, the elements
(i.e. SPM-relevant suffixes) to be sorted are only deter-
mined during the algorithm. Moreover, the number of
keys (ie. initial k~-mers) whose occurrences are counted
is on the order of the number of elements to be sorted.
Therefore, in a space efficient solution, it is not trivial to
access a counter given a key. We have developed a time
and space efficient method to access the counter for a
key, exploiting the fact that counting and inserting the
SPM-relevant suffixes does not have to be done immedi-
ately. Instead, the items to be counted/inserted are first
buffered and then sorted. A linear scan then performs
the counting or inserting step.

In contrast to counting sort, our algorithm uses an
extra sorting step to obtain the final order of elements
pre-sorted in the insertion phase. Under the assumption
that the maximum read length is a constant (which does
not imply that the reads are all of the same length), our
algorithm runs in O(n) time and space, where 7 is the
total length of all reads. To the best of our knowledge a
method employing a similar strategy has not yet been
developed for the suffix-prefix matching problem.

We first give a description of our algorithm using string
notation. In a separate section, we explain how to effi-
ciently implement the algorithm. In the following, we only
consider the reads in the forward direction. However, it is
not difficult to extend our method to also incorporate the
reverse complements of the reads and we comment on
this issue at the end of the methods section.

The initial k-mer of some sequence s is the prefix of s
of length k. To determine the matching candidates effi-
ciently, we first enumerate the initial ~-mers of all reads
and store them in a table of size m. This can be done in
O(m) time. The notion table size always refers to the
number of entries in the table. The next step lexico-
graphically sorts the k-mers in the table in ascending
order. This string sorting problem can be transformed
into an integer sorting problem (see Implementation)
which can be solved by radixsort [15] in O(m) time and
O(m) extra working space.

In the next step, a linear scan of the sorted k-mers
removes duplicates from the table and counts how many
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times each k-mer occurs in the table. This scan requires
O(m) time. Let d <m be the number of different k-mers.
These can be stored in a table K of size d.

The counts for the elements in K require another table C
of size d. In addition to the duplicate removal and counting,
the linear scan of the sorted k-mers constructs two sets
P and Q, the size of which depends on two user defined
parameters k' < k and k"< k. P is the set of all initial k"-mers
of the reads. Q is the set of all k-mers r[k — k" +1...k]
for some r € R. We assume that elements can be added to
P and Q in constant time and that membership in these
sets can be decided in constant time. Thus the linear scan
constructs P and Q in O(m) time. As P is a subset of a set
of size 4°, P can be stored in 4% bits. Q requires 4*" bits.

Up until now, only the initial k~-mers of the reads were
considered, resulting in a sorted table K of d non-
redundant keys (i.e. initial k-mers of reads), a table C of
size d for counting k-mers and two sets P and Q. By con-
struction, each count in C is at least 1 and the sum of
the counts is 7. The next task is to enumerate, for all reads
1, the suffixes of r at all positions j, 2<j<|r| — € + 1.
r has |r|-4¢,,, such suffixes. For each such suffix s
(which by construction is of length > ¢,,;,,), one extracts
two strings v=s[1...k'] and w=slk — k" +1...k]. If v
does not occur in B, then v is not a prefix of any read in R
and thus s is not a matching candidate and can be
discarded. If w does not occur in Q, then w#
rlk —k” +1...k] for all reads r € R and thus s is not a
matching candidate and can be discarded. Thus P and Q
serve as filters to efficiently detect suffixes which can be
discarded. For read r the suffixes s and corresponding
strings v and w can be enumerated in O(|r| -¢,,;,) time.
Checking membership in P and in Q requires
constant time. Therefore, each read r is processed in O(|
7| =8,,) time. Thus the enumeration and checking
requires O(ZVGRM — m &, time altogether.

The next task is to process a suffix, say s which has
passed the P-filter and the Q-filter. That is, v=s[1...k'] € P
and w=s[k —k” 4+ 1...k] € Q holds. One now has to
check if u =s[1.. .k] occurs in K to verify if s is a matching
candidate. If the latter is true, the appropriate counter
needs to be incremented. Hence this is the counting phase
of our algorithm. The simplest way to check the occurrence
of u in K, is to perform a binary search, taking u as the key.
However, this would require O(log,d) time for each k-mer
passing the filters. This is too slow. Using a hash table
turned out to be too slow as well and would require too
much extra space, which we do not want to afford.

We propose an efficient method that works as follows:
Store each k-mer s[1..k] passing the P and the Q-filter in a
buffer B of fixed size b = % for some constant y > 1. Once
Bis full or all k-mers have been added to B, sort the
elements in B in ascending lexicographic order. Then
perform a binary search in K, but only for the first
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element in B, say x. As B is sorted, «x is the smallest elem-
ent. The binary search for x in K finds the smallest elem-
ent in K greater than or equal to x using O(log, d) time. If
such an element occurs in K, say at index e, then simul-
taneously scan B beginning with the first index and K be-
ginning at index e. For any element in B that is equal to
an element in K| say at index i in K, increment the coun-
ter in C at the same index.

This simultaneous linear scan of B and (a part of) K takes
O(b +d) time and finds all k-mers from B occurring in K.
Once the scan and the associated increments are done, the
buffer is emptied for the next round. Suppose that there are
in total b* k-mers that have passed B. Thus there are {%]
rounds filling the buffer. Each round is associated with a
sorting step, a binary search and a linear scan. Sorting
requires O(b) time using radixsort. This gives a running
time of O(% (b+logyd+ (b+d))) =0 (b+d)) =
O(%-(b+by)) = O(b*(1+ y)) = O(b*). As b*<n:=
> rerlr], the running time is linear in the total length of
the reads.

Once all reads have been processed, for any initial
k-mer u of any read, the following holds: If # is the ith ini-
tial ~-mer in K, then C[i] is the number of SPM-relevant
suffixes of which u is a prefix. To prepare for the insertion
phase, compute the partial sums of C in an array 7 of
size d + 1, such that 7[0] = C[0], n[i] = n[i — 1] + C]i] for
all i, 1<i<d-1, and 7[d] = n[d - 1]. 7[d] is the number of
all SPM-relevant suffixes. One creates a table S of size
g:=m(d] to hold pairs of read numbers and read offsets.
As in the counting phase, enumerate all suffixes of reads
of length at least ¢,,,;, passing the P- and the Q-filter. Sup-
pose that s is such a suffix of read number p and with
read offset g. Let u be the initial k-mer of s. Then we store
(p,q, u) in a buffer B’ of fixed size %. We choose this buffer
size, as the elements in B’ require twice as much space as
the elements in B. As in the counting phase, sort the buf-
fer in lexicographic order of the k-mers it stores, and
then process the buffer elements using the k-mer, say u,
as a key to determine if # matches some element in
K, say at index i. Then insert (p,q) at index z[i] -1 in S
and decrement 7[i].

After all b* elements passed the buffer and have been
processed, S holds all SPM-relevant suffixes (represented
by read numbers and read offsets) in lexicographic order
of their initial k~-mers. Let u be the ith k-mer in K. Then
all SPM-relevant suffixes with common prefix u are
stored in S from index n{i] to z[i + 1] — 1. Thus S can
uniquely be divided into buckets of SPM-relevant suf-
fixes with the same initial k~-mer. Each such bucket can
be sorted independently from all other buckets. More-
over, each SPM-relevant suffix not occurring in the ith
bucket, has an initial ~-mer different from u and thus can-
not have a common prefix of length > ¢, with the suf-
fixes in the ith bucket. As a consequence, all suffix-prefix
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matches are derivable from pairs of SPM-relevant suffixes
occurring in the same bucket. Thus, the suffix-prefix
matches problem can be divided into d subproblems, each
consisting of the computation of suffix-prefix matches
from a bucket of SPM-relevant suffixes. This problem is
considered later.

