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Abstract

Background: Machine learning methods have gained popularity and practicality in
identifying linear and non-linear effects of variants associated with complex disease/
traits. Detection of epistatic interactions still remains a challenge due to the large
number of features and relatively small sample size as input, thus leading to the so-
called “short fat data” problem. The efficiency of machine learning methods can be
increased by limiting the number of input features. Thus, it is very important to
perform variable selection before searching for epistasis. Many methods have been
evaluated and proposed to perform feature selection, but no single method works
best in all scenarios. We demonstrate this by conducting two separate simulation
analyses to evaluate the proposed collective feature selection approach.

Results: Through our simulation study we propose a collective feature selection
approach to select features that are in the “union” of the best performing methods.
We explored various parametric, non-parametric, and data mining approaches to
perform feature selection. We choose our top performing methods to select the
union of the resulting variables based on a user-defined percentage of variants
selected from each method to take to downstream analysis. Our simulation analysis
shows that non-parametric data mining approaches, such as MDR, may work best
under one simulation criteria for the high effect size (penetrance) datasets, while
non-parametric methods designed for feature selection, such as Ranger and Gradient
boosting, work best under other simulation criteria. Thus, using a collective approach
proves to be more beneficial for selecting variables with epistatic effects also in low
effect size datasets and different genetic architectures. Following this, we applied our
proposed collective feature selection approach to select the top 1% of variables to
identify potential interacting variables associated with Body Mass Index (BMI) in ~
44,000 samples obtained from Geisinger’s MyCode Community Health Initiative
(on behalf of DiscovEHR collaboration).

Conclusions: In this study, we were able to show that selecting variables using a
collective feature selection approach could help in selecting true positive epistatic
variables more frequently than applying any single method for feature selection via
simulation studies. We were able to demonstrate the effectiveness of collective
feature selection along with a comparison of many methods in our simulation
analysis. We also applied our method to identify non-linear networks associated
with obesity.

Keywords: Feature selection, Epistasis, Non-additive effects, Obesity, Parametric
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Background
The advancements and cost-effectiveness of genotyping and sequencing technologies

have led to the ever increasing “short fat data” problem (where the number of features

outnumbers the sample size; p> > n) in applying various machine learning methods to

detect epistasis [1, 2]. Gene-gene interactions are considered as crucial components in

the origination of the “missing heritability” for testing association of variants with single

or multiple disease traits [3, 4]. Various statistical and biological filtering techniques are

commonly applied to select variants that are most meaningful in the search for epistatic

interactions linked with common and complex diseases [5, 6]. Regression approaches

are frequently used to model pairwise interactions but many machine learning ap-

proaches such as multi-factor dimensionality reduction (MDR) [7, 8], neural networks

[9], support vector machines [10], Bayesian methods [11], among others are contem-

porary methods now more commonly applied. Most of these methods are limited in

the number of features they can handle, and thus dealing with the computational bur-

den poses a challenge in the application of these methods. Beside the computational

burden, it is also important to note that the efficiency of most learning-based methods

can be improved to a greater extent if the number of input variables can be reduced. In

order to do so, many feature selection methods have been proposed in the past and have

been applied in the context of detecting statistical epistasis to identify non-linear associa-

tions of genetic variants with a disease trait. Hence, feature selection is not a new concept.

Several parametric and non-parametric methods such as LASSO [12], Elastic Net [13],

Random Forests [14], ReliefF [15], Gradient Boosting [16], etc., have been developed and

used frequently to perform feature selection. All methods have some advantages and

disadvantages, and thus they do not follow a “one method fits all” criterion.

In this study, we tested an eclectic set of parametric and non-parametric methods on

simulated datasets to first pick a few orthogonal methods to use in selecting features

that can be used in downstream analysis of epistasis. We compared these methods

based on both efficiency and effectiveness. We observed that different methods tend to

select variables based on different important aspects. Thus, we suggest a collective

feature selection approach. We propose to select the union of features from the top

comparable methods. The concept of taking the input from many algorithms, to select

variables as a collective opinion is in line with the “no free lunch” theorem of

optimization which states that in searching for candidate solutions, no one algorithm

can be specialized to all problems [17]. Unknown genetic etiology of complex diseases

makes it theoretically impossible for one algorithm to be specialized in identifying all

possible combinations of predictors associated with a disease. This concept is also simi-

lar to the concept of “Crowd Machine” which has been explained in previous work

[18]. Crowd Machine learning refers to combining multiple machine learning methods

into a single machine learning method so that the features from all methods can be

used effectively. Our proposed method is a variation of this concept. We recommend

applying a collective approach using various top performing feature selection methods

to identify variants with varying effect sizes (high and low penetrance) and MAF.

Methods
In this section, we will describe the datasets used for simulations and real data analyses

as well as the statistical methods applied for conducting feature selection.

