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Background
Over the past decade, the application of medical imaging technology in clinical diag-
nostics and therapy has expanded to diverse approaches such as evaluation of joint 
biomechanics, patient specific implant development and evaluation, statistical model-
ling, three-dimensional (3D) printing and rapid prototyping, computer-assisted surgery, 
and preoperative planning [1–4]. In order to examine the biomechanical behavior of 
human joints and tissues for all above-mentioned applications, subject specific image 
based finite element (FE) analysis has been used as the most commonly used method [5]. 
Extracting the bone geometry from medical images, generating an optimum FE mesh, 
assigning proper material properties, and defining actual boundary conditions are the 
main inputs for FE analysis [6], and therefore their accuracy affects the precision of the 
FE analysis result [7]. The file format for performing 3D analysis is different from medi-
cal image formats for computed topography (CT) to magnetic resonance imaging (MRI). 

Abstract 

Background:  The present study contrasts the accuracy of different reconstructed 
models with distinctive segmentation methods performed by various experts. Seven 
research groups reconstructed nine 3D models of one human femur based on an 
acquired CT image using their own computational methods. As a reference model for 
accuracy assessment, a 3D surface scan of the human femur was created using an opti-
cal measuring system. Prior to comparison, the femur was divided into four areas; “neck 
and greater trochanter”, “proximal metaphysis”, “diaphysis”, and “distal metaphysis”. The 
deviation analysis was carried out in GEOMAGIC studio v.2013 software.

Results:  The results revealed that the highest deviation errors occurred in “neck and 
greater trochanter” area and “proximal metaphysis” area with RMSE of 0.84 and 0.83 mm 
respectively.

Conclusion:  In conclusion, this study shows that the average deviation of recon-
structed models prepared by experts with various methods, skills and software from 
the surface 3D scan is lower than 0.79 mm, which is not a significant discrepancy.
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Digital imaging and communication in medicine (DICOM) file formats must be con-
verted to a format readable by CAD or finite element software for further 3D analyses, 
e.g. the stereolithography (STL) format. The first milestone of construction workflow of 
image-based biomechanical analysis is accurate segmentation (extracting desired bone 
geometry from medical image data) from source data [8–10]. Therefore, FE analysis for 
the aforementioned purposes requires accurate 3D shape representation of bones. This 
is fundamental to obtain segmented bone data as authentic as possible to the patient’s 
morphology. Since there are many commercial segmentation software packages and 
algorithms, The STL models segmented with commercially available software packages 
may have discrepancies compared to the actual bone, and the accuracy of the segmented 
bone could then vary based on the segmentation method and operator’s skills. Hence, 
the accuracy assessment of 3D reconstructed bone based on medical images has been 
recently investigated extensively [8, 11–25]. Yet, it is concerned that such segmented 
models do not represent the accuracy of the original bone in a FE model. Therefore, the 
purpose of this study is to investigate the effect of using different segmentation method-
ologies conducted by experts with different experiences and skills through a round robin 
test including seven biomechanics laboratories. The deviation of segmented bone mod-
els from the cadaver bone geometry obtained by optical 3D scanning was investigated 
and the discrepancies between reconstructed models from CT images and the model 
obtained from optical 3D scanning was quantified.

Methods
Seven different research groups were invited to participate in this interlaboratory com-
parison. The results of this research were anonymized and only the principal investigator 
had access to non-anonymized data. The laboratories were randomly numbered from 1 
to 7. In case that more than one model was created by a laboratory, the first and second 
model of each laboratory was named by additional letters A and B, respectively. Figure 1 
presents a flowchart showing the research methodology applied in this study. It briefly 
shows how the reference STL file and also different laboratories STL file were created.

