Латински квадрат
За информацията в тази статия или раздел не са посочени източници. Въпросната информация може да е непълна, неточна или изцяло невярна. Имайте предвид, че това може да стане причина за изтриването на цялата статия или раздел. |
Латински квадрат представлява таблица n × n, запълнена с n различни символи по такъв начин, че във всеки ред и колона символа n се среща само по веднъж. Ето два примера:
Латинските квадрати съществуват за всяко n.
Ортогонални латински квадрати
[редактиране | редактиране на кода]Два латински квадрата се наричат ортогонални, ако са различни всички двойки символи (a,b), където a е символ в някоя клетка на първия квадрат, а b – символ в същата клетка, но във втория квадрат. Пример за двойка ортогонални латински квадрати е:
Ортогонални латински квадрати съществуват за произволно n освен за 2 и 6.
Приложения
[редактиране | редактиране на кода]Експерименти
[редактиране | редактиране на кода]Да предположим, че трябва да се проведат няколко експеримента, зависещи от 3 параметъра 1≤a,b,c≤n, така, че за всяка двойка параметри да бъдат изпробвани всички n2 варианти. Тогава е необходимо да се разгледа латински квадрат от порядък n и да се проведат n2 експеримента с параметри a = номер на реда, b = номер на колоната, c = значение в клетка на латинския квадрат.
Судоку
[редактиране | редактиране на кода]Популярната игра судоку е специален случай на латински квадрат. Всяко от решенията на судоку е латински квадрат, като всеки от 9 подквадрата съдържа всяка цифра от 1 до 9.