Verma et al. BioData Mining  (2018) 11:5 Page 2 of 22



Simulation studies

Simulated data experiment 1

We simulated multiple data sets consisting of SNPs (single nucleotide polymorphisms),

referred to as variables, using an additive genetic encoding (AA = 0, Aa = 1, aa = 2) with

case-control status to test for binary outcome. Our simulation parameters consisted of

various combinations of the following epidemiological characteristics:

� Disease penetrance: This refers to the strength of the simulated signal or effect size

and thus directly corresponds to the heritability of the phenotype. We have used

previously simulated data with the same signal strength, these are listed as

0.1_diagonal, 0.5_diagonal and 0.9_diagonal and have been previously explained in

Li et al. [11].

� Number of disease sites: This refers to the number of SNPs that contributes to the

total effect in the dataset.

� Minor Allele Frequency (MAF): For many genetic interaction studies, it has been

shown that MAF highly influences power to detect true interactions. Therefore, we

limited our analysis to only common alleles above MAF 0.4 [19, 20]. For main

effect variants, we limited the MAF of the causal SNP to 0.4. For interacting effects,

MAF for each of the two interacting SNPs was also set to 0.4.

� Number of Samples: We generated 8 simulation scenarios consisting of balanced

datasets with 2000 cases and 2000 controls.

� Number of Variants: We set the number of variants as 100 and 500 to address the

computation burden.

We simulated (a) main effect only and (b) interaction effect only datasets using a

simulation procedure that has been previously explained [11]. As described, we evalu-

ated feature selection methods on similar datasets. Table 1 lists details of all parameters

used in generating main effect and interaction effect datasets. For all the simulation

analyses, we generated 10 data sets for each combination of parameters in this experi-

ment since we were interested in obtaining mean accuracy values or scores from the

replicates to compare across different methods.

Table 1 Parameters used for generating simulated experiment 1 data

Type of Effect (100 and 500 SNPs) Dataset name Causal SNP Model (Penetrance: 0.1, 0.5 and 0.9)

Main Effect 1SNP G1

2SNP G1, G2

3SNP G1, G2, G3

4SNP G1, G2, G3, G4

Interaction Effect case1_control0 G1 < −>G2

case1_control1 G1 < −>G2
G99 < −>G100

case2_control0 G1 < −>G2
G3 < −>G4

case2_control2 G1 < −>G2
G3 < −>G4
G97 < −>G98
G99 < −>G100

All datasets consisted of 2000 cases and 2000 controls (4000 samples in total). ‘G’ here refers to the SNP ID prefix
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Using marginal association as an example, the association of a variable with a binary

outcome simply indicates differences of allele frequencies between cases and controls.

Using a really simple dummy example as in Table 2, we can see that there are more 1 's

and 2 's for SNP1 in the controls than cases. Thus, in simulation, we could simulate

case and control data separately by specifying different allele frequencies for SNP1.

Using frequencies as probabilities, we then used sample with replacement until we

reached the desired samples.

The same logic extends to interacting variables. Only in this case, we are specify-

ing different joint allele frequencies between two SNPs. For example, there are

more SNP1 = 2 and SNP2 = 2 combination for controls than cases in Table 3. We

used the different joint allele frequencies to simulate interaction case and control

data.

Therefore, simulated variables with interaction effects were generated in case and

control datasets separately. For example, in dataset 1SNP, there is 1 SNP with a main

effect and similarly for the interaction effect datasets, such as case2_control2, there are

2 pairs of interaction SNPs simulated in cases (G1 < −>G2 and G3 < −>G4) and 2 inter-

action pairs in controls (G97 < −>G98 and G99 < −>G100).

Simulated data experiment 2

We simulated another set of datasets with a slightly different architecture to recap-

itulate the need to consider the varying architectures of complex disease traits. For

this simulation, we used GAMETES software to simulate two different genetic archi-

tectures [21]. The two architectures here are reflected by the ease of detection

measure (EDM) which makes the model easier (EDM-2) or harder (EDM-1) to de-

tect [22]. We simulated 100 features with MAF 0.2 for all predictive features in each

dataset. In this scenario, we simulated datasets with a sample size of 2000 (1000 cases

and 1000 controls). For each combination of parameters, we simulated 50 replicates at a

heritability value of 0.1, 0.2, or 0.4. There were 3 predictive features and 97 non-predictive

features simulated in each dataset. The predictive features are included in such a way that

there is a pairwise pure epistatic interaction as well as a third main effect additively com-

bined with the interaction.