Fig. 1  Flowchart of methodology. On the left column different steps of making reference model is shown 
including optical 3D scanning, point cloud digitization and creating STL files. Right column shows that the 
only CT scan image taken in the study was segmented by 7 laboratories to create 7 STL files
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CT scan acquiring

The CT image of the right femur of a 58  year-old male cadaver was acquired from 
Trauma Center Murnau with a SOMATOM Definition AS + CT scanner (Siemens AG, 
Erlangen, Germany). This unique CT image was used by all seven laboratories for seg-
mentation. Soft tissues were removed from the bone prior to the scan. The CT image 
was saved as DICOM with resolution of 0.29 × 0.29 mm and slice thickness of 0.6 mm 
for deviation analysis. To reduce partial volume effects, the femur was scanned in a 
water bath. In order to achieve a calibrated scan, a bone mineral density phantom was 
scanned in the same setup.

Optical 3D digitization

The outer geometry of the femur was scanned using an optical measuring system at the 
Fraunhofer Application Centre of Large Structures in Production Engineering (AGP) 
in Rostock (Fig.  2). The ATOS series of industrial optical 3D scanners provide accu-
rate scans with detailed resolution at high speeds (GOM-Gesellschaft für Optische 
Messtechnik mbH, Braunschweig, Germany). Instead of measuring single points, ATOS 
captures an object’s full surface geometry and primitives precisely in a dense point cloud 
or polygon mesh. The 3D scanner consists of two cameras and a projection system 
in which the projector projects special stripe light patterns on a surface of an object, 
being recognized by the cameras. Every scan produces a point cloud with up to 4 Billion 
points. Several scans from different points of view can be registered by special reference 
points with a defined diameter, which will be automatically detected by the software. 
Table 1 presents the specifications of the ATOS scanner for scanning the femur.

Fig. 2  Optical 3D scanning setup at AGP Fraunhofer Institute in Rostock. The bone is located on the bench, 
scanning is performed by the optical scanner on the movable stand and controlled by the computer
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Reconstruction of 3D models

DICOM files obtained from the CT scan were used to segment the surface of femurs by 
four different segmentation software packages: AMIRA® (FEI Visualization Sciences 
Group, Oregon, USA), Mimics® (Materialise N.V., Leuven, Belgium), YaDiv (Welfenlab, 
Leibniz Universität Hannover, Hannover, Germany) [26], and Fiji Life-Line [27]. The bony 
regions were labeled in all slices of the CT images based on the certain values of Hounsfield 
units (HU) for bones. The process of labelling of bony structures is a visual and subjective 
procedure in which a primary HU value for bones was selected from the literature which is 
around 200–250 up to 3000 [28–31]. The automated segmentation of the bone started by 
thresholds of HU and was followed by manually editing the slices to obtain more accurate 
surfaces [28–31]. A triangulated surface of the femurs was created with the segmentation 
software using a semi-automatic method. Removal of the holes and sharp edges which were 
formed due to semi-automated segmentation was implemented in the above mentioned 
software [31–34]. Software information, methods and duration of the segmentation pro-
cess for each model are tabulated in Table 2. The reconstruction process of CT image was 
performed by researchers with 3–5 years of experience in segmentation.

Deviation analysis

Stereolithography (STL) files were collected from all project partners and imported into 
GEOMAGIC studio v.2013 (Raindrop Geomagic, NC, USA) for deviation analysis. Thereby, 
the researcher conducting the analysis was blinded towards the participant’s identity in 

Table 1  Optical 3D scanner system specifications

Structured Light Projection System GOM ATOS III

Measuring field (xyz) 500 500 × 500 (mm2)

Distance between points 0.24 (mm)

Accuracy (probing/spacing/flatness) MV500: 0.009/0.030/0.017 (mm)

Resolution 2048 × 2048 (4 megapixels)

Scan time 2.0 (s)

Dimensions 690 (W) × 220 (H) × 160 (D) (mm)

Table 2  Segmentation information such as  segmentation software, time taken for  seg-
mentation, and segmentation method for each participant

Segmentation software Time (min) Segmentation method

Laboratory 1 Mimics 18 480 Semi-automatic + manuel editing (3-Matic v.10)