To sort the ith bucket one extracts the remaining suf-
fixes relevant for sorting the bucket and stores them in a
table. This strategy minimizes the number of slow ran-
dom accesses to the reads. Consider the ith bucket and
let (p, q) be one of the suffixes in the bucket, referring to
the suffix of read r, at read offset g. Then extract the
suffix of r, starting at position g+k. As the maximum
read length is considered to be constant, the total size of
the remaining suffixes to be stored is O(r[i + 1] — 7[d]).
The remaining suffixes can be sorted using radixsort in
O(r[i + 1] — n[i]) time. An additional linear time scan
over the sorted suffixes of the bucket delivers a table L of
size m[i + 1] — z[i] — 1, such that L; is the length of the
longest common prefix of the suffixes S[z[i] +j— 1]
and S[r[i] +/] for all j, 1<j<n[i+ 1] — nfi] — 1.

Sorting all remaining suffixes and computing the
lcp-table L thus requires O(f,..,) space and

O(Zf;ol (ﬂ[i +1] — H[l])) = O(g) time where f,,,. is
the maximum size of a bucket and g is the total number
of SPM-relevant suffixes. The bucket of sorted SPM-
relevant suffixes and the corresponding table L are pro-
cessed by Algorithm 2 described after the following imple-
mentation section and Algorithm 3 described in
Additional file 1, Section 7.

All in all, our algorithm runs in O(m + n + g) = O(n) time
and O(m +4° + 4" + B,,..c +g+n) space. As we choose
k" <k" € O(log, n) and m, g, and B,,,,, are all smaller than
n, the space requirement is O(n). Thus the algorithm
for identifying and sorting all (£,,;,, k)-SPM-relevant
suffixes is optimal.

Implementation

We will now describe how to efficiently implement the
algorithm described above. An essential technique used
in our algorithm are integer codes for k-mers. These are
widely used in sequence processing. As we have three
different mer-sizes (k, k', and k”) and dependencies be-
tween the corresponding integer codes, we shortly de-
scribe the technique here. In our problem, a k-mer
always refers to a sequence of which it is a prefix. There-
fore, we introduce integer codes for strings of length > k:
For all strings s of length at least k define the integer
code pi(s) = 25:1 4%~ (s[i]), where ¢ is the mapping
[A—0,C—1,G—2,T— 3] uniquely assigning numbers
from 0 to 3 to the bases in the alphabetical order of
the bases. Note that only the first k symbols of s de-
termine y(s), which is an integer in the range
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[0...45~1]. For all strings s and s* of length at least £,
s <s" implies @i(s) < pi(s’), where < denotes the lex-
icographic order of strings and < denotes the order
of integers.

Besides ¢, we use the encodings ¢ and ¢f. for
some k',k"<k. - encodes the prefix of s of length k’
and is defined in analogy to ¢y (replacing k by k'). . (s)
encodes the suffix sfk—k”+1...k] of s[l...k] of
length K", i.e. of.(s) = >, 4 “p(slk — k" +1]). pie(s)
and ¢X. (s) can be computed from ((s) according to the
following equations:

or-(s) = B (1)
O (s) =, (s) mod &' 2)

We implement k-mers by their integer codes. Each in-
teger code can be computed in constant time by extract-
ing the appropriate sequence of consecutive bit pairs
from a 2bit per base encoding of the read set. In our im-
plementation, we use the representation and the appro-
priate access functions from the GtEncseq software
library [16]. As k<% we can store each integer code in
an integer of the machine’s word size. We sort m integer
codes for the initial k~-mers using quicksort, adapting the
code from [17]. Our implementation works without re-
cursion and uses an extra stack of size O(log, m) to sort m
integers. This small additional space requirement is the
main reason to choose quicksort instead of radixsort, which
is usually more than twice as fast, but requires O(m) extra
working space, which we do not want to afford.

The sets P and Q are implemented by bit vectors vp and
vq of 4% and 4% bits, respectively. Bit vp[q] is set if and
only if g = ¢4 (r) for some r € R. Bit vg[q] is set if and only
if g =% (r) for some read r € R. To obtain the bit
index, one computes ¢;-(s) and goi(s) from y(s) using
Equations (1) and (2). Equation (1) can be implemented
by a bitwise right shift of 2(k - k") bits. Equation (2) can be
implemented by a bitwise and operation with the integer
22K" _1. Thus, given the integer code for s, both ¢ (s)
and ¢fi(s) can be computed in constant time. Therefore,
the sets P and Q can be constructed in O(m) time and
each access takes constant time.

When determining the k-mer codes in the counting
phase and in the insertion phase, we sweep a window
of width k over the sequence reads and compute the
integer code for the sequence in the current window
in constant time.

We implement the counts by a byte array of size d
and store counts larger than 255 in an additional hash
table. Additional file 1, Section 1 gives the details.

The partial sums in table 7 are bounded by g, the
number of SPM-relevant suffixes. For large read sets,
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g can be larger than 23%-1. However, as the partial
sum are strictly increasing, one can implement 7 by a 32
bit integer table PS of size d + 1, such that PS[i] = n[i]
mod 2°* for any i, 0<i<d and an additional integer table
of size 27@x{0102¢1-32} marking the boundaries of carry
bits. Details are given in Additional file 1, Section 2.

For the insertion phase we need a representation of
the read set (2x bits), table K (2kd bits), set P and Q
(4% and 4% bits, respectively), table 7 (32(d + 1) bits)
and table S of size g. As S holds pairs of read num-
bers and read offsets, each entry in S is stored compactly
in o= [logym| + [logy(Amax — €min)] bits. This would
give an integer array of size {gT”-‘ if we would store S com-
pletely. But we do not, as we employ a partitioning strategy,
explained next.

Although the data structures representing tables S, K, P
and 7 are of different sizes, their access follows the same
scheme: Suppose that i is the smallest index, such
that £ <7[i]. Roughly half of the suffixes to be inserted
in S are placed in buckets of lower order (with index <i)
and the other half are placed in buckets of higher order
(with index > i). The buckets of lower order are associated
with the k-mers in K up to index i. Hence, for these, one
needs table K and PS only up to index i. Let s be some suf-
fix of length <¢,,,, such that ¢(s) <K[i]. To apply the

P-filter to s, one checks vp at index gak"f(;)s%, which is
4 4

in the first half of vector vp. This strategy, dividing
tables S, K, P and m into g =2 parts of roughly the same
size, can be generalized to g > 2 parts. Each part is defined
by a lower and an upper integer code and by correspond-
ing lower and upper boundaries referring to sections of
the four mentioned tables. Partitioning S means to only al-
locate the maximum space for holding all buckets belong-
ing to a single part.

The four tables that can be split over g parts require
h(g, k,d, k", 0) =2kd + 4~ 32(d+1)+go bits. Hence,
in the insertion phase, our method requires 2n+
4K 4 w bits, where 211 + 4% bits are for the repre-
sentation of the reads and the set Q (which cannot
be split). As go dominates all other terms, k(g k,d, k", 0)
is much larger than 21 +4%" so that the space gain of
our partitioning strategy is obvious. As the space
required for the insertion phase for any number of
parts can be precalculated, one can choose a memory
limit and calculate the minimal number of parts such
that the limit is not exceeded. In particular, choosing
the space peak of the counting phase as a memory
limit for the insertion phase allows for balancing the
space requirement of both phases. More details on
the partitioning technique are given in Additional file 1,
Section 3.

An obvious disadvantage of the partitioning strat-
egy (with, say ¢, parts) is the requirement of ¢ scans
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over the read set. However, the sequential scan over
the read set is very fast in practice and only makes
up for a small part of the running time of the inser-
tion phase.