Table 2 Dummy example representing the simulation criteria for main effects in simulation
experiment #1

Case control status SNP1

0 1

0 2

0 2

0 0

1 0

1 0

1 0

1 1

Here 0 in column1 refers to controls and 1 refers to cases. In column 2, 0,1 and 2 refers to the genotypes

Verma et al. BioData Mining  (2018) 11:5 Page 4 of 22



Biological data application

Natural biological data

We applied the proposed collective feature selection to a real dataset obtained from the

Geisinger MyCode DiscovEHR collaboration [23, 24]. At the time of these analyses, the

DiscovEHR study consisted of 60,000 samples whose genotype data (using Illumina

Human Omni Express Exome chip) is linked to their Electronic Health Record (EHR).

For our analysis, we extracted unrelated European American samples of age 18 or

older. We extracted all available Body Mass Index (BMI) values for all samples who

also had genotype data, from the Geisinger EHR. Median BMI was calculated for all

samples and used as the basis for the obesity phenotype in the subsequent analyses.

Average BMI of DiscovEHR population is 30 [24]. After quality control, 40,449 samples

were divided into cases and controls where samples with BMI ranging from 18 to 24.9

(defined as normal range) were considered as obesity controls and samples with BMI >

30 (defined as obese) were considered as obesity cases. We excluded samples in

marginal BMI range (25–30) to remove phenotypic heterogeneity and classify samples

as normal and obese (extremes of the distribution). To conduct a two-step analysis for

feature selection and model testing, we divided the dataset randomly into two parts:

variable selection dataset and modelling dataset. Our variable selection dataset was

used for feature selection and consisted of 15,201 samples (3917 controls and 11,284

cases) while our modelling dataset, which contained 14,925 samples in total (3767

controls 11,158 cases), was used for downstream analyses. We also performed quality

control on genotype data to only include variants with genotyping call rate > 99%,

MAF > 20% and HWE P-value<1e-07. Lower frequency variants (MAF < 0.2) were ex-

cluded from analyses as a first filtration step so as to compare our methodology to the

simulated datasets. Additionally, studies also suggest that for variants with MAF < 0.2,

the interaction effects do not explain much of genetic variance [19, 20]. To reduce the

search space for testing, we LD-pruned the data to only include independent variants.

We used an R2 threshold of 0.2 for LD pruning. After genotype QC, the training

dataset consisted of 60,232 variants for feature selection.

Statistical methods

To compare and contrast the different methods that can be used to select features with

non-additive effects, we chose a wide range of filter and embedded methods. For filter-

Table 3 Dummy example representing the simulation criteria for interacting effects in simulation
experiment #1

Case control status SNP1 SNP2

0 2 2

0 2 2

0 2 2

0 0 0

1 0 0

1 0 0

1 0 0

1 1 1

Here 0 in column1 refers to controls and 1 refers to cases. In column 2 and 3, 0,1 and 2 refers to the genotypes
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based feature selection methods we tested MultiSURF* and MDR and for embedded

methods we tested Random forests, gradient boosting, LASSO and Elastic Net. In this

manuscript, we divided methods into parametric and non-parametric methods. We

used this terminology throughout the manuscript to classify the methods tested.

Figure 1 lists the three categories of methods we tested for feature selection. We will

describe in detail how we ran analyses using these methods in this section. Datasets

that are imputed or obtained from commercial genotyping chips such as Illumina con-

sist of 500 K to approximately 10 M variants. After quality control and LD pruning to

include only the most independent variables, it is common to still be left with over

50,000 variants that can be exhaustively tested for interactions. Feature selection can

reduce the number of variants and consequently, the computational burden for down-

stream analysis. Since we chose different methods to test in our analysis, it is important

to note that the format of output from all these methods varies and has limited the way

in which we can compare the accuracy of these methods. For example, some methods

provide a test-statistic for every model, where others provide a ranked list of variables

based on performance. In comparing all methods, we could not choose an arbitrary test

statistic threshold for each method as that could create bias in selecting variables based

on different test statistics as followed in each method (for example MDR and uses bal-

anced accuracy for ranking models, LASSO and elastic net uses lambda for ranking

variables, Ranger and gradient boosting uses variable importance measure based on

prediction accuracy for ranking variables, etc.). Therefore, to compare all different fea-

ture selection approaches, we employed a ranking based method to extract the highest

ranked features based on a user-defined percentage after running each algorithm. Rank-

ing here refers to the score or the accuracy estimates from each algorithm separately.

For all our simulation tests, we showed results for selecting variables at several different

user-defined thresholds: 2% or 3% (based on number of effect SNPs in the two sets of

simulated datasets), 5% and 10%, thus we select the top 2/3%, 5%, or 10% of the

Fig. 1 Methods explored for feature selection and selection of top user defined percentage of features
for comparison
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variables in both simulated data experiments to investigate whether the methods per-

form better or worse, i.e. selection of true positives in comparison to false positives

(see Fig. 2). Next, we ran all of the methods on all replicates of datasets generated

from the combinations of parameters as explained in the simulated data section to

reduce the error and increase robustness of the models selected. We then averaged

across the replicated runs to compare the results.