Laboratory 2A AMIRA® v.5.3.3 480 Semi-automatic + manuel editing (MeshLab 1.3.4)

Laboratory 2B YaDiv 1.0 beta 5 480 Semi-automatic + manuel editing (MeshLab 1.3.4)

Laboratory 3 AMIRA® v.5.4.1 600 Semi-automatic + manuel editing

Laboratory 4 AMIRA® v.6 330 Semi-automatic + manuel editing (Geomagic Studio 
v.2012)

Laboratory 5 AMIRA® v.5.6 480 Semi-automatic + manuel editing (Geomagic Studio 
v.2012)

Laboratory 6 Fiji-Medtool v.4.0 85 Full-automatic + manual editing

Laboratory 7A AMIRA® v.5.4.1 270 Semi-automatic + manuel editing (Geomagic Studio 
v.2013)

Laboratory 7B Mimics v.17 340 Semi-automatic + manuel editing (3-Matic v.9)



Page 5 of 10Soodmand et al. BioMed Eng OnLine  (2018) 17:29 

order to avoid bias. Prior to comparison, the femur was divided into 4 areas: “neck and 
greater trochanter” area, “diaphysis”, “proximal metaphysis” and “distal metaphysis”. Five 
different planes were defined in global coordinates to divide all models into above-men-
tioned areas. Proximal end, upper proximal metaphysis, lower proximal metaphysis, dis-
tal metaphysis and distal end were the predefined planes for splitting the models into four 
aforementioned parts [35]. Figure 3 illustrates the predefined cutting planes of the femur. 
The Neck area includes “neck and greater trochanter” and the “proximal metaphysis” con-
tains the area of lesser trochanter. The “diaphysis” defined as long bone known as the femur 
shaft and the last part excludes the epiphysis named “distal metaphysis”.

Results
Seven laboratories prepared nine reconstructed models out of one single human femur 
CT scan. The outer surface of the femur was scanned with high point resolution using an 
optical 3D scanner. The results of 3D deviation analysis for the four femoral parts were 
processed in GEOMAGIC studio and compared to the other models. Table 3 presents 
the average deviation values of the 9 different segmented models for all four predefined 
areas of the femur. The highest deviation was observed in “neck and greater trochanter” 
area with RMSE of 0.84. The negative values for the estimated percentage error of the 
surface areas represent the deviation of the underestimated areas and the positive values 
show the overestimated areas (see Table 3). Root means square error (RMSE) was used 
as a standard statistical metric for comparison and evaluation of simulation models per-
formance [36, 37]. Figure 4 also illustrates the visual deviation using color-coded map to 
show the differences of each model compared to the bone optical 3D scan. Figure 5 illus-
trates the estimated surface areas of the nine segmented models and the bone optical 3D 

Fig. 3  Five predefined planes for splitting femur into 4 pieces to perform the deviation analysis
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scan. “Diaphysis” and “neck and greater trochanter” areas have the largest percentage 
errors of outer surface area with 2.92 and 2.57% respectively. This figure indicates that 
the outer surface areas of the reconstructed models are not exceedingly different from 
the reference model.

Table 3  Average deviation of four different parts of femur

Average  
deviation  
positive (mm)

Average  
deviation  
negative (mm)

Standard 
deviation 
(mm)

RMSE  
(mm)

Average percentage 
errors of surface 
area (%)

Neck and greater 
trochanter area

0.48 − 0.72 0.78 0.84 − 2.57

Proximal meta-
physis

0.61 − 0.78 0.78 0.83 − 2.06

Diaphysis 0.63 − 0.18 0.41 0.69 2.92

Distal metaphysis 0.66 − 0.50 0.56 0.73 0.86

Fig. 4  surface geometries comparison of 9 reconstructed models with the optical 3D scanned surface 
model. The red surface areas show overestimating of the reference model and blue areas indicate underesti-
mation
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Discussion
Finite element models are commonly used based on specific geometrical characteristics 
extracted from medical imaging data. This study presents a deviation analysis to evalu-
ate different segmentation methods based on CT scan compared to optical 3D surface 
scan of the same bone. Thereby, the reconstruction results of seven different biomechan-
ics laboratories were compared to evaluate how human skills, methods of segmentation, 
and different software packages can cause imprecision in image-based reconstructed 
models.