The expected size of a bucket to be sorted after the in-
sertion phase is smaller than the average read length.
The maximum bucket size (determining the space re-
quirement for this phase) is 1 to 2 orders of magnitude
smaller than d. As we can store % bases in one integer of
o bits, the remaining suffixes (which form the sort keys)
can be stored in 3, (W +2) integers, where B, is
the maximum size of a bucket and A,,,,, is the maximum
length of a read. The additional constant 2 is for the
length of the remaining suffix, for the read number and
the read offset. The sort keys are thus sequences of inte-
gers of different length which have to be compared
up to the longest prefix of the strings they encode.
We use quicksort in which § bases are compared
using a single integer comparison. As a side effect of
the comparison of the suffixes, we obtain the longest
common prefix of two compared suffixes in constant
extra time, and store this in a table L of the size of
the bucket. The suffixes in the bucket and the table L are
passed to Algorithm 2, described next, and to Algorithm 3
(Additional file 1, Section 7).

An efficient algorithm for computing suffix-prefix matches
from buckets of sorted SPM-relevant suffixes

The input to the algorithm described next is a bucket of
sorted SPM-relevant suffixes, with the corresponding table
L, as computed by the algorithm of the previous subsec-
tion. Consider the ith bucket in S and let H;=S[n[i] +/]
be the jth suffix in this bucket for all j, 0<j<f-1
where S=mli+1] -] is the size of the bucket. By
construction, we have H;, < Hj, L;>k, and L; is the
length of the longest common prefix of H; ; and H;
for j, 1<j<f-1.

Note that the bucket-wise computation does not de-
liver the lcp-values of pairs of SPM-relevant suffixes on
the boundary of the buckets. That is, for all i >0, the
length of the longest common prefix of S[x[i] - 1] and
S[x[i]] is not computed, because S[iz[i] —1] is the last
suffix of the (i—1)th bucket and S[x[i]] is the first
suffix of the ith bucket. However, as both suffixes be-
long to two different buckets, their longest common
prefix is smaller than k (and thus smaller than ¢,,,)
and therefore not of interest for the suffix-prefix
matching problem.

The suffixes occurring in a bucket will be pro-
cessed in nested intervals, called Icp-intervals, a no-
tion introduced for enhanced suffix arrays by [18].
We generalize this notion to table H and L as
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follows: An interval [e.f]l, 0<e<f<pf-1, is an lcp-
interval of lcp-value € if the following holds:

e c¢=0orL, <{,

o L,2tforallqe+1<gsf,

e L, ={for at least oneq,e+ 1<g<f,
o f=pf—1lorLs <t

We will also use the notation £ - [e..f] for an lcp-interval
le.f] of Icp-value €. If € [e.f] is an lcp-interval such that
w=H,[1.. .£] is the longest common prefix of the suffixes
H,, H,,,...,Hs then [e.f] is called the w-interval.

An lcp-interval €' - [e’..f] is said to be embedded in
an lcp-interval €-[e.f] if it is a proper subinterval of
L-le.f]l (ie,e<e’ <f <f) and € >€ The lcp-interval
€ - [e.f] is then said to be enclosing [e’..f]. If [e..f] encloses
[e".f] and there is no interval embedded in [e.f] that
also encloses [e'..f'], then [e'..f] is called a child inter-
val of [e.f] and [e.f] is the parent interval of [e'.f].
We distinguish lcp-intervals from singleton intervals
[e'] for any e, O0<e’,<f-1. [e'] represents H,. The
parent interval of [e’] is the smallest lcp-interval [e..f]
with e<e’ <f.

This parent—child relationship of Icp-intervals with
other lcp-intervals and singleton intervals constitutes a
virtual tree which we call the lcp-interval tree for H and L.
The root of this tree is the Icp-interval 0 - [0..(5 - 1)]. The
implicit edges to lcp-intervals are called branch-edges.
The implicit edges to singleton-intervals are called leaf-
edges. Additional file 1, Section 10 gives a comprehensive
example illustrating these notions.

Abouelhoda et al. ([18], Algorithm 4.4) present a linear
time algorithm to compute the implicit branch-edges of
the lcp-interval tree in bottom-up order. When applied to
a bucket of sorted suffixes, the algorithm performs a linear
scan of tables H and L. In the eth iteration, 0<e<f -2, it
accesses the value L.,; and H, We have non-trivially
extended the algorithm to additionally deliver leaf edges.
The pseudocode, with some additions in the lines marked
as new, is given in Algorithm 1 (Figure 1). We use the fol-
lowing notation and operations:

o A stack stores triples (£, e,f) representing an lcp-
interval € — [e..f]. To access the elements of such a
triple, say sv, we use the notation sv.lcp (for the lcp-
value €), sv.lb (for the left boundary e) and sv.rb (for
the right boundary f).

e stack.push(e) pushes an element e onto the stack.

e stack.pop pops an element from the stack and
returns it.

e stack.top returns a reference to the topmost element

of the stack.

1 stands for an undefined value.
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o process_leafedge(firstedge, itv, (p, q)) processes an
edge from the lcp-interval itv to the singleton
interval representing the suffix r,[qg. . .|r,|]. firstedge
is true if and only if the edge is the first processed
edge outgoing from itv.

e process_branchedge(firstedge, itv, itv)) processes an
edge from the Icp-interval itv to the lcp-interval itv’.
The value itv'rb is defined and firstedge is true if and
only if the edge is the first edge outgoing from itv.

e process_lcpinterval(itv) processes the lcp-interval itv.
The value itv.rb is defined.

Depending on the application, we use different functions
process_leafedge, process_branchedge, and process_lcpinterval.

Additional file 1, Section 4, explains why Algorithm 1
also delivers the leaf edges of the lcp-interval tree in the
correct bottom-up order.

Consider a path in the lcp-interval tree from the root
to a singleton interval [e’] representing H, =1,[q...|r,|].
Let £ - [e..f] be an Icp-interval on this path, and consider
the edge on this path outgoing from € - [e..f]. If the edge
goes to an lcp-interval of, say Icp-value €', then the edge
is implicitly labeled by the non-empty sequence
rplg+4€...q+2 —1] . Suppose the edge goes to a
singleton interval: Then the edge is implicitly labeled by
the non-empty sequence 7,[g+2...|r,| - 11$,. If g+ L =r,|,
then r,[g+2...|r,| -1] is the empty string, which implies
that the edge to the singleton interval is labeled by the sen-
tinel $,. Such an edge is a terminal edge for r,. If the read
offset g is 0, we call [e'] a whole-read interval for r,, and
the path in the Icp-interval tree from the root to [e'] a
whole-read path for r,,.

Consider a suffix-prefix match (r,,r,£), such that the
suffix w of r, of length £ has a prefix u of length k. Recall
that u is the common prefix of all suffixes in the ith
bucket. Due to the implicit padding of reads at their end,
the symbol following w as a suffix of r, is $,. By defin-
ition, w is also prefix of r; and the symbol in r; following
this occurrence of w is different from $,. Thus, there is a
w-interval [e.f] in the lcp-interval tree for H and L. [e.f]
is on the path from the root-interval to the whole-read
leaf interval for r;. Moreover, there is a terminal edge for
r, outgoing from [e.f]. Vice versa, an Icp-interval of Icp-
value € on the path to the whole-read leaf interval for
and with a terminal edge for r, identifies the suffix-
prefix match (r,,7;,€). This observation about suffix-
prefix matches is exploited in Algorithm 2 (Figure 2)
which performs a bottom-up traversal of the lcp-interval
tree for H and L, collecting whole-read leaves and ter-
minal edges for lcp-intervals of lcp-value at least £,,,,.
More precisely, whenever a whole-read leaf for r,, 1<p<
m, is found (line 9), p is appended to the list W. With
each Icp-interval itv on the stack used in the bottom-up
traversal, an integer itv.firstinW is associated. The
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.