Parametric methods

LASSO and Elastic Net regularizations are widely accepted methods for feature

selection [6]. Least Absolute Shrinkage and Selection Operator, or LASSO [12, 25], is a

shrinkage and variable selection method with imposed L1 regularization on the regres-

sion coefficients. Since the main goal of this analysis is to detect features that exhibit

interaction effects, we ran LASSO regression to include both additive effects of SNPs

in the models and exhaustive pairwise interactions of all SNPs in the model. Below are

the equations representing LASSO regularization for single SNP and interactions:

Penalized estimates for the model with additive effects alone can be derived as the

solution to the following optimization problem:

ðμ; β̂Þ ¼ min
X
i

n

yi−μ−
X
j¼1

p

xij β j

 !2

þ λJ βð Þ
( )

where
Pn

i ðyi−μ−
Pp

j¼1xij β jÞ2 is the residual sum of squares, λ > = 0 is the

regularization parameter and J(β) is the penalty function.

For LASSO Regularization with additive effects only, the penalty function is the L1

norm and can be expressed as follows:

J βð Þ ¼
X
j¼1

p

j β j j

Fig. 2 Outer circle represent a collective feature selection approach
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Likewise, penalized estimates for the regression model with additive and SNP-SNP

interaction effects can be derived as the solution to the following optimization

problem:

cðμ; β; γ̂Þ ¼ min
X
i

n

yi−μ−
X
j¼1

p

xij β j−
X
j¼1

p X
k< j

p

xij xikγ jk

 !2

þ λJ β; γð Þ
( )

Again, for LASSO Regularization with additive effects and interactions together, the

penalty function can be expressed as follows:

J β; γð Þ ¼
Xp
j¼1

j β j j þ
Xp
j¼1

Xp
k< j

j γ jk j

LASSO combines variable selection and shrinkage of variables, but it has a drawback

when the number of predictors is greater than the number of samples (p > n), in which

case it tends to select at most n predictors. Also, when predictors are correlated,

LASSO is outperformed by ridge regression. Thus, we modeled the data with ridge re-

gression in a preliminary part of our analysis but did not include those results in this

manuscript since they were similar to those from LASSO. Next, we explored another

penalized regression method, the Elastic Net, which works well in selecting a group of

correlated variables and does not limit the selection of the number of variables. Elastic

Net uses a weighted average of the L1 and L2 norms for its penalty function.

Similar to the LASSO penalty function, the elastic net penalty function [Zou et al.;

2005] for the model with additive effects and interactions can be expressed as follows:

J β; γð Þ ¼ α
Xp
j¼1

β j

��� ���þXp
j¼1

X
k< j

jβjk j
 !

þ 1−αð Þ
Xp
j¼1

β j

��� ���2 þXp
j¼1

X
k< j

βjk

��� ���2 #

Both these penalized regression methods (LASSO and elastic net) require

optimization of ƛ. Elastic net involves another tuning parameter called α, which is

commonly set to 0.5. In order to help tune these parameters, we performed 5-fold cross

validations for these two methods and chose the most optimal regularization parameter

for feature selection.

Non-parametric methods

Even though parametric methods are simple and easy to understand, they do not al-

ways fit the complex nature of biology. Thus, exploring some non-parametric methods

is also necessary. Non-parametric methods do not make assumptions about the distri-

bution of variables and underlying genetic architecture. These methods usually work

best for “big data” problems. We tested two decision-tree based methods, including

Random forests and Gradient Boosting, and we also tested a non-heuristic ReliefF algo-

rithm variation called Multiple Threshold Spatially Uniform ReliefF (MultiSURF*) [26].

For our random forests implementation, we used the RANGER R package [27]. We

tuned random forests to get better results, setting number of trees as 1000 for main

effect datasets and 4500 for datasets with interaction effects. The other parameter that

we tuned is the number of variables that split each node; we used 35 for main effects,

70 for interaction effects in datasets with 100 SNPs, and 200 for interaction effects in

datasets with 500 SNPs. We also used gradient boosting implementation in the GBM R
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package. For gradient boosting, we set the number of trees as 800 for main effect data-

sets and 15,000 trees for interaction effects datasets. We set the bag fraction as 0.5 and

shrinkage as 0.01, which have been suggested to result in the best performance based

on the best practices from R package manual (https://cran.r-project.org/web/packages/

gbm/gbm.pdf ). TuRF refers to Tuned ReliefF and it performs feature selection recur-

sively. It is suggested to use TuRF along with ReliefF algorithms to get better perform-

ance when using a large number of variables [5, 15, 28]. Thus, it is important to test

the number of variables that will be thrown out at every iteration. We tested discarding

1%, 5% and 10% of least predictive variables at each iteration to determine the

appropriate threshold for MultiSURF* + TuRF in order to identify more true positives

in a computationally feasible amount of time.