This study investigated a variety of conditions, which may have influenced the accu-
racy of the segmentation process. The segmentations of “neck and greater trochanter” 
area and “proximal metaphysis” showed the greatest deviations with RMSE of 0.84 
and 0.83  mm respectively (Table  3). Thevenot et  al. [38] reported the accuracy of a 
novel method for automatically reconstructed 3D model from 2D hip radiograph and 
Verim et al. [39] evaluated the reconstructed proximal femur from different images of 
different devices. They both found that the greatest error happened in the trochanter 
area which is in good agreement with our results. Vaananen et al. [40] assessed the 3D 
shape of proximal femur using two different methods; shape template and bone min-
eral density image. They also found out that the maximum discrepancies are in tro-
chanter area, ranging from 0.7 to 2.6 mm. Our results also showed the similar range 
of discrepancies. Schumann et al. [41] used clinically relevant morphometric param-
eters measurement of the proximal femur to examine the accuracy of their recon-
structed method. In their study, the highest average deviations were also observed in 
trochanter area. Rathnayaka et al. [42] conducted a study to compare the accuracy of 
MRI and CT reconstructed 3D models where they also estimated the highest devia-
tions was observed in the “neck and greater trochanter” region. The highest devia-
tions, usually observed in the “neck and greater trochanter” area, are probably due 
to geometrical complications exist in this area. In the current study, the highest esti-
mated discrepancy from the reconstructed models is 0.79 mm. The previous studies 
of Glaude et  al. [11, 43] on accuracy assessment of reconstructed models based on 

Fig. 5  Surface area of 4 parts (neck and great trochanter area, proximal metaphysis, distal metaphysis and 
diaphysis) of the femur obtained from optical 3D scan (reference STL file) as well as 7 participant laboratories
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medical images, suggest that the mean 3D deviation of reconstructed models should 
be in the range of 1 mm. Since clinical hip fractures commonly occur in the neck area 
[38], more accuracy in reconstruction of this area is required to have more precise 
FE analysis results. Furthermore, as observed in Fig.  5, there was no outlier in the 
accuracy assessment comparison, and all the reconstructed 3D models have similar 
range of deviations. However, if peak discrepancies are observed, they can be sim-
ply disregarded because they are local. The outer surface areas of the reconstructed 
models providing the surface meshes for FE analysis were also estimated in this study. 
Highest errors of the outer surface area were observed in “diaphysis” and “neck and 
greater trochanter” regions. This is also illustrated in Fig.  4 using color-coded map 
to show that “diaphysis” and “neck and greater trochanter” regions have the highest 
surface discrepancies compare to the real bone 3D optical scan. Therefore, these two 
regions are the most critical regions for reconstruction of 3D models based on medi-
cal images and should be processed carefully. The results also suggest, that the quality 
of the image segmentation is rather independent of reconstruction processing soft-
ware. The differences observed in segmentation times can be associated with either 
individual investigator speed of segmentation or the usability of the software. For 
future works, the effect of the negligible discrepancies on the FE analysis results will 
be examined using a controlled load case in an experimental setup.

Conclusion
This study shows that the average deviation of CT based models, prepared by experts 
with different skills using various software packages, from a bone surface scan is very 
low. This reveals that the effect of human expertise and use of different software pack-
ages and corresponding methodologies have a negligible effect on the accuracy of the 
reconstruction procedure from medical images. Therefore, image-based reconstructed 
models are reliable to use in FE models for clinical applications.
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