Input: table L and sorted array H of SPM-relevant suffixes 3
functions process_leafedge, process_branchedge and process_lcpinterval
to process the enumerated items
Output:  Processed implicit branch- and leaf-edges of the lep-interval tree
in bottom-up order
1 stack =[] > empty stack
2: lastitv := L
3: firstedgefromroot := true > No edge from root yet
4: stack.push(0,0, L) > Push root-interval with undefined rb-value
5 fore:=0to f—2do
6: if Leyq < stack.top.lcp then > new
7 if stack.top.lcp > 0 then > new
8: firstedge := false > new
9: else > new
10: firstedge := firstedgefromroot > new
11: firstedgefromroot := false > new
12: process_leafedge (firstedge, stack.top, He) > new
13: while L. < stack.top.lcp do
14: lastitv = stack.pop
15: lastitv.rb :=e
16: process_lepinterval (lastitv)
17: if L.y < stack.top.lcp then
18: if stack.top.lcp > 0 then > new
19: firstedge := false > new
20: else > new
21: firstedge := firstedgefromroot > new
22: firstedgefromroot := false > new
23: process_branchedge (firstedge, stack.top, lastitv)
24: lastitv
25: if Leyq1 > stack.top.lcp then
26: if lastitv # L then
27: stack.push(Leyq, lastitv.lb, L)
28: process_branchedge (true, stack.top, lastitv)
29: lastitv :== L
30: else
31: stack.push(Ley1,e, L)
32: process_leafedge (true, stack.top, H.) > new
Figure 1 Algorithm 1. Bottom-up traversal algorithm for arrays of SPM-relevant suffixes. This is an extension of [18, Algorithm 4.4] with the
additional lines marked as new.

elements in Wlitv.firstinW...|W|] are exactly the read
numbers of whole-read leaves collected for itv. The
value of itv.firstinW is set whenever the first edge out-
going from itv is detected: If the first edge outgoing
from itv is a leaf-edge, no previous whole-read leaf for
itv has been processed: Thus |W]| +1 is the first index
in list W where the whole read leaf information (if
any) for itv will be stored (see line 8). If the first edge
is a branch-edge to Icp-interval itv’, then the corre-
sponding subset of W for itv’ must be inherited to
itv. Technically, this is achieved by inheriting the
firstinW-attribute from itv’ to itv, see line 18 of Algo-
rithm 2.

Whenever a terminal edge for read r,, outgoing from an
interval itv is processed (line 11), p is added to the list 7.
Suppose that this terminal edge is outgoing from the lcp-
interval itv. The first symbol of the label of the terminal
edge is $,. Suppose there is a branch-edge outgoing from
itv to some Icp-interval itv’. Then the first symbol, say a,

of the implicit label of this edge must occur more than
once. Thus it cannot be a sentinel, as these are consid-
ered different in the lexicographic ordering of the suf-
fixes. Hence the first symbol a is either A, C, G or T. As
these symbols are, with respect to the lexicographic order,
smaller than the sentinels, the branch-edge from itv to itv’
appears before the terminal edge from itv. Hence the ter-
minal edges outgoing from itv’ have been processed in line
25, and so we only need a single list T for the entire
algorithm.

As soon as all edges outgoing from itv have been pro-
cessed, we have collected the terminal edges in T and
the whole-read leaves in W. If itv.lcp exceeds the mini-
mum length, Algorithm 2 computes the cartesian prod-
uct of T with the appropriate subset of W and processes
the corresponding suffix-prefix matches of length itv.lcp
in line 25. At this point suffix-prefix matches may be
output or post-processed to check for additional con-
straints, such as transitivity. Once the cartesian product
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Input:
with common prefix u of length &

Output: All suffix-prefix matches (r, s, £)
such that ¢ > £,,;, and u is a prefix of s
T = [ ]
s We=1]

: run Algorithm 1 with the following functions:

5: function process_leafedge (firstedge, itv, (p,q))
6: if itv.lep >l then

7 if firstedge then

8: itv.firstinW := |[W| + 1
9: if ¢ =0 then

10: append p to W

11: if ¢ + itv.lep = |rp| then
12: append p to T'

13: else

14: W:=[]

15: function process_branchedge firstedge,itv,itv’)
16: if itv.lep > £ pnin then

17: if firstedge then

18: itv.firstinW := itv’. firstinW
19: else

20: W:=1[]

21: function process_lcpinterval (itv)
22: if itv.lep >l then

23: for all p € T do

24: for all j € Wlitv.firstinW ...|W|] do
25: process (rp, 15, itv.lep)

26: T:=1]

table L and sorted array H of SPM-relevant suffixes

generic function process to postprocess an SPM

1
2;
3: with each lcp-interval associate an integer itv.firstinW
4

> empty list
> empty list

> p is read number and ¢ is offset

> (p, q) refers to whole read

> call generic function to process SPMs

Figure 2 Algorithm 2. Bottom-up traversal of Icp-interval tree enumerating suffix-prefix matches.

has been computed, the elements from T are no longer
needed and T is emptied (line 26). Note that the algo-
rithm empties W once an Icp-interval of lcp-value smal-
ler than ¢,,, is processed. After this event, there will
only be terminal edges from v-intervals such that the
longest common prefix of v and the reads in W is smal-
ler than ¢,,;,. Therefore there will be no suffix-prefix
match of the form (_,w,£) such that £>¢,,, and w is a
read represented in W. So the list can safely be emptied.

The lcp-interval tree for H and L contains f3 leaf-edges.
As all Icp-intervals have at least two children, there are at
most S-1 branch-edges and S Icp-intervals. As each of
the three functions specified in Algorithm 2 is called once
for every corresponding item, the number of functions
calls is at most 35 — 1. Recall that Algorithm 2 is applied to
each bucket and the total size of all buckets is g.
Hence there are at most 3g—d calls to the three func-
tions. process_leafedge and process_branchedge run in con-
stant time. The running time of process_Ilcpinterval is
determined by the number of SPMs processed. Assuming
that the processing takes constant time, the overall run-
ning time of Algorithm 2 for all buckets is O(g + z) where
z is the number of processed SPMs.

Handling reverse complements of reads

Reads may originate from both strands of a DNA mol-
ecule. For this reason, suffix-prefix matches shall also be
computed between reads and reverse complements of
other reads. Handling the reverse complements of all
reads is conceptually easy to integrate into our approach:
One just has to process R instead of R.

The three steps which involve scanning the reads
are extended to process both strands of all reads.
This does not require doubling the size of the read
set representation, as all information for the reverse
complemented reads can efficiently be extracted from
the forward reads. Additional file 1, Section 5, shows
how to compute the integer codes for the reversed
reads from the integer codes of the forward reads in
constant time.

The scan of the reverse complemented reads has a
negligible impact on the runtime. Of course, the size of
the table S, K and PS roughly doubles when additionally
considering reverse complements.

When computing suffix-prefix matches some minor
modifications are necessary: Applying Algorithm 2 to R
finds all SPMs, including some redundant ones, which
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we want to omit. This is formalized as follows: an SPM
(r,s,8) € SPM(R) is non-redundant if and only if one
of the following conditions is true:

e reR;seR
e reER,seR,r<s
e reR,seR,s<7 -

For any SPM, these conditions can easily be checked in
constant time, see Algorithm 3 (Additional file 1, Section 7).

Recognition of transitive and irreducible
suffix-prefix matches
For the construction of the string graph, we do not
need transitive SPMs. An SPM (r,t") is transitive if
and only if there are two SPMs (rs,€) and (s,£,2")
such that €+¢ =|s|+¢”. Figure 3 shows a concrete
example of a transitive SPM. An SPM which is not
transitive is irreducible.

The following theorem characterizes an SPM by a read
and a single irreducible SPM satisfying a length constraint
and a match constraint, see Figure 4 for an illustration.

Theorem 1. Let (r,£,£") be an SPM. Then (r,t,0") is
transitive if and only if there is an s € R and an irredu-
cible SPM (s,£,€') such that £ >¢", |r|-2"=|s| - ¢’
and s[1...|s| =€ ]=r[|r|-€" = (|s| =€) +1...|r|-2"].

The proof of Theorem 1 can be found in Additional
file 1, Section 6.

If the SPM (r,t,€") is transitive and (s,£,€') is the
SPM satisfying the conditions of Theorem 1, then we say
that (t,£") is derived from (s,t,2’).