Non-parametric data mining approach for feature selection

Multifactor Dimensionality Reduction (MDR) has been traditionally applied to several

association studies including gene-gene and gene-environment interaction studies [7, 8].

Many different versions of MDR have also been proposed for different data types [29–31].

Using MDR as filtering method has also been previously tested and compared with other

methods [32]. We utilized parallel MDR (pMDR) {https://ritchielab.psu.edu/software/

mdr-download} in similar way to Oki NO et al. [33], where we ran all main effect models

and two-way interactions without cross validations and then ranked the variables based

on their training accuracy.

Collective feature selection

A plethora of machine learning and feature selection methods have been proposed and

tested in various studies [6, 12, 13, 16, 32]. In this manuscript, we aimed to compare a

few of these methods; however, picking one method can be convenient but not always

pertinent. Thus, in our analysis we proposed to select a few orthogonal feature selec-

tion methods from what were tested and then use the union of all variables selected

from these methods for any downstream analysis. Figure 2 depicts the concept of our

collective feature selection approach in selecting variables in a dummy set of 4 methods

listed as Method 1 to 4. We applied this approach to simulated data experiments 1 and

2 but are only showing results from experiment 2 where we selected top 3%, 5% and

10% features from each of the 4 methods. Results from experiment 1 are similar. We

compared these methods in terms of number of overlapping features, number of true

positives, and number of false positives detected from each. To represent the overlap-

ping features and features selected for EDM-1 and EDM-2 models, we merged the

datasets with 3 different heritability values (0.1,0.2 and 0.4) together.

Using this approach, we also propose a pipeline as shown in Fig. 3 for performing

analysis using feature selection as an essential step before applying machine learning

methods, such as neural networks, support vector machines, Bayesian approaches, etc.,

in downstream analyses. Figure 3 represents a three-step pipeline, beginning with test-

ing several feature selection methods in simulated datasets in Step 1, as covered in this

manuscript. Steps 2 and 3 involve applying the selected methods to a real dataset. We

propose to apply top performing methods from Step 1 on our natural biological dataset

in Step 2. In Step 2, we select variables based on our collective approach in our real

training dataset. Finally, in Step 3, we propose to extract collectively selected variables
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from the variable selection subset of our natural biological dataset to then use for

downstream analysis.

Feature selection and downstream analyses

We applied this proposed approach to test for SNPs that are associated with obesity

among samples from the MyCode DiscovEHR study [23]. On quality controlled data,

we selected features using MDR, MultiSURF* and TuRF, and Ranger collectively, and

then performed downstream analyses using Analysis Tool for Heritable and Environ-

mental Network Associations (ATHENA) [9, 34]. We choose to apply Grammatical

Evolution Neural Networks (GENN) implemented in ATHENA for this analysis to

select non-linear epistatic interactions between SNPs selected from the feature

selection strategy described above. Grammatical evolution methods are alternatives

to classical genetic programming approaches in machine learning methods. This

approach has been widely accepted and its effectiveness has been explained in

previous studies [35–38]. We used the following parameter criteria to identify

networks associated with BMI case control outcome:

1. Five-fold cross validation

Modelling data as described in Step 3, which included 14,925 samples and

features selected via collective approach, were divided into 5 equal parts.

2. Process

The first iteration begins with selecting a training set to generate random popu-

lation (popsize 10,000), dividing into sub-populations, and then preforming an

analysis on 30 nodes. The grammar for GENN is then used to evaluate the

training set using Area Under Curve (AUC) fitness criteria. This step is then

repeated 20 times (numsteps) after which migration takes place to select the

Fig. 3 Pipeline of feature selection procedure and downstream analysis in both simulated and natural
biological data
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best solution from all 30 nodes. This process is repeated 4 more times, once for

each remaining cross-validation fold to perform 5-fold cross validation as

explained in step #1.

3. Results

Training and testing AUC for each network model associated with outcome is

reported from all cross validations.

Results
Simulation studies results

Optimizing TuRF iterations

We aimed to use TuRF along with MultiSURF to help increase its efficiency. We tested

3 different thresholds, 1%, 5%, and 10%, to iteratively remove that percent of lowest

ranking variables at each iteration. Figure 4 below shows the comparison of results.

Here sensitivity is defined as the proportion of true positives selected where a sensitiv-

ity of 1 means 100% of true positives were selected from the simulated dataset.

It is interesting to note here that MultiSURF* without TuRF performs better for

strong effect models (0.5 and 0.9 penetrance) for both 100 SNPs and 500 SNPs data-

sets. This could be due to the fact that TuRF works better for larger datasets with many

variables whereas 500 variables is still considered relatively “small” and can be handled

by MultiSURF alone. In this case, TuRF does not help but instead makes it worse. The

poor performance of MultiSURF and TuRF could be explained by the algorithm

accidentally discarding the important variable or variables in the first iteration.