Theorem 1 suggests a way to decide the transitivity of an
SPM (r,t,8): Check if there is an irreducible SPM (s,t,2")
from which it is derived. The check involves comparison of
up to |s| — €’ symbols to verify if s[1...|s| - €] is a suffix
of r[1...]r] —2"]. As there may be several irreducible
SPMs from which (r,£,€") may be derived, it is neces-
sary to store the corresponding left contexts: For any
sequence s and any £', 1 <8’ < |s|, the left context LC(s,2")
of s is the non-empty string s[1...|s| - ¢].

Due to the bottom-up nature of the traversal in
Algorithm 2, the SPMs involving the different prefixes of a
given read are enumerated in order of match length, from
the longest to the shortest one. Thus, Algorithm 2 first

7 ttacgtacgtagctagctagct
acgtagctagctagcttactag
t ctagctagcttactagtcaget

Figure 3 Example of a transitive suffix-prefix match. An example
of a transitive SPM. A set of three reads with a transitive SPM
(r,t,10) derived from (s, t,16).
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delivers the irreducible SPM (s, t,£") from which (r,¢,€")
is possibly derived, because £ > £".

From Theorem 1 one can conclude that the first SPM,
say (s,£,£"), found on a whole-read path for ¢ is always irre-
ducible. Hence, one stores LC(s,€’). An SPM (rt,€")
detected later while traversing the same whole-read path
for ¢ is classified as transitive if and only if LC(s,£") is a suf-
fix of LC(r,£") (see Figure 5 for an illustration). If (r,£,€")
is transitive it is discarded. Otherwise, LC(r,£"”) must be
stored as well to check the transitivity of the SPMs found
later for the same whole-read path. So each SPM is either
classified as transitive, or irreducible, in which case a left
context is stored. To implement this method, we use a dic-
tionary D of left contexts, with an operation LCsearch
(D, s), which returns true if there is some t € D such that ¢
is a suffix of s. Otherwise, it adds s to D and returns false.
Such a dictionary can, for example, be implemented by a
trie [19] storing the left contexts in reverse order. In our
implementation we use a blind-trie [20]. In Additional file
1, Section 7 we present a modification of Algorithm 2 to
output non-redundant irreducible SPMs only.

Recognition of internally contained reads

At the beginning of the methods section we have shown
how to detect reads which are prefixes or suffixes of other
reads. When constructing the string graph we also have to
discard internally contained reads, which are contained in
other reads without being a suffix or a prefix. More pre-
cisely, r € R is internally contained, if a read r’ € R exists,
such that " = urw for some non-empty strings # and v. In
Additional file 1, Section 8, we show how to efficiently de-
tect internally contained reads.

Construction of the assembly string graph

Consider a read set R which is suffix- and prefix-free. The
assembly string graph [8] is a graph of the relationships
between the reads, constructed from SPM™ (ﬁ) , the set
of all non-redundant irreducible SPMs from SPM(R)
restricted to reads which are not internally contained.

For each r &R the graph contains two vertices
denoted by r.B and r.E, representing the two extremities
of the read. B stands for begin, E stands for end.

For each  non-redundant irreducible = SPM
(r,s,t) € SP. ”’(ﬁ) satisfying €>4¢,,,,, the graph con-
tains two directed edges, defined as follows:

L. if (r,s,8) € SPM™ (R there are two edges:
o 1.E— s.E with edge label s[¢ +1...|s]|]
o s.B— r.B with edge label 7[¢+1. .. |r|]

2. if (r,5,6) € SPM" (R ) there are two edges:
e r.E— s.B with edge label 5[¢+1...]s|]
o s.E— r.B with edge label 7[¢+1...|r|]
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3. if (s,r,8) € SPM™(R) there are two edges:
e 7.B—s.E with edge label s[£+1...[s]|]
e s.B— r.E with edge label 7[€+1...|r|]

In our implementation of the string graph, vertices are
represented by integers from 0 to 2m - 1. To construct
the graph from the list of non-redundant irreducible
SPMs, we first calculate the outdegree of each vertex.
From the counts we calculate partial sums. In a second
scan over the list of SPMs, we insert the edges in an
array of size 2p, where p = |SP m (ﬁ) | This strategy
allows to allocate exactly the necessary space for the
edges and to access the first edge outgoing from a
vertex in constant time. The array of edges is stored
compactly using 2p([loga(2m)] + [logs(Amax — Lmin)])
bits, where A,.x is the maximum length of a read.
[log,(2m)] bits are used for the destination of an
edge (the source of the edge is clear from the array
index where the edge is stored). [logs(Amax — Cmin)]
bits are used for the length of the edge label.

To output the contigs, we first write references (such
as read numbers and edge lengths) to a temporary file.
Once this is completed, the memory for the string graph
is deallocated, and the read sequences are mapped into
memory. Finally, the sequences of the contigs are
derived from the references and the contigs are output.

To verify the correctness of our string graph implemen-
tation and to allow comparison with other tools, we have
implemented the graph cleaning algorithms described in

[9] as an experimental feature. More sophisticated techni-
ques, such as the network flow approach described in [8],
are left for future work, as the main focus of this paper lies
in the efficient computation of the irreducible SPMs and
the construction of the string graph.

Results

The presented methods for constructing the string
graph and the subsequent computation of contigs have
been implemented in a sequence assembler named
Readjoiner, which is part of the GenomeTools software
suite [21]. The Readjoiner pipeline consists of three
steps:

e Readjoiner prefilter takes a read set in form of one
or more Fasta-formatted files and removes reads
containing ambiguity codes and reads which are
prefixes or suffixes of other reads. It outputs the
prefiltered reads in the GtEncseq-format [16].

e Readjoiner overlap maps the representation of
prefiltered reads in memory, enumerates non-
redundant irreducible suffix-prefix matches, and
stores them on file. The time/space tradeoff for this
step can be adjusted by an option specifying the
number of parts in which the sorted array of
SPM-relevant suffixes is computed. Alternatively,
one can specify a memory limit, according to which
the minimum number of parts is determined to not
exceed this limit.

Y

|
|
T
w T ‘ y
|
|

w

Y

LC(s, |zZ)) is not a suffix of vy.

Figure 5 Transitivity and left contexts. Transitivity and left contexts. Let the SPM (t,r,|z|) be derived from (s, r,|zZ|). Hence the left context
LC(s, |zZ)) =xy is a suffix of the left context LC(t, |z]) = wxy. Let {u,r,|z]) be an irreducible SPM. Then LC(u, |yz]) = vy for some non empty string v and
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e Readjoiner assembly builds the string graph and
traverses it to output the contigs.

Experimental setup

For our benchmarks, the 64bit GenomeTools binary was
compiled by gcc version 4.3.2 using the provided Makefile
with the option “64bit = yes assert = no amalgamation = yes”.
These last two options trigger the build-system to not
compile assertions and to generate a single C-code file
from which an amalgamation object is compiled, thus
allowing for a maximum of inlined code, which in turn is
executed faster.

All tests were performed on a computer with a 2.40 Ghz
Intel Xeon E5620 4-core processor, 64 GB RAM, under a
64bit Linux operating system, using a single core only.

For memory usage measurements, we monitored the
VmHWM (“high water mark”) value in the /proc file
system [22] associated with the process of each particu-
lar program over the time of its execution, including
both allocated heap memory and memory made avail-
able via the mmap() system call. The running time is the
CPU time (sum of user and system time) as measured
using GNU time.

For all runs of Readjoiner we used k=32, k' = max{8,
[logon] — 8} and K" =k -1. If not stated otherwise, the
number of parts in which Readjoiner computes the sorted
array of SPM-relevant suffixes was 7. All programs were
run with €, =45 (which is the default minimum match
length in SGA).

Human genome sequencing simulations

We tested our assembler on simulated error-free sequen-
cing read sets based on human genomic sequences (latest
available release of GRCh37). For each human chromo-
some we prepared a template sequence by deleting ambi-
guity symbols. Then we simulated reads by pseudo
random sampling of the template sequence and its reverse
complement, until the desired number of reads was
obtained. This was done using the GenomeTools sim-
reads-tool and is the same procedure as used in [11,13].

From each of the 24 human chromosome sequences,
we generated a separate read set with 20 x coverage and
a constant read length of 100 bp. The read set are called
cl,c2,...,¢22,cX,cY. Furthermore, using the entire
human genome as template we generated read sets with
20x%, 30x and 40x coverage, referred to by hg20x, hg30x
and hg40x, respectively. Additionally, from chromo-
some 22, a set of reads of variable length was pre-
pared: The results for this dataset are reported in
Additional file 1, Section 9.

In a first computational experiment, we determined the
time vs. space tradeoff of our partitioning strategy, by ap-
plying Readjoiner to c2 with a varying number of parts
ranging from 1 to 9. The results are shown in Figure 6.
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The complete Readjoiner-pipeline was applied to
each of the 24 datasets cl,c2,¢3,...,¢22,cX,cY. We
considered the running time as a function of the
length of each chromosome from which the dataset
was generated and performed a linear regression,
which delivered an R*-value of 0.997. The same was
done for the space peak, delivering an R>-value of
0.998. Figure 7 shows plots of the time vs. length and
space peak vs. length functions.

Comparison with other string graph-based assemblers
The 64bit Linux binaries of Edena [9] were downloaded
from [23]. We tested version 2.1.1 and version 3
dev110920. Edena 3 is an untested version and under active
development. In our tests, it required slightly more memory
and was significantly slower than Edena version 2.1.1,
which we therefore selected for the comparative test. The
source code of SGA (version 0.9.13) was obtained from its
public GitHub repository [24]. The 64-bit Linux binary of
LEAP was downloaded from [25].

As Edena is based on the original string graph con-
struction method proposed by [8], a comparison to
Readjoiner allows validating our construction method.
Table 1 reports the performance of Edena and Readjoiner
for the assembly of datasets ¢22, c15 and c7. These and
additionally c¢2 were used as benchmark sets in [11,13].
For all three datasets, Edena and Readjoiner produce
exactly the same list of irreducible SPMs, which allows
concluding that the string graphs are identical. The
resulting contig sets are almost identical: Edena was
slightly more stringent in the output of the smallest con-
tigs. Readjoiner was 13 — 14x faster than Edena and used
about 11% of the space used by Edena. Due to a segmenta-
tion fault, Edena did not complete the overlap phase for
the largest chromosome dataset c2.

SGA [12] is based on the direct string graph construc-
tion methods first introduced in [11]. Currently, to the
best of our knowledge, it is the only other open source
string graph-based assembler, besides Readjoiner. The
SGA default pipeline consists of the index, overlap and
assemble tools: However, memory can be reduced by
using sga index, rmdup and fm-merge [12]. The param-
eter d of the SGA-index phase allows selecting the num-
ber of sequences to be processed at a time: without this
parameter, the index phase requires much more memory
than other phases. With memory being the most limiting
factor in the assembly, we optimized the space peak of
SGA by gradually reducing the value of d until either the
space peak of the index phase was less than the space
peak of the other phases, or a further decrease of d did
not reduce the space peak. SGA’s index construction and
overlap calculation can be threaded. However, for a fair
comparison we used a single thread. Table 2 reports the
results of running SGA and Readjoiner for the datasets
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Table 1 Comparison of Readjoiner and Edena
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RJ Edena Edena RJ Edena Edena RJ Edena %ejna
Read set 22 c22 - cl5 c15 - c7 c/ -
Genome size (Mbp) 349 349 - 81.7 81.7 - 1554 1554 -
Number of reads (M) 7.0 7.0 - 16.3 16.3 - 31.1 31.1 -
Contained reads (K) 6864 636.4 - 1665.7 1665.7 - 31030 31030 -
Irreducible SPM (M) 7.2 7.2 - 17.2 17.2 - 364 364 -
Overall time (s) 360 4903 13.62x 945 13609 14.40x 2035 29404 14.45x
Overall space (MB) 294 2753 9.35% 703 6415 9.13% 1331 12255 9.21x
Contigs 120712 120462 - 254830 254111 - 503446 502706 -
Total contigs length (Mbp) 457 447 - 103.0 101.1 - 198.8 195.0 -
Assembly N50 (Kop) 1.6 1.7 - 24 25 - 23 24 -
Assembly NG50 (Kbp) 27 2.7 - 3.7 3.7 - 39 39 -
Longest contig (Kbp) 414 414 - 542 54.2 - 449 449 -

Results of applying Readjoiner (RJ) and Edena to the datasets c22, c15, c7 (£,,;, =45).

c22, c15, c7 and c2. Readjoiner was 19x to 20x faster than
SGA and used 14% to 23% less space than SGA. Using
overlap and assemble instead of fm-merge, SGA became
slightly faster but required about 7 times more memory
(data not shown). By default, SGA is less stringent than
Readjoiner when computing the contigs from the string
graph, thus producing more contigs with a lower N50
value. For each of the four datasets, the longest contig
produced by SGA and Readjoiner is identical, and the
NG50 value of the assembly is comparable.

LEAP implements the methods described in [13] to
construct a full overlap graph. The efficiency of LEAP is
remarkable, and allowed us to extend the comparison
with Readjoiner to the hg20x dataset. Table 3 reports the
results when applying Readjoiner and LEAP to the data-
sets c22, c2 and hg20x. Additionally, it shows the results
for Readjoiner on hg30xand hg40x (for which LEAP
was not able to complete the overlap phase on our test

Table 2 Comparison of Readjoiner and SGA

machine with 64 GB RAM). Readjoiner was faster than
LEAP for all datasets with a speedup factor of 1.6 to 1.8.
Furthermore, it required less memory: While the reduc-
tion in the space peak was at a maximum for the small
datasets (c22, 2.99x), it is still significant (1.63 x ) for the
hg20x dataset which contains almost two orders of mag-
nitude more reads. In approximately the same time in
which LEAP assembles hg20x, and using less memory,
Readjoiner was able to assemble the hg30x dataset.
Readjoiner was also able to assemble the hg40x dataset
in 51 hours using 52 GB RAM.

Evaluation of assemblies

In order to assess the quality of the assemblies delivered
by the different programs, we used the script assess_as-
sembly.pl of the Plantagora project [26]. The script
aligns the contigs to the template sequence from which
the reads were sampled, using the Nucmer alignment

RJ SGA SGA RJ SGA SGA RJ SGA SGA RJ SGA SGA
RJ RJ RJ RJ

Read set 22 c22 - cl5 c15 - c7 c7 - 2 c2 -
Genome size (Mbp) 349 349 - 81.7 81.7 - 1554 1554 - 2382 2382 -
Number of reads (M) 7.0 70 - 16.3 16.3 - 31.1 31.1 - 476 476 -
Sga index -d (K) - 300 - - 700 - - 1350 - - 2300 -
Overall time (s) 360 7508 20.86x 945 19334 2046x 2035 39988 19.65x 3185 65194 20.47x
Overall space (MB) 294 383 1.30x 703 842 1.20x 1331 1568 1.18% 2094 2436 1.16%
Contigs 120712 231594 - 254830 547217 - 503446 1215816 - 634403 1702714 -
Total contigs length (Mbp)  45.7 55.9 - 103.0 130.5 - 198.8 2664 - 292.2 396.1 -
Assembly N50 (Kbp) 16 0.8 - 24 1.0 - 23 05 - 32 12 -
Assembly NG50 (Kbp) 2.7 2.7 - 3.7 3.7 - 39 39 - 45 45 -
Longest contig (Kbp) 414 414 - 54.2 542 - 449 449 - 529 529 -

Results of applying Readjoiner (RJ) and SGA to the datasets c22, c15, c7, c2 (£,,;,=45).
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Table 3 Comparison of Readjoiner and LEAP
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RJ LEAP LEAP RJ LEAP LEAP RJ LEAP LEAP RJ RJ
RJ RJ RJ