Distribution of accuracy from MDR

We ranked all MDR generated models based on their training accuracy to select top

user-defined percentages of models as explained in model selection. Figure 5 shows the

distribution of median training accuracy for all models that were selected from MDR

feature selection. It is to be noted that the accuracies for the selected features vary

greatly based on the strength of signal. For example, training accuracies in 0.1 effect

signal datasets are close to 55% for all models whereas accuracies for 0.9 effect signal

Fig. 4 Comparison of results for TuRF parameters when using it with MultiSURF* as well as MultiSURF*
without TuRF implementation. The plot on left is for 100 variables and the right plot is for 500 variables.
The x-axis lists main effect and interaction datasets while the y-axis lists all methods tested. These plots are
faceted by percentage of top variables selected and the strength of signal. The color gradient refers to the
sensitivity (percentage of true positives), ranging blue to orange, or 0 to1
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datasets are closer to 80%. Notably, in many two-way interaction models, we observed

that false positives are paired with true positives. Figure 5 represents overall accuracy

of the model. Since both false and true positives exist in model, the accuracies reported

are also higher for false positive (in red).

Application of all methods on simulated datasets

We tested all chosen methods on the two experiments of simulated datasets with

different ranges for effect sizes and various additive main effect and interaction effect

models as explained in the data section. To compare results, we are using the degree of

effectiveness described as “Sensitivity” where a sensitivity of 1 is equivalent to 100% of

true positives being selected in the top features. Figure 6 represents the results for all

methods tested using simulated data experiment 1 and Fig. 7 represents results from all

methods tested using simulated data experiment 2. It seems evident from these plots

that MDR used as a feature selection tool helps to select true positives every time for

models tested in simulated data experiment 1 whereas Ranger and Gradient Boosting

perform best in terms of selecting true positives for data experiment 2. In the first set

Fig. 5 Distribution of median training accuracy from pMDR analyses. X-axis is median training accuracy
values of the model, Y-axis lists all main effect and interaction simulated datasets. These plots are faceted
by effect size and top percentage of models selected. 100 SNP data is shown in circles and 500 SNP in
triangles. The two colors represent actual true and false positives in results
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of simulations, we see that nonparametric methods do not perform as well in detecting

interacting effects. Additionally, we see that most methods do not perform well for the

weakest signal tested (0.1 penetrance). MultiSURF and TuRF seem to perform well for

interaction effects but do not perform well for main effects. In the second set of simu-

lations, LASSO (without explicitly adding interactions in the model) and elastic net fail

to find true positives in both EDM-1 and EDM-2 models, while MDR fails to identify

true positives for EDM-2 model. MultiSURF alone and MultiSURF with TuRF both

struggle in finding true positives from EDM-2. MDR and ReliefF algorithms work well

for EDM-1 model architecture. Lastly, LASSO with interaction models can identify

interactions similar to best performing methods in both simulated sets. When we

compared these methods for their efficiency (computation burden and memory

requirements) as shown in Fig. 8 and Table 4, we observed that the parametric methods

(especially LASSO with interactions) take more computation time than most non-para-

metric methods and the data mining approach. Additionally, LASSO generates an

pxp matrix (SNPxSNP) for all exhaustive pairs of SNPs and also requires more

memory than other methods to perform computation. Methods like LASSO and

Ranger (R package) were also not computationally feasible to run on large

genome-wide datasets including over 50,000 SNPs. Thus, a pre-filtration of SNPs

based on criteria like LD pruning, MAF filter would be necessary.

We also estimated the time it would take for most of these methods to run

when the number of samples and variants are increased. From our analysis, we

estimated that MDR scales linearly with number of samples and quadratically with

number of features whereas MultiSURF* scales quadratically with number of

samples and linearly with number of features. [15]. Thus, the computational

burden of MDR increases more when number of samples is increased. Gradient

boosting seems to only perform well with larger effects sizes in terms of detecting

true positives [16] and fewer variants. For larger numbers of variants and samples,

the best way to perform analyses using gradient boosting is to create subsets of

SNPs with low intercorrelations and then aggregate results (email conversation

with Dr. Gitta Lubke). Since we do not want to make any pre-assumption about

the nature of interactions and only test subset of SNPs in a smaller region of

genome, we decided to not use Gradient Boosting in such manner.

Fig. 6 Comparison of results from all methods tested on simulated dataset 1. These heat maps show the
sensitivity of results for all methods (on y-axis) and all simulated models (on x-axis) for both 100 SNPs and
500 SNPs datasets in combination with different effect sizes and selection percentage of top features
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Collective feature selection on simulated dataset

We applied collective feature selection on simulated experiment data 2 to obtain

the number of features that will be selected from top performing methods.