Read set 22 22 - () 2 - hg20x hg20x - hg30x hg40x
Genome size (Mbp) 349 349 - 2382 2382 - 28613 28613 - 28613 2861.3
Number of reads (M) 7.0 7.0 - 476 476 - 579.5 5795 - 869.2 11553
Overall time 6min - 9min  160x 53min Th36min 181x 20h4min 35h5 min 1.79x 34h9min 51 h 16 min
Overall space (GB) 03 0.9 299x 20 4.0 1.98x 279 456 1.63x 398 520
Contigs 120712 113428 - 634403 630408 - 3239309 11662607 - 13497497 16253905
Total contigs length (Mbp) 45.7 43.1 - 2922 280.6 - 28331 3642.7 - 4003.9 4281.1
Assembly N50 (Kbp) 16 16 - 32 30 - 30 14 - 12 09
Assembly NG50 (Kbp) 2.7 24 - 45 39 - 3.0 25 - 29 2.8
Longest contig (Kbp) 414 394 - 529 489 - 634 586 - 634 634

Results of applying Readjoiner (RJ) and LEAP to the datasets c22, c2, hg20x, hg30x, hg40x (£,,,=45). LEAP was not able to process hg30x and hg40x on the test

machine with 64 GB RAM.

tool [27]. Several metrics, including the number of un-
aligned contigs, misassemblies, SNPs and gaps are reported.

Furthermore, assemblies were evaluated using the
basic Assemblathon 1 statistics as defined in [28], in-
cluding total length of the contigs, length of the longest
and shortest contig, N50, L50, NG50 and LG50. Table 4
reports the results of the evaluation of the assemblies of
dataset c22.

Effect of sequencing errors

Readjoiner is based on the computation of exact suffix-
prefix matches. Real-world datasets, however, contain a
certain amount of errors. To better assess the effect of
sequencing errors on the assembly, we sampled two sets
of reads from the Escherichia coli K-12 genome, each
consisting of 2 million reads: The first one (Ecoli-without-
errors) is error-free, while in the second read set (Ecoli-
with-errors) sequencing errors were introduced using a
0.75% position-independent substitution rate.

In order to assess the efficiency of k-mer based error
correction (which we plan to implement in Readjoiner),
we pre-processed Ecoli-with-errors using SGA. This con-
structs an FM-index from the reads set and errors are
corrected using sga correct, delivering the read set
termed Ecoli-SGA-corrected. This is further processed by
sga filter, after constructing a new FM-index, to elimin-
ate further error-containing reads. This resulting set
Ecoli-SGA-corrected+filtered was assembled using both
Readjoiner and SGA. Table 5 gives the most important
statistics of the Readjoiner and SGA assemblies of the
four different read sets defined here.

Discussion and conclusion

In this paper, we presented methods and implementation
techniques of a new string graph based assembler, named
Readjoiner, which is significantly faster or more space

efficient than the previous software tools Edena [9], SGA
[11] and LEAP [13]. In particular, Readjoiner can handle a
set of reads with 40x coverage of the entire human gen-
ome (total length of all reads 115 Gbp) on a machine with
64 GB RAM.

Although the different string graph-based assemblers
aim at constructing the same graph, they apply different
heuristics to compute a layout from the string graph.
The quality of assemblies of simulated datasets was
compared using metrics from the Plantagora project
[26] and the Assemblathon 1 project [28]. In the assem-
blies of c22 delivered by Readjoiner, SGA and Edena
there are 4 misassembled contigs. In contrast, 53.4% of
the contigs of the LEAP assembly could not be aligned
to the reference and 4.3% of the aligned contigs were
misassembled. The “Negative Gaps” metric computed by
Plantagora reflects the amount of overlaps among the
contigs. Its high value for all tools can be explained by
the fact that branching nodes in the string graph start
new contigs in which the read corresponding to the
branching node is included. Additionally considering the
“Positive Gaps” metrics, one can conclude that most
contigs were interrupted due to the presence of repeti-
tive sequences, but not due to low coverage.

Our main development is a new efficient algorithm
to compute all irreducible suffix-prefix matches from
which the string graph is constructed. While the basic
techniques we use (e.g. integer encodings, suffix sort-
ing, integer sorting, binary search, bottom-up traversal
of lcp-interval trees) are mostly well-established in se-
quence processing, their combination is novel for the
considered problem. The different techniques were chosen
with the overall goal of performing as few as possible ran-
dom accesses to large data structures to obtain algorithms
with excellent data locality which in turn leads to
short run times. For most parts of our method, this
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Table 4 Metrics of assemblies of the c22 dataset
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Assemblathon metrics RJ SGA Edena LEAP
Number of contigs 120712 231594 120462 113428
Genome size (bp) 34894545 34894545 34894545 34894545
Total contigs length 45667531 55880641 44737441 43099113
-as % of genome 130.87 160.14 128.21 12351
Mean contig size 37832 241.29 37138 379.97
Median contig size 132 101 120 117
Longest contig 41352 41352 41352 39379
Shortest contig 102 100 100 101

Contigs > 500 bp
Contigs > 1 Kbp

13467 (11.16%)
8700 (7.21%)

13416 (5.79%)
8684 (3.75%)

13439 (11.16%)
8696 (7.22%)

13430 (11.84%)
8578 (7.56%)

Contigs > 10 Kbp 264 (0.22%) 264 (0.11%) 264 (0.22%) 228 (0.20%)
N50 1614 815 1699 1617

L50 5684 10118 5416 5488
NG50 2737 2739 2733 2461
LG50 3120 3113 3121 3429
Plantagora metrics RJ SGA Edena LEAP
Covered Bases 34343945 34357693 34300114 12968118
Ambiguous Bases 159997 154584 182952 696334
Misassemblies 4 4 4 3693
Misassembled Contigs 4 4 4 2344
Misassembled Contig Bases 1283 417 1245 2797710
SNPs 104 125 120 46270
Insertions 5 2 1 2403
Deletions 43 23 28 5187
Positive Gaps 2679 2471 2925 26495
Internal Gaps 0 0 0 21
External Gaps 2679 2471 2925 26474

- total length 547408 558921 589979 19064103
- average length 204 226 202 720
Negative Gaps 110888 218908 110811 18198
Internal Overlaps 0 0 0 17
External Overlaps 110888 218908 110811 18181

- total length —10247647 —20078971 —9424823 —1859835
- average length -92 -92 -85 -102
Redundant Contigs 864 1158 607 6329
Unaligned Contigs 3262 4686 3221 60563

- partial 18 57 21 3252

- total length 462668 599320 447922 27666823
Ambiguous Contigs 2631 3876 2619 799

- total length 369284 483895 366418 93102

Metrics of the assemblies of the dataset c22 as delivered by Readjoiner (RJ), SGA, Edena and LEAP (£,,,,,=45). The metrics are explained in [26] and in [28].
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Table 5 Assembly of error-containing reads

N50 (bp) NG50 (bp)

RJ SGA RJ SGA
Ecoli-without-errors 54948 54936 57213 57210
Ecoli-with-errors 203 5110 245 8645
Ecoli-SGA-corrected 38178 40002 39999 40824
Ecoli-SGA-corrected+filtered 41872 41872 41905 41903

N50 and NG50 values for the Readjoiner and SGA assemblies of Ecoli-without-
errors, Ecoli-with-errors, Ecoli-SGA-corrected and Ecoli-SGA-corrected-+filtered.

goal was achieved, mostly due to the partitioning of
the set of SPM-relevant suffixes. There are still many
random accesses to the representation of the reads,
which, however, cannot fully be prevented in an index
based approach.

The problem of computing suffix-prefix matches has
long been studied in the literature, mostly with the goal
of finding, for each pair of reads r and s, the longest
suffix-prefix match of r and s. Gusfield et al. [29] solved
this maximum suffix-prefix matching problem in opti-
mal O(n+m?) time and optimal O(n) space using the
suffix tree for all suffixes of m reads of total length 7.

Ohlebusch and Gog [30] present a solution to the same
problem with the same time and space complexity using a
linear scan of an enhanced suffix array. We do not know
of any solution of the maximum suffix-prefix match prob-
lem which appropriately handles the reverse complements
of the reads. Applying the algorithms of [29] or of [30] to
the set of all reads and their reverse complements would
not guarantee the maximality constraint, as the forward
and reverse complement of a read are represented in dif-
ferent locations of the employed index structure.

In Edena, suffix-prefix matches are computed using a
suffix array. Details of the algorithm or the implementa-
tion are not published.

Like Simpson and Durbin [11], we replaced the maxim-
ality constraint by a minimum length constraint imposed
on each suffix-prefix match. The modified problem allows
for an algorithm with two important advantages (com-
pared to the algorithms of [29,30]): At first, the algorithm
does not require a stack for each of m reads, and still can
employ the space and time efficient bottom-up traversal
of an lcp-interval tree as presented in Algorithm 1. More-
over, the algorithm can easily handle reverse complements
of the reads and efficient selection of irreducible suffix-
prefix matches is possible.

There are two main approaches to the construction of
a string graph. The original approach of Myers [8] was
to first construct a full overlap graph before transitive
edges are removed. The resulting string graph contains
all information relevant for the layout of the contigs. As
the string graph contains much less edges than the over-
lap graph (the ratio depends on the coverage of the read
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set, see [8]), the explicit representation of this usually
defines the space peak.

An alternative overlap graph representation for exact
suffix-prefix matches was introduced in [13] and imple-
mented in the LEAP software. The basic idea of this ap-
proach is to implicitly store many suffix-prefix matches
for a set of lexicographically related reads in constant
space using an interval representation. This allows for a
compact storage of the full overlap graph. The represen-
tation does not apply to irreducible SPMs. In [13] only
asymptotic results regarding the space requirement of
the compact overlap graph representation are given, and
LEAP does not give any clues on the size of the graph it
constructs. So it remains unclear if this representation of
the overlap graph is smaller than our representation of
the string graph. A comparison of the overall space re-
quirement of LEAP and Readjoiner shows a clear advan-
tage for Readjoiner, see Table 3 for details.

It is worthwhile to note that the contigs output by
LEAP contain many differences with respect to the tar-
get sequences they were sampled from. It is not clear to
us, whether this is an artifact of the method or an imple-
mentation issue.

Another efficient way to reduce the space peak for
string graph constructions is to recognize transitive
SPMs and prevent their insertion in the graph structure.
Simpson and Durbin [11] developed the first method
following this approach and implemented it in the SGA
software. In this paper, we have described an alternative
algorithm, exploiting a property of transitive SPMs that
can easily be checked on a small set of strings.

Our comparative tests (Table 2) indicate that Readjoiner
is more than one order of magnitude faster than the
current SGA implementation and uses less space. This
may come as a surprise as SGA uses a compact index
structure based on the BWT, while Readjoiner employs
techniques known from enhanced suffix arrays, which are
usually more space consuming. The space advantage of
Readjoiner is mainly a result of our partitioning approach
applied to the array of SPM-relevant suffixes. The parti-
tioning technique leads to a large reduction in the overall
memory peak and a small increase in the running time.
This can be explained by an improved cache coherence:
For a given part, only a small portion of the different
tables are accessed. This seems to outweigh the time for
the additional passes over the reads.

We see two reasons for the time advantage of Readjoiner:
at first it employs a suffix selection and sorting method
which is specifically tailored for the suffix-prefix matching
problem and the given minimum match length ¢,,;,. In
contrast, the BWT employed by SGA provides a general
string indexing technique that is not optimized for com-
puting SPMs of an arbitrary but fixed minimum length.
Secondly, Readjoiner computes suffix-prefix matches by a
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linear scan of two integer tables, which is a very fast oper-
ation. In contrast, SGA relies on random accesses to the
BWT which may take longer for large data sets.

The minimum match length parameter ¢€,,;, is used to
restrict the search to the exact SPMs that are considered to
be significant. To balance the required computational
resources and the quality of the assembly, one has to care-
fully choose an appropriate value for ¢,,,=45. A larger
value of £, reduces the number of SPM-relevant suffixes,
and in turn speeds up the computation and reduces the
space requirement, but may lead to a poor assembly. Inter-
estingly, in our simulations based on reads of length
100 bp, we obtained the best assembly results for a rela-
tively large value of ¢,,, around 65. However, for a fair
benchmarking of the tools and to simplify comparison with
previous publications, we have chosen ¢,,,;,, = 45.

Among the string graph-based assemblers mentioned
here, SGA is the only one that can distribute parts of the
computation across multiple threads. Some of the algo-
rithms employed in Readjoiner are well suited for a multi-
threaded implementation. For example, each bucket of
SPM-relevant suffixes is sorted independently and the cor-
responding SPMs are computed independently of all other
buckets. This step only requires random read access to
the representation of the reads. A multi-threaded imple-
mentation with shared memory access to the reads and
buckets which are (with respect to their sizes) evenly dis-
tributed over the threads, is expected to provide a consid-
erable speedup within a small amount of additional space.

Another important issue for future development is the
improvement of the assembly quality for real world data.
Here further preprocessing steps, in particular quality filter-
ing and error detection are required, as well as the handling
of paired read information in the assembly phase.

The present manuscript focuses on the algorithmic ap-
proach and implementation of methods for the compu-
tation of irreducible suffix-prefix matches and the
construction of the string graph. We report our results
on error-free datasets: This is in analogy to the first
papers describing the methods implemented in SGA
[11] and LEAP [13].

Several error correction strategies have been applied so
far: The classical method was to consider approximative
suffix-prefix matches of the reads and to correct the result-
ing contigs in a consensus phase. With large next-
generation datasets, the method of choice consist in k-mer
counting, identification of a subset of trusted k-mer, which
occur at least a given number of times in the read set, and
correction of the reads containing untrusted k-mers [12,31].

Approximative suffix-prefix matching algorithms can be
implemented to work on index structures, but the
increased search space makes them significantly slower
than exact matching algorithms. Among the string graph-
based assemblers, only SGA implements an approximate
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suffix-prefix matching algorithm: Nevertheless, this is not
used by default, and the authors recommend using their
faster k-mer based error correction method instead [12].

The fact that Readjoiner is based on exact suffix-prefix
matches makes it sensible to errors. We have demonstrated
that using a k-mer based error correction step delivers read
sets for which Readjoiner delivers assemblies with metrics
comparable to SGA. We therefore plan to implement a
k-mer based error correction for Readjoiner, employ-
ing techniques similar to those used for computing
suffix-prefix matches.

Paired-end and mate pairs provide short and long
range positional information, which is critical for im-
proving the quality of assembling eukaryotic genomes.
The classical approach consists in using this informa-
tion for connecting contigs into scaffolds either in a
post-processing phase, which may be integrated in the
assembler software, or using a stand-alone tool, such as
Bambus [32] or SSPACE [33]. A complementary ap-
proach, which we intend to introduce in a future ver-
sion of our software, is to exploit the pairing
information already during the traversal of the string
graph, by restricting to paths connecting the mate pairs
with a length compatible to the insert size of the library.
Details of such an approach are given in [34,35].

Availability

The Readjoiner software is available as part of the
GenomeTools genome analysis package [21], a free, open
source collection of bioinformatics software. See http://
www.zbh.uni-hamburg.de/readjoiner for more details.

Additional file

Additional file 1: Supplemental Material. This document describes
implementation techniques for the methods and algorithms described in
the main document. Moreover, it gives a lemma and a theorem
(including proofs) characterizing transitive SPMs, and an algorithm to
enumerate irreducible and non-redundant suffix-prefix matches.
Furthermore, a method to recognize internally contained reads is given,
as well as results for a benchmark set with reads of variable length.
Finally, an example of SPM-relevant suffixes and their corresponding
Icp-interval is presented.
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