Figure 9a and b show the overlap among top features selected from MDR, Ranger,

Gradient Boosting, and MultiSURF* and TuRF on EDM-1 and EDM-2 model

architectures. Based on information known about merged results from simulated

datasets, we expected to obtain 9 true positives (3 from each heritability param-

eter) in each set of top features selected by every method. However, we again

observe that each method does not pick all true positives as shown in 3rd panel

of Fig. 9.

Fig. 7 Comparison of results from all methods tested on simulated dataset 2. These heat maps show the
sensitivity of results for all methods (on y-axis) and both simulated models (on x-axis) in combination with
different effect sizes (heritability values of 0.1, 0.2 and 0.4) and selection percentage of top features
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Therefore, the practice of applying a collective approach seems advantageous.

Figure 10 shows the number of features selected in each model by top 3, 5, and 10%

model selection criteria. One point to note is that by choosing collective feature selection,

we picked all 9 true positives every time whereas by picking one method alone, we risk

the chance of picking the “best” method based on one scenario and applying it to a dataset

where it is unable to detect all of the true positives.

Biological data application

Collective feature selection

The first step in identifying non-linear models associated with obesity (defined here

based on BMI values) is to perform feature selection. We selected 3 methods

(MultiSURF and TuRF, MDR and RANGER) for feature selection as described in the

methods section. As shown in Table 4, Ranger R package was not computationally

feasible (in terms of memory) to run on > 50,000 SNPs; we performed feature selection

via random forests by combining Ranger with GenABEL R package to load GWAS

data. The computational time for collective feature selection is the combination of the

time it took to run each method which is 13 days for Ranger + 1 day for MultiSURF

Fig. 8 Plot showing time in seconds (on y-axis) taken for running all feature selection methods. All
simulated models are presented in x-axis. Color represents each method. Circles are for 100 SNPs
datasets and triangles for 500 SNPs datasets

Table 4 Computational time and memory requirements for all feature selection methods,
compared in terms of number of SNPs

Method Computational time based on number of
SNPs (in seconds)

Memory requirements based on
number of SNPs

100 500 50,000 100,000 100 500 50,000 100,000

LASSO 4.65 58.49 NA NA 10gb 10gb NA NA

LASSO with interactions 186.9 1800 NA NA 20gb 20gb NA NA

Elastic Net 31.44 401.11 NA NA 10gb 10gb NA NA

Ranger 151.31 681.83 NA NA 8gb 8gb NA NA

Gradient Boosting 103.22 466.95 NA NA 8gb 8gb NA NA

MDR 0.25 15.03 6102 89,777 1gb 1gb 10gb 30gb

MultiSURF 2.48 5.13 NA NA 18gb 39gb NA NA

MultiSURF + TuRF 0.05 36.72 65.72 4420 8321 18gb 39gb 28gb 28gb

Note that “NA” here stands for where the model could not be tested due to computational infeasibility while keeping all
parameters for simulated datasets same
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and TuRF + 3.5 days for MDR = 17.5 days. Input data consisted of 60,032 SNPs and

after feature selection, we selected the top 1% results from each method. This resulted

in 1758 variables selected using collective feature selection (note that intersection of

methods only selects 2 genes which do not include well known SNPs linked to obesity

such as variants in FTO and MYO16). The overlap of these variables among the differ-

ent methods is shown in Fig. 11.

ATHENA results

Five different networks were obtained as a result of applying GENN to identify non-

additive interactions associated with BMI outcome. The training and testing area under

curve (AUC) for the 5 models are presented in Table 5.

We choose the best network from this analysis, which is shown in Fig. 12. Figure 12

also represents the selection of variants by each feature selection method. In this ana-

lysis, we did not adjust for any confounding effects of age, sex, or principal components

(PCs) on BMI, but for the variants selected in top models from ATHENA, we ran

Fig. 9 Venn Diagrams shown here represent the overlap among the top features selected by all methods
while bar charts below each Venn diagram show the number of true positives and false positives selected by
each method. Plot (a) illustrates results for EDM-1 datasets and Plot (b) contains results for EDM-2 datasets
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regression using PLATO [39] to see if the effect sizes and P-values for these variants

change drastically when BMI, the dependent variable, is adjusted by covariates (age, sex

and first 4 PCs). Therefore, to identify if there is significant effect of co-variates on

SNPs, we tested these variants by running logistic regression with and without adjust-

ing for covariates. Table 6 lists the p-values and betas from regression analyses.

Obesity is a worldwide epidemic and it predisposes to many other metabolic traits

and diseases [40]. In our network, we observed a well-known hit for a variant in the

FTO gene which has been identified by many GWAS analyses. It is to be noted that

FTO variant was not selected by every feature selection method and similar is the case

Fig. 10 Number of features selected by collective approach

Fig. 11 Collective feature selection to select 1758 variables with potential epistatic effect from MyCode data
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for other variants that are reported in Fig. 12. The reported model suggests interaction

of FTO [40, 41] variants with variants in TNC, MYO16, and TTBK1 genes. Notably,

these three genes have known associations with other phenotypes influenced by BMI,

such as TNC with Alzheimer’s and schizophrenia [42, 43]. TTBK1 is also known to be

associated with Alzheimer’s disease [44–46] while MYO16 has been found to be associ-

ated with pulse pressure [47]. It is also interesting to note that variants in genes

MYO16 and TNC are not significant when tested for independent main effect (as

reported in Table 6) but they are included in the interaction model as suggested by

ATHENA (Fig. 12) which suggests that these variants might work in combination to affect

the etiology of obesity but would not be identified otherwise in an additive model.

Discussion
Epistatic features of genes are necessary to consider when investigating the genetic

etiology of disease traits. Gene-gene interactions are believed to account for hidden

genetic variability [48]. Testing exhaustive pairwise or higher order interactions among

all genetic variants poses various challenges including computational burden and

correction for multiple hypotheses. Along with these challenges that affect efficiency, it

is also important to note that adding more variables to test also reduces the effective-

ness of the predictions. Thus, performing feature selection before modelling is

Table 5 Training and testing AUC for models selected by ATHENA

Cross Validation Training AUC Testing AUC

CV1 0.552115 0.537071

CV2 0.546601 0.540414

CV3 0.543943 0.547598

CV4 0.549398 0.538175

CV5 0.555795 0.541373

Fig. 12 Best GENN model selected from ATHENA. The SNPs are annotated to gene names. On the bottom
right is the list of variants and genes in the model and which feature selection method selected the variant
are colored in the table to represent the presence (in orange) and absence (in white) of variant in each
feature selection method
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necessary. In our study, we tested parametric, nonparametric, and data mining ap-

proaches for feature selection and compared them based on the top models selected as

well as the computational time. Through our simulation experiments, we observed that

every method is trained to pick variants based on different underlying models that

could have potential epistatic effects on disease traits which is reflected by the selection

of different false positives from each method on our simulated datasets. Similarly, every

method that we tested does not pick all main effect variables every time. This is

evident from the non-selection of FTO variant by MultiSURF+TuRF and non-

selection of variants in genes MYO16 and TTBK1 by MDR and Ranger respect-

ively. One possible explanation for selection of different features from different al-

gorithm corresponds to the “no free lunch” theorem [17] and the understanding

that no particular feature selection method is specifically designed to pick all

epistatic effects. We recommend selecting a user-defined percentage based on

combination of sample size, number of variables and trait complexity to obtain the

union of features from all methods, referred to here as collective feature selection,

to potentially increase power to detect more biologically pertinent associations. It

is likely that using a collective approach could result in adding more noise to the

analysis, but our analysis suggests that applying different feature selection strategies

yield such majorly dissimilar results that the payoff is greater than the cost. In

future studies, we aim to test the collective feature selection approach on other

natural biological datasets. Our simulation analysis showed that applying non-

parametric approaches, like MDR, random forest, gradient boosting and ReliefF

results in selecting more true positives epistatic effects in a computationally

feasible amount of time than using parametric approaches. But using one method

does not always yield all true positives. Thus, we propose collective feature

selection utilizing non-parametric methods as a powerful approach for epistatic

discovery analysis.

One of the limitations of this study is that we tested our analyses for binary outcome

in both simulated and natural datasets. Future work would include the application of

these methods to quantitative phenotypes. Additionally, in our simulation analyses we

were not able to identify any patterns among the SNPs that were selected across

methods. One possible reason could be because of the way that noise is simulated in

our dataset, we selected all variants at similar MAF. More studies including simulations

of different sets of MAF could also help validate this approach further. In addition, the

inclusion of other types of underlying models of epistasis would be useful to further

discern which orthogonal or complementary methods perform best in a collective

feature selection strategy.

Table 6 P-values and betas from regression analyses on 5 SNPs in the network selected by ATHENA

SNP Gene name No covariates With covariates

p-val beta p-val beta

exm-rs11075987 FTO 6.76E-11 0.173939 8.02E-09 0.1690

rs7232886 N/A 9.36E-09 −0.15448 6.24E-06 −0.1336

rs2756184 TTBK1 0.014104 −0.06635 0.018812 −0.0699

rs9520911 MYO16 0.045223 0.053358 0.051185 0.0573

rs7043308 TNC 0.768626 − 0.00958 0.745697 − 0.0116
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Conclusions
Although our current study is limited in terms of the simulations we performed, they

clearly indicate that different methods select varying features depending on the genetic

architecture of the trait. Thus, using a collective approach by selecting union of results

from different methods rather than selecting an intersection could help preserve features

with non-additive effects during feature selection. We applied our approach to select fea-

tures that were later tested in an independent dataset to identify networks using GENN.

Our model was able to select known signals as well as potential interacting effects of

known signals with other variants that could be influencing the risk of obesity